Звезды нашей галактики список


Одна из ближайших звезд – Проксима Центавра

Проксима ЦентавраМы начнем с одной из ближайших к нашей планете звезд. И эта звезда будет самой маленькой в ​нашем списке. Проксима Центавра является частью тройной системы Альфа Центавра, которая находится на расстоянии чуть более 4 световых лет от нас. Ее диаметр составляет около 215 000 километров. То есть она всего в 1,5 раза больше Юпитера. И в семь раз меньше Солнца. Проксима Центавра – это звезда класса красный карлик. Её возраст – около 4,8 миллиарда лет. К сожалению с Земли наблюдать эту звезду нельзя, ввиду ее крайне малой светимости.

Звезда по имени Солнце

Звезда СолнцеНаша собственная звезда – это Солнце.
это же очевидно, скажете Вы. Совершенно верно. И все же мы сделаем небольшую оговорку относительно нашего светила. Потому что астрономы выражают размер звезд в радиусах Солнца. А один солнечный радиус составляет примерно 695 500 километров. Поэтому мы должны убедиться, что, по крайней мере, мы понимаем это число. Это позволит нам получить представление о размерах других звезд. Мы не будем больше ничего говорить о Солнце. Потому что мы многое знаем про эту звезду. А самое главное – она позволяет процветать жизни на нашей планете.

Сириус

звезда СириусОдна из самых известных звезд – это Сириус. Это самая яркая звезда на нашем небе. Но, на самом деле, не самая крупная из них. Да и вообще – Сириус – это, на самом деле, двойная звездная система. Она состоит из звезд Сириус А и Сириус Б. При этом Сириус Б очень маленький. А вот Сириус А имеет размер 1,7 солнечных радиусов. То есть он в 1,7 раза больше Солнца. В абсолютных цифрах его радиус (приблизительно) составляет 1 182 350 километров. Если мы поместим эту звезду в Солнечную систему, ни одна планета не будет затронута. Потому что ближайшая к Солнцу планета, Меркурий, вращается вокруг него в среднем на расстоянии 57 000 000 километров.

Поллукс


звезда ПоллуксПоллукс это – самая яркая звезда в созвездии Близнецов. Эта звезда очень большая. Относительно Солнца, конечно. Это светило относится к классу оранжевых сверхгигантов. Ученые считают, что в ближайшие 100 миллионов лет Поллукс превратиться в белого карлика. Радиус звезды – около 8,8 солнечных радиусов. Или 6 120 400 км. А диаметр, соответственно, около 12 240 800 км. Если поместить Поллукс на место Солнца, Меркурий все еще будет в безопасности. Ну разве что там станет немного теплее.

 Арктур

Одна из самых ярких звезд в северном полушарии (четвертая по яркости, если быть точным) – это Арктур. Как и Поллукс, это оранжевый гигант. И его легко можно увидеть невооруженным глазом

звезда Арктур

Жители древней Месопотамии считали что Арктур – это изображение бога Энлиля. Размер Артура – около 25,4 солнечных радиуса. Или 17 665 700 километров. И поэтому он тоже не будет ничем угрожать Меркурию, если захочет поменяться с Солнцем местами.

Альдебаран


звезда АльдебаранАльдебаран, как и Арктур – это гигантская оранжевая звезда. Это также одна из самых ярких звезд на небе. Эта звезда имеет размер 44,2 солнечных радиуса. Или 30 741 100 км. Поэтому, если мы поместим ее в Солнечную систему, он достигнет половины расстояния между Солнцем и Меркурием. Да, Меркурию уже стоит начать волноваться. Если дело пойдет так и дальше – места ему не хватит…

Ригель

Эта звезда – одна из самых ярких звезд на нашем небе. И на самом деле это не одна звезда. А целая тройная звездная система. В которой Ригель A – синий супергигант, а Ригель B – двойная система с гораздо меньшими звездами. Ригель А имеет 78,9 солнечных радиусов. То есть радиус Ригеля составляет 54 874 950 километров. Если мы поместим этого гиганта в Солнечную систему, часть орбиты Меркурия окажется внутри этой звезды.Звезды нашей галактики списокДенеб

Звезда ДенебДенеб – одна из трех звезд, составляющих так называемый «летний треугольник» (две другие звезды – это Вега и Альтаир). И это одна из самых ярких звезд на небе в это время года. Денеб – это синий супергигант. Он имеет размер 203 солнечных радиуса. Или 141 186 500 километров. Если мы поместим Денеб в Солнечную систему, его край окажется всего в 8 миллионах километров от Земли.

Антарес

звезда АнтаресВ этом месте было бы справедливо отметить, что мы уже начали говорить о по настоящему больших звездах. Но на самом деле в рейтинге самых крупных из известных звезд Антарес является лишь 28-й по величине. Однако это очень яркая звезда. Ее можно увидеть в созвездии Скорпиона. И ее размеры, на самом деле, просто огромны. (Что довольно типично для сверхгигантских звезд😁). Радиус Антареса 883 солнечных радиусов. Или 614 126 500 километров. Если бы он Антарес оказался в центре в Солнечной системе, он почти достиг бы орбиты Юпитера. И нам пришлось бы попрощаться с поясом астероидов.

Бетельгейзе


Бетельгейзе звездаБетельгейзе, конечно, не нуждается в особом представлении. Это одна из самых известных звезд. По многим причинам. Ученые до сих пор не совсем уверены в том, что правильно оценивают размеры этой звезды. Но общепринято, что он составляет около 1075 радиусов Солнца. То есть 747,662,500 километров. Если бы Бетельгейзе оказалась в Солнечной системе, она почти достигла бы средней орбиты Юпитера. То есть часть орбиты самой большой планеты в Солнечной системе находилась бы внутри этой звезды. Тем не менее существуют и другие оценки размеров Бетельгейзе. От 730 до 1180 солнечных радиусов.

В любом случае, Бетельгейзе очень велика. Однако в абсолютной классификации она остается всего лишь на 19-м месте…

Источник: alivespace.ru

Физики теоретически проанализировали опасность для человека кротовых нор — гипотетических туннелей в пространстве-времени, с помощью которых, в частности, можно перемещаться между удаленными областями Вселенной быстрее (по собственному времени путешественника), чем при движении по какой-либо траектории вне кротовой норы. В рамках одной из моделей с дополнительным измерением оказалось, что устья (то есть концы туннеля) таких объектов размером свыше полутора тысяч километров позволяют человеческому организму выдержать возникающие перегрузки, что разрешает одну из основных проблем подобных путешествий. Текст работы опубликован на arXiv.org.


Кротовыми норами (или червоточинами) физики называют гипотетический вид структур пространства-времени, существование которых на сегодняшний день предсказывает (или не исключает) ряд теоретических моделей. Упрощенно такие объекты можно представлять как туннели, соединяющие две области пространства-времени, причем сами области не обязательно должны быть как-либо связаны помимо кротовой норы — в таком случае нора становится туннелем между различными вселенными.

Особый интерес для ученых представляют проходимые кротовые норы — те, которые живут достаточно долго, чтобы позволить попавшему в устье норы объекту преодолеть весь туннель и оказаться на противоположном его конце. Если такие червоточины действительно существуют, то на их основе, возможно, удастся реализовать перемещения в пространстве с эффективной сверхсветовой (то есть быстрее, чем идущий вне туннеля луч света) скоростью и даже совершать путешествия во времени — подобные идеи исследователи описывали еще в прошлом столетии. Тем не менее важные детали таких путешествий (как, например, способность человека пережить прохождение через туннель) на сегодняшний день по-прежнему остаются слабоизученными.


Хуан Малдасена (Juan Maldacena) и Алексей Милехин (Alexey Milekhin) из Принстонского университета рассмотрели один из возможных типов проходимых кротовых нор и проанализировали его физические свойства с точки зрения перемещения человека в пространстве. В качестве устьев червоточины исследователи использовали обращающиеся друг относительно друга объекты, которые для внешнего наблюдателя (по своему воздействую на окружающее пространство-время) напоминали бы черные дыры, однако изнутри были бы связаны туннелевидным переходом.

Для описания физических свойств червоточины, важных с точки зрения пространственных путешествий, авторы воспользовались моделью Рэндалл-Сундрума (RS2), в которой вводится дополнительное (к известным трем пространственным и одному временному) пятое измерение. Затем при помощи метрики (то есть закона, определяющего пространственно-временные интервалы — аналоги расстояний в обычном пространстве) этой модели физики получали оценки размера устьев кротовой норы, протяженности туннеля, а также времени путешествия через него (которое измеряли бы сам путешественник и наблюдатель снаружи червоточины).

Пользуясь тем, что приливное ускорение, которое будет испытывать путешественник сквозь кротовую нору, обратно пропорционально квадрату размера устья, установив предельно допустимую кратковременную перегрузку на уровне 20g (то есть в двадцать раз больше ускорения свободного падения у поверхности Земли), а также привлекая экспериментальные оценки неизвестных параметров модели Рэндалл-Сундрума, исследователи ограничили допустимые размеры входа в червоточину.


В результате физики установили, что пережить воздействие приливных сил человек способен при размере устья кротовой норы не менее полутора тысяч километров — это сопоставимо с размерами карликовых планет. На преодоление такого туннеля по часам путешественника ушло бы порядка 0,15 секунды, а для внешнего наблюдателя прошло бы свыше девяти тысяч лет. При этом ученые полагали, что расстояние между устьями снаружи червоточины свет может преодолеть гораздо (до тысяч раз) быстрее — это позволило обеспечить стабильность вращающейся (и потому излучающей энергию) системы и гарантировать проходимость туннеля.

Авторы отмечают, что несмотря на потенциальную пригодность кротовых нор для путешествий, некоторые серьезные проблемы остаются нерешенными — в частности, за рамками исследования остались механизмы (в том числе контролируемого) формирования червоточин. Другим важным препятствием являются посторонние частицы — например, фотоны реликтового излучения. Во-первых, при попадании в туннель их энергия будет многократно (на порядки и даже десятки порядков) возрастать, что сделает их опасными для человека, а во-вторых — они могут рассеиваться и терять энергию внутри туннеля и привести к его коллапсу, превратив червоточину в черную дыру.


Кроме того, исследователи напоминают о пользе кротовых нор с более компактными (микрометровыми) устьями — несмотря на большие приливные силы, такие объекты, разнесенные на достаточно большие расстояния (сопоставимые, например, с размерами Солнечной системы), могли бы помочь в передаче информации.

Источник: pikabu.ru

Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.


Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.

Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.

Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.

Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Источник: myvera.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.