Взрывающиеся звезды


Взрывающиеся звезды

  • Звезды

Звезда почти никогда не умирает бесследно, всегда остается остов, вот только что за остов решает размер и масса: черные дыры, пульсары, белые карлики, нейтронные звезды. Смерть звёзд с одной стороны это разрушительный процесс, с другой созидательный.

Звезда сама по себе это кузница химических элементов.  Всё вокруг вас, все что вы сейчас видите и что не видите, было создано звёздами. Не сами предметы конечно, а то из чего они состоят- атомы. Даже мы сами — дети звёзд. Мы состоим из тех материалов которые произвела какая-то далекая и старая звезда во время своей грандиозной смерти. Вполне вероятно что атомы вашей левой и правой руки были произведены разными звёздами.

Признаки скорой смерти звезды

Каждая звезда во Вселенной — это огромный ядерный реактор по превращению одного элемента в другой. Мечта алхимиков древности, своеобразный философский камень. На заре своей жизни звезды генерируют свою силу превращая два атома водорода в гелий с выделением огромного количества энергии.


Когда водород заканчивается, начинается производство углерода, затем кислорода и так вплоть до железа.

Производство железа, это сигнал о том, что смерть подобралась к звезде очень близко. Тяжелее железа звезда уже ничего не может произвести. Железо поглощает всю энергию ядерного синтеза звёзд. Она просто дожигает своё топливо, неминуемо приближаясь к своему закату. Так звезда подобная солнцу (звездочка среднего размера), больше не может сдерживать свои внешние слои и они начинают сбрасываться, отдаляясь от ядра, все больше раздувая солнце становясь красным гигантом.

Финальные стадии звёздной эволюции

Жизненный цикл звёзд зависит от их массы. Крупные звёзды интенсивнее сжигают своё топливо и сгорают за несколько десятков миллионов лет. Мелкие могут «тлеть» сотни миллиардов лет. Таким образом, в зависимости от массы звезды будет происходить и процесс ее смерти. На рисунке ниже представлены примеры эволюции звезд различной массы.

Взрывающиеся звезды

Рассмотрим более подробно, какие загадочные процессы происходят при окончаниижизненного цикла различных звезд.


Сверхмассивные звёзды

После того как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций.

В результате самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми.

В этой ослепительной вспышке сверхновой звезды выделяется в 100 раз больше энергии, чем даёт Солнце за всю свою жизнь. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд.

Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе, однако когда она взорвётся, подсчитать невозможно.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды.

В настоящее время для сверхмассивной звезды есть четыре варианта развития событий:

  • Сверхновые низкой массы порождают нейтронную звезду и газ.
  • Сверхновые более высокой массы порождают чёрную дыру и газ.
  • Массивные звёзды в результате прямого коллапса порождают массивную чёрную дыру без всяких других остатков.
  • После взрыва гиперновой остаётся один только газ.

Тем не менее, чаще всего рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звезды

Взрывающиеся звезды

Дальше гравитация продолжает сжимать то, что осталось, но на определённом этапе ядерные силы останавливают сжатие и получается нейтронная звезда – пульсар.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.  Для ее поверхности характерны сверхсильные магнитные поля и сверхсильная гравитация.

Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод.

Черные дыры

Взрывающиеся звезды

Если же звезда была более, чем в 30 раз тяжелее Солнца, то после взрыва её, как сверхновой, гравитационный коллапс не останавливается – образуется чёрная дыра.


а имеет плотность такую, какую будет иметь Земля, если её сжать до диаметра 5 см. Поэтому сила гравитации чёрных дыр стремится к бесконечности. Такую силу притяжения не могут преодолеть даже частицы света со своими предельными скоростями. Поэтому чёрная дыра не отражает падающий на неё свет, она его поглощает. Отсюда такое название.

Учёные предполагают, что в чёрных дырах не действуют законы физики, перестаёт существовать пространство и время, но остаётся информация в виде голографических проекций. Край чёрной дыры – горизонт событий – это граница времени и пространства. Центр чёрной дыры – сингулярность – физическая неопределённость. Чёрная дыра поглощает звезды и туманности пока им хватает места. А потом выбрасывает мощный поток газа – квазар за пределы галактики.

Ширина квазара больше чем диаметр Солнечной системы. За границей галактики начинают формироваться новые звёзды и новые галактики.

Звёзды среднего размера

Другие, менее массивные звёзды (от 0,4 до 3,4 солнечных масс) дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники.

Звезда подобная Солнцу— а это звездочка среднего размера, в конце существования больше не может сдерживать свои внешние слои и они начинают сбрасываться, отдаляясь от ядра, все больше раздувая солнце становясь красным гигантом. Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии.


Взрывающиеся звезды

Гравитация же действует в обратном направлении, сжимая ядро, увеличивая его плотность. Расширяясь, звезда достигает огромных размеров.

В преддверии своей смерти наше Солнце поглотит Меркурий, Венеру, а потом и Землю. Восход во времена последних миллионов лет будет чем то невероятным. Солнце будет перекрывать весь горизонт испепеляя все на своем пути.

Судьба центральной части звезды полностью зависит от её исходной массы, — ядро звезды может закончить свою эволюцию как:

  • белый карлик (маломассивные звёзды);
  • нейтронная звезда (пульсар), если масса звезды на поздних стадиях эволюции превышает  1,38 — 1,44 масс Солнца;
  • чёрная дыра, если масса звезды превышает 2,5 — 3 массы Солнца.

В момент когда топлива не останется даже для производства железа, звезда полностью скинет свои внешние слои, разнося элементы по вселенной. Ядро же сожмётся в безжизненный и очень плотный объект — белый карлик, размером с Землю. Получившийся объект будет обладать невероятной плотностью, в миллионы раз превышающий первоначальную.


Подавляющему большинству звёзд, и Солнцу в том числе, придет конец, белый же карлик продолжит своё существование ещё миллиарды лет, заставляя планеты вращаться вокруг безжизненного остатка.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 1014 — 1015 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.


Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры. В этом случае  звезда просто постепенно испаряется.

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, — масса такой звезды слишком мала для того, чтобы обеспечить процессы, необходимые для ее взрыва.

Примером такой звезды служит Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет.

К звёздам, которым уготован этот путь, относят красные карлики. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Смерть звезд даёт строительный материал для Вселенной. Все химические элементы – золото, серебро, платина, железо и прочие образуются внутри умирающих звёзд и при их взрывах разлетаются в космос.

Взрывающиеся звезды

Первые звёзды были массивными (в несколько тысяч раз больше Солнца) и нестабильными. Они быстро рождались и быстро умирали, оставляя после себя космическую пыль богатую разными химическими элементами. Образовались  они из космических туманностей, благодаря энергии Большого Взрыва.


В настоящее время, как и на более поздних этапах  звёзды  будут продолжать рождаться. Но толчком к этому будет служить взрыв другой сверхновой звезды. Его взрывная волна даёт импульс для взаимодействия частиц космической пыли, в результате чего они начинают двигаться и сцепляться, притягивая частицы и увеличиваясь в размерах.

Молодая звезда и её околозвездное пространство на начальном этапе это бушующая стихия с большим количеством хаотично вращающихся малых планет. Сталкиваясь между собой некоторые из них рассыпаются, а другие растут, поглощая остатки первых.

В результате  таких столкновений у Меркурия, например,  слетела его верхняя кора и осталось только ядро.

Спустя 500 миллионов лет число планет уменьшается, а их размер увеличивается.

Солнце относится к малым звёздам. Его гибель через 5 – 6 миллиардов лет будет проходить по первому сценарию. Сейчас во Вселенной 80% звёзд не крупнее чем Солнце.

Видео




Источник: asteropa.ru

Одна из ярчайших звезд северного неба — Бетельгейзе — в последние несколько недель непрерывно тускнеет, и сейчас ее яркость упала до минимального уровня за последние полвека, то есть за всю историю наблюдений с помощью электронных приемников излучения. Означает ли это, что вскоре эта звезда взорвется как сверхновая, и что будет с Землей, если это произойдет, редакция N + 1 спросила у астронома Сергея Ламзина, ведущего научного сотрудника Астрономического института имени Штернберга (ГАИШ МГУ).

Долгий путь в правый верхний угол

Звезды — относительно простые астрономические объекты. Это, грубо говоря, гигантские шары из водорода с примесью гелия и некоторого количества более тяжелых элементов, где идут термоядерные реакции. Как именно они будут себя вести и какой будет их конечная судьба, зависит от массы.

Если масса звезды меньше десяти масс Солнца, ее жизнь кончается более или менее спокойно. Она превращается в красный гигант (с Солнцем это произойдет примерно через пять миллиардов лет), то есть раздувается, сбрасывает внешнюю оболочку, а внутреннее ядро, наоборот, сжимается, превращается в белый карлик. Это спокойный процесс, не сопровождаемый катаклизмами.


Звезды более массивные, чем десять масс Солнца, погибают в результате катастрофического взрыва и превращаются в нейтронную звезду или черную дыру, либо вообще перестают существовать как единый объект.

Жизнь звезды — это в основном цепочка смены типов термоядерных реакций, точнее, смены основного типа горючего. На первой стадии, когда звезда формируется из газового облака, температура в ее ядре поднимается до нескольких миллионов градусов, и начинаются реакции превращения водорода в гелий.

Водород — самый обильный элемент во Вселенной и как ядерное горючее — самое калорийное. Пока горит водород, звезда находится на основном этапе своей жизни, занимающем примерно 90 процентов времени ее существования. Его еще называют этапом главной последовательности — поскольку звезды на этой стадии жизни образуют характерную диагональную линию на диаграмме Герцшпрунга-Рассела, она же «диаграмма спектр-светимость».

Когда водород выгорает, звезды сходят с главной последовательности, и их дальнейшая судьба зависит от массы. У звезд с массой от 0,8 до 8-10 масс Солнца после выгорания водорода в ядре это самое ядро начинает сжиматься и нагревается до температуры в 100 миллионов градусов. Тогда в нем начинается реакция превращения гелия в углерод — реакция слияния трех альфа-частиц в ядро углерода.

В этом случае внешняя оболочка звезды раздувается и появляется красный гигант — это ветвь вправо в середине главной последовательности. Эта стадия проходит примерно в 10 раз быстрее, чем стадия горения водорода, то есть этот этап занимает 10 процентов времени жизни звезды.

Затем, после выгорания гелия, сверхплотное ядро превращается в белый карлик, а оболочка расширяется, сбрасывается и улетает. У маломассивных звезд не хватает гравитации, чтобы еще сильнее сжать центральную область и нагреть ее до температуры в миллиарды градусов, при которой загорается углерод.

Звезды с массой более 8-10 масс Солнца после выгорания водорода тоже сбрасывают оболочку, превращаясь в красные сверхгиганты (это верхний правый угол диаграммы). Когда выгорает и гелий, температура в их центре достигает нескольких миллиардов градусов и начинается реакция слияния ядер углерода с образованием магния, неона и кислорода.

Затем по цепочке начинаются реакции с участием этих элементов, пока в центре звезды не образуются железное ядро. Железо — это «ядерная зола», в том смысле, что если до железа слияния ядер идут с выделением энергии, то после железа этот процесс, наоборот, требует поглощения энергии.

Процесс выгорания углеродного ядра занимает всего несколько тысяч лет. Когда у звезды накопится достаточно много железа в центральной области, ядерные реакции уже не могут поддерживать ее светимость, звезда теряет устойчивость и гравитация «схлопывает» звезду.

В результате центральная область сжимается и превращается либо в нейтронную звезду с плотностью миллиард тонн в кубическом сантиметре, либо в черную дыру. Области, которые над ней находятся, падают вниз, сталкиваются, отбрасываются, образуется ударная волна, которая разбрасывает вышележащие слои звезды в окружающее пространство.

Происходит взрыв сверхновой. Эта судьба ждет и Бетельгейзе.

Что мы знаем о звезде

Бетельгейзе, она же альфа Ориона — одна из ярчайших звезд северного неба. Найти ее на небе очень легко — она находится в верхнем левом углу созвездия Ориона, очень хорошо видимое как раз в эти дни. На широте Москвы Орион восходит над горизонтом примерно в пять часов вечера.

Масса звезды составляет примерно 15 ± 3 массы Солнца, а расстояние до нее оценивается примерно в 600-700 световых лет. Это одна из немногих звезд, у которых мы можем различить видимый диск. Еще в 1921 году Альберт Майкельсон с помощью своего интерферометра смог определить ее угловой размер — около 0,047 секунды.

Отчасти из-за яркости звезды и того, что она не наблюдается как точечный объект, мы не можем с высокой точностью определить расстояние до нее, а значит, не можем и точно определить светимость и массу. Все это не дает нам установить, на какой стадии своей эволюции находится Бетельгейзе.

Мы можем сказать, что ее возраст — около восьми миллионов лет, а диаметр примерно в тысячу-полторы раз больше Солнца. Если бы Бетельгейзе была центром Солнечной системы, то внутри такой большой звезды оказалась бы орбита Марса, а то и орбита Юпитера — в зависимости от того, как мы оцениваем расстояние до нее.

В недрах Бетельгейзе на данный момент уже прогорели весь водород и весь гелий, и примерно несколько тысяч лет назад она перешла на стадию горения углерода и превращения его в магний. Есть данные, что в китайских хрониках Бетельгейзе называли не красной, а желтой звездой — возможно, тогда она действительно была еще на предыдущей стадии эволюции.

Все последующие, постуглеродные стадии, гораздо более короткие, продолжаются сотни лет. Понять, на какой стадии Бетельгейзе находится сейчас и сколько ей осталось дожигать свое топливо, пока в центре не образуется железное ядро, достаточно сложно — помимо массы, это зависит от многих других деталей, например от того, как звезда вращается и есть ли у нее магнитное поле.

Но понятно, что в течение нескольких тысяч лет она сожжет весь углерод, а следующие стадии будут еще короче. Возможно, что этот этап уже прошел, может быть, у нее уже начал гореть неон. Достаточно точно можно сказать, что десять тысяч лет — это максимальная продолжительность, оставшаяся Бетельгейзе до стадии железного ядра и взрыва.

Чего он моргает?

Колебания блеска Бетельгейзе были замечены еще Уильямом Гершелем в XIX веке, когда у астрономов не было других способов оценить яркость звезды кроме глазомера. Сейчас для оценки звездной величины используются фотометрические приборы. В соответствии с данными AAVSO, американской организации, объединяющей исследователей переменных звезд, яркость Бетельгейзе колеблется примерно на полторы звездных величины.

Однако в этом декабре яркость звезды достигла «дна» — минимального уровня за всю историю наблюдений с помощью электронных приемников излучения. Согласно данным, опубликованным на сайте астрономических телеграмм, видимая звездная величина Бетельгейзе снизилась до значения 1,125.

Колебания яркости — это одна из особенностей красных сверхгигантов. Звезда находится под действием двух сил: с одной стороны, гравитация стремится сжать ее в точку, а с другой стороны, газовое давление и излучение заставляют ее расширяться во все стороны. У красных сверхгигантов нарушена устойчивость, они колеблются вокруг положения равновесия.

Описание механизма этих колебаний, впервые предложенное Эддингтоном, а потом «доведенное до ума» советским астрономом Сергеем Жевакиным, примерно таково: под действием излучения из центра звезды ее внешние оболочки нагреваются, начинают расширяться, становятся более разреженными, более прозрачными и за счет этого начинают остывать. По мере падения температуры и давления газ начинает вновь стягивать гравитация, он становится менее прозрачным, излучение начинает нагревать его сильнее, и цикл повторяется.

Есть звезды, пульсирующие как часы, — цефеиды, у них очень точный период, но звезды на поздних стадиях эволюции, такие как Бетельгейзе, пульсируют нерегулярно — их точность «сбивается» из-за наличия конвекции во внешних слоях звезды, которая переносит часть тепла, мешая излучению регулировать процесс колебаний. Во время одного цикла, продолжающегося от 150 до 400 дней, радиус Бетельгейзе может существенно меняться.

Однако суммарное энерговыделение звезды во время пульсаций меняется не слишком сильно. Дело в том, что у относительно холодных звезд температура внешней оболочки составляет не более 3,5 тысячи градусов, поэтому бóльшую часть энергии Бетельгейзе излучает в инфракрасном диапазоне. И если в видимом диапазоне светимость звезды меняется существенно, то суммарная светимость во всем диапазоне меняется примерно на проценты. Поэтому нельзя говорить, что теперешние снижение яркости может помочь спрогнозировать скорый взрыв звезды.

Внешние слои сверхгиганта до последнего момента «не знают» о том, что происходит в ядре. Все процессы, возбуждающие колебания звезд, похожих на Бетельгейзе, происходят в их внешних слоях. Иными словами, пульсации внешних слоев не отражают процессы, происходящие в центральных областях звезды, поэтому то, что у Бетельгейзе сейчас более глубокий минимум, чем прежде, не говорит нам о том, что звезда скоро взорвется.

Прилетит вдруг нейтрино

Еще 30-40 лет назад мы узнавали о взрыве сверхновой только в момент самого взрыва, но теперь мы сможем узнать о нем заранее — за несколько дней. Мы получим нейтринный сигнал.

В ходе ядерных реакций в центре любой звезды образуется гамма-квант и нейтрино. Гамма-квант, пройдя примерно одну десятую миллиметра, поглощается, потом переизлучается и добирается до поверхности звезды и вылетает «наружу» примерно через 10 миллионов лет. Поэтому с помощью электромагнитных волн узнать, что происходит в центре, просто невозможно.

А нейтрино проходят сквозь звезду без всякого взаимодействия, они летят примерно со скоростью света, а значит, здесь, на Земле, через восемь минут мы можем детектировать нейтрино, родившиеся в центре Солнца.

В момент, когда Бетельгейзе начнет взрываться как сверхновая, — то есть в момент, когда железное ядро в ее центре размером примерно с Землю будет превращаться в нейтронную звезду диаметром с московское Третье кольцо, — температура в ее центре поднимается до 10 миллиардов градусов. Эта колоссальная энергия уносится в основном именно нейтрино.

Нейтрино свободно пронизывают звезду и улетают. А ударная волна в веществе, отразившаяся от нейтронной звезды, будет примерно неделю идти до поверхностных слоев звезды. И только когда она дойдет до поверхности звезды, мы увидим оптическую вспышку.

Именно этот сценарий реализовался при вспышке сверхновой SN 1987A в Большом Магеллановом облаке. Тогда нейтринные детекторы зафиксировали примерно 20 нейтрино, пришедшие примерно за несколько часов до оптической вспышки. Бетельгейзе примерно в 100 раз ближе к нам, значит, поток нейтрино от ее взрыва будет в десятки тысяч раз больше и наши современные детекторы их точно зарегистрируют.

Когда Бетельгейзе взорвется, ее блеск увеличится до -9 звездной величины, то есть по яркости она будет сопоставима с Луной в первой четверти. Вероятно ее будет видно и днем. Однако никакой угрозы для жизни на Земле эта вспышка не несет.

В результате взрыва внешние слои звезды приобретают скорость около 3 тысяч километров в секунду, они будут сталкиваться с веществом, выброшенным раньше — с веществом звездного ветра, которое удаляется от звезды со скоростью несколько километров в секунду. Поэтому сброшенная взрывом оболочка вскоре догонит ветер, возникнет еще одна ударная волна, газ нагреется, возникнет рентгеновское и гамма-излучение.

Спутники это излучение зафиксируют, и на некоторое время Бетельгейзе станет самым ярким рентгеновским источником на небе, но все равно он будет на порядки слабее рентгеновского излучения Солнца.

Нам это ничем не грозит. Какие-то серьезные последствия для нас могли бы наступить, если бы на месте Бетельгейзе находилась звезда с массой порядка сотен масс Солнца, подобная тем звездам, взрывы которых в далеких галактиках мы наблюдаем как длинные гамма-всплески.

При взрыве звезд с массой в сотни масс Солнца железное ядро даже не успевает образоваться — звезда нагревается до такой температуры, что из фотонов начинают рождаться электрон-позитронные пары. Энергия уходит, давление падает, звезда начинает сжиматься. А поскольку основная масса звезды не сгорела, «топлива» много, то может произойти термоядерный взрыв, который просто разнесет все.

Но этот сценарий работает для сферически симметричной звезды. Если звезда вращается, то, когда центральная область начнет сжиматься, вокруг нее образуется диск и два выброса — релятивистских джета, потока вещества с околосветовой скоростью, — которые прошивают звезду насквозь. Именно они продуцируют сверхмощное рентгеновское и гамма-излучение, и если такое событие произойдет рядом, а наша планета окажется на этом луче, то будет плохо.

По счастью, в окрестностях Земли и в нашей половине Галактики таких звезд нет.

Сергей Ламзин

Источник: nplus1.ru


Для тех, кому лень смотреть видео:


Когда умирает массивная звезда, она вспыхивает как сверхновая. За короткий промежуток времени она становится невероятно яркой. Но что именно вызывает это явление? Долгое время это оставалось загадкой. Ученые не могут заглянуть внутрь звезды, поэтому единственной ответить на вопрос – смоделировать взрыв с помощью суперкомпьютера.

Начало берется от самого конца жизненного цикла звезды: израсходовав весь водород, она начинает уменьшаться. В ее центре образуется железное ядро, материя в котором под действием силы тяжести разрушается. И в сердцевине формируется нейтронная звезда, она имеет размеры города, но вещества содержит больше, чем Солнце.

Физики считают, что разрушающаяся материя попадает в центр, посылая массивную ударную волну, которая отражается наружу, но сталкивается на своем пути с еще большим количеством разрушающейся материи и не может покинуть ядро.

Крошечные неровности в поверхности материи могут быстро усиливаться в массовые колебания. Они проявляются в том, что материя скользит вокруг нейтронной звезды, как жидкость. Между тем, нейтрино – частицы, образующиеся в нейтронной звезде, сильно нагревают окружающее вещество, вызывая его извержение. Интенсивное нагревание от нейтрино плюс давление от движущегося вещества вытесняют ударную волну. Волна разгоняется и происходит взрыв звезды. И хотя сам взрыв длится меньше половины секунды, ударной волне может потребоваться до одного дня, чтобы достичь поверхности звезды.

Понимание этого процесса поможет астрономам разгадать другие загадки Вселенной. Например, откуда при подобных взрывах появляются атомы химических элементов, чрезвычайно важных для образования новых звезд и планет. Ученые считают, что последняя сверхновая вспыхнула в нашей галактике около 1870 года. Но обычно подобные события происходят два раза за столетие.

Источник: Невидимый Розовый Единорог

Источник: futurist.ru

Когда заканчивается звёздное топливо, поддерживающее термоядерную реакцию, температура внутренних областей звезды начинает понижаться и они не могут противостоять гравитационному сжатию. Звезда коллапсирует, т.е. её вещество падает внутрь. При этом иногда наблюдаются вспышка сверхновой звезды или другие бурные явления. Сверхновая звезда может засиять ярче миллиардов обычных звёзд и выделить примерно столько же световой энергии, сколько наше Солнце выделяет за миллиард лет..

За последнее тысячелетие в Нашей Галактике вспыхнули только пять сверхновых (1006, 1054, 1181, 1572, 1604). По крайней мере, столько их отмечено в письменных источниках (ещё какие-то могли быть не отмечены или взорваться за густыми газопылевыми облаками). Но сейчас астрономам каждый год удаётся наблюдать до 10 вспышек сверхновых в других галактиках. Тем не менее, такие вспышки — это всё равно редкое явление. Чаще внешние оболочки звезды сбрасываются без столь мощного взрыва. Или звезда "умирает" ещё спокойнее. Итак, возможны несколько сценариев звёздного коллапса. Рассмотрим их по отдельности.

Тихое угасание свойственно звёздам с массой менее 0,8 солнечной. Тихо угасают карликовые звёзды (все красные и коричневые карлики, а также, наверное, часть оранжевых карликов). Они превращаются в "прохладные" гелиево-водородные шары вроде Юпитера, но всё-таки во много раз больше его (в чёрные карлики). Разумеется, этот процесс происходит очень медленно, так как звезда после исчерпания термоядерного топлива ещё очень долго светит за счёт постепенного гравитационного сжатия. Наша область Вселенной столь молода, что, наверное, тихо угасших звёзд пока ещё нет.

Коллапс с образованием белого карлика характерен для звёзд с массой от 0,8 до 8 солнечных. "Выгоревшие" звёзды сбрасывают свою оболочку, из которой образуется планетарная туманность из пыли и газа. Это происходит следующим образом. Пока в ядре "горел" гелий, который превращался в углерод, высокая температура ядра (т.е. большая скорость частиц) препятствовала гравитационному сжатию ядра. Когда гелий в ядре закончился, остывающее углеродное ядро стало постепенно сжиматься, увлекая за собой внутрь звезды гелий (а также водород) из наружных слоёв. Тогда этот новый гелий "загорелся" в оболочке, и оболочка стала с огромной скоростью расширяться. Оказалось, что сравнительно "лёгкая" звезда не может удержать разлетающуюся оболочку, и она превращается в так называемую планетарную туманность. Раньше считали, что из таких туманностей образуются планеты. Оказалось, что это не так: подобные туманности расширяются и рассеиваются в пространстве, но название сохранилось. Скорость расширения планетарных туманностей составляет от 5 до 100 км/с, а в среднем — 20 км/с. Ядро звезды продолжает сжиматься, т.е. коллапсирует с образованием бело-голубого карлика, который после некоторого остывания становится белым карликом. Молодые белые карлики скрыты в пылевом коконе, который ещё не успел превратиться в хорошо заметную планетарную туманность. Вспышки сверхновой при таком коллапсе не происходит, и этот сценарий окончания активной жизни звезды очень распространён. Белые карлики описаны выше, и можно только напомнить, что по объёму они соразмерны нашей планете, что атомы в них укомплектованы максимально плотно, что вещество сжато до плотностей в полтора миллиарда раз больше, чем у воды, и что в относительно стабильном состоянии эти звёзды удерживаются за счёт отталкивания тесно прижатых друг к другу электронов.

Если звезда изначально была чуть массивней, то термоядерная реакция заканчивается не на стадии горения гелия, а чуть позже (например, на стадии горения углерода), но это не принципиально меняет судьбу звезды.

Белые карлики "тлеют" неопределённо долгое время и светятся за счёт очень медленного гравитационного сжатия. Но в некоторых особых случаях они быстро коллапсируют и взрываются с полным разрушением.

Коллапс белого карлика с полным разрушением звезды бывает в том случае, если белый карлик перетянет со спутника вещество до критической массы, составляющей 1,44 солнечной. Эта масса называется чандрасекаровской по имени индийского математика Субраманьяна Чандрасекара, вычислившего её и открывшего возможность коллапса. При такой массе взаимное отталкивание электронов уже не может препятствовать гравитации. Это приводит к внезапному падению вещества внуть звезды, к резкому сжатию звезды и увеличению температуры, "вспыхиванию" углерода в центре звезды и его "сгоранию" в идущей наружу волне. И хотя термоядерное "горение" углерода не совсем взрывное (не детонация, а дефлаграция, т.е. дозвуковое "горение"), звезда полностью разрушается и её остатки разлетаются во все стороны со скоростью 10000 км/с. Этот механизм изучен в 1960 г. Хойлом и Фаулером и носит название взрыва сверхновой звезды I типа.

Все взрывы звёзд этого типа в первом приближении одинаковы: три недели светимость растёт, а потом постепенно падает в течение 6 месяцев или чуть более долгого времени. Поэтому по вспышкам сверхновых I типа можно определять расстояния до других галактик, т.к. такие вспышки видны издалека, а их истинную яркость мы знаем. Недавно, однако, выяснилось, что эти сверхновые взрываются несимметрично (хотя бы потому, что у них есть близкий спутник), и их яркость на 10% зависит от того, с какой стороны видеть вспышку. Для определения расстояний лучше измерять блеск этих сверхновых не в момент максимума яркости, а через одну-две недели спустя, когда видимая поверхность оболочки становится почти сферической.

Возможность наблюдать очень далёкие сверхновые I типа помогает изучать скорость расширения Вселенной в разные эпохи (светимость звезды говорит о расстоянии до неё и времени события, а цвет — о скорости её удаления). Так было открыто замедление расширения Вселенной в первые 8,7 млрд. лет и ускорение этого расширения в последние 5 млрд. лет, т.е. "Второй Большой взрыв".

Коллапс с образованием нейтронной звезды присущ звёздам, которые более чем в 8 раз массивнее Солнца. На заключительной стадии их развития внутри кремниевой оболочки начинает формироваться железное ядро. Такое ядро вырастает за сутки и коллапсирует менее, чем за 1 секунду, как только достигнет чандрасекаровского предела. Для ядра этот предел составляет от 1,2 до 1,5 массы Солнца. Вещество падает внутрь звезды, причём отталкивание электронов не может остановить падения. Вещество продолжает разгоняться, падать и сжиматься до тех пор, пока не начинает сказываться отталкивание между нуклонами атомного ядра (протонами, нейтронами). Строго говоря, сжатие происходит даже более этого предела: падающее вещество по инерции превосходит точку равновесия из-за упругости нуклонов на 50% ("максимальное стискивание"). После этого "сжатый резиновый мяч отдаёт назад", и ударная волна выходит во внешние слои звезды со скоростью от 30000 до 50000 км/с. Внешние части звезды разлетаются во все стороны, а в центре взорвавшейся области остаётся компактная нейтронная звезда. Это явление называется взрывом сверхновой II типа. Взрывы эти различны по мощности и другим параметрам, т.к. взрываются звёзды различной массы и различного химического состава [разные источники]. Есть указание, что при взрыве II типа энергии выделяется не больше, чем при взрыве I типа, т.к. часть энергии поглощается оболочкой, но, может быть, это устаревшие сведения.

В описанном сценарии имеется ряд неясностей. В ходе астрономических наблюдений установлено, что массивные звёзды действительно взрываются, в результате чего образуются расширяющиеся туманности, а в центре остаётся быстро вращающаяся нейтронная звезда, излучающая регулярные импульсы радиоволн (пульсар). Но теория показывает, что идущая наружу ударная волна должна расщеплять атомы на нуклоны (протоны, нейтроны). На это должна тратиться энергия, в результате чего ударная волна должна погаснуть. Но почему-то этого не происходит: ударная волна за несколько секунд достигает поверхности ядра, далее — поверхности звезды и сдувает вещество. Авторы рассматривают несколько гипотез для разных масс, но они не кажутся убедительными. Возможно, в состоянии "максимального стискивания" или в ходе взаимодействия ударной волны с продолжающим падать веществом в силу вступают какие-то принципиально новые и неизвестные нам физические законы.

В пределах Нашей Галактики связь остатков сверхновой звезды с пульсаром к середине 1980-х годов была известна только для Крабовидной туманности.

Коллапс с образованием черной дыры присущ наиболее массивным звёздам. Он тоже называется взрывом сверхновой II типа, происходит по сходному сценарию, но в результате него вместо нейтронной звезды возникает чёрная дыра. Это происходит в тех случаях, когда масса коллапсирующей звезды столь велика, что взаимное отталкивание между нуклонами (протонами, нейтронами) не может препятствовать гравитационному сжатию. Нужно отметить, что это явление в теоретическом плане менее понятно и почти не изучено методами наблюдательной астрономии. Почему, например, вещество не полностью проваливается в чёрную дыру? Имеется ли что-то аналогичное "максимальному стискиванию"? Имеется ли идущая наружу ударная волна? Почему она не тормозится?

Недавно произведены наблюдения, из которых следует, что ударная волна сверхновой рождает в расширяющейся оболочке прежней гигантской звезды гамма- вспышку или рентгеновскую вспышку (см. раздел о гамма-всплесках).

Каждая сверхновая II типа производит активного изотопа алюминия (26Al) около 0,0001 массы Солнца. Распад этого изотопа создаёт жёсткое излучение, которое длительно наблюдалось, и по его интенсивности рассчитано, что в Галактике менее трёх солнечных масс данного изотопа. Это означает, что сверхновые IIтипа должны взрываться в Галактике в среднем два раза в столетие, чего не наблюдается. Вероятно, в последние века многие подобные взрывы не замечались (например, были далеко или происходили за облаками космической пыли). В любом случае сверхновой звезде давно пора взрываться…

Источник: www.znaikak.ru

Отличия новой и сверхновой

Древние наблюдатели не задумывались о том, что яркое небесное тело на небосклоне может быть итогом разных процессов. Священный трепет и невозможность заметить разницу без специального оборудования не позволяли постичь это знание. И лишь с появлением телескопов различия были обнаружены. Оказалось, что то, что мы называем новой или сверхновой звездой – это не сама звезда, а всего лишь ее взрыв.

И хотя названия похожи, процессы, происходящие при этих астрономических явлениях, имеют довольно значительные отличия.

Чтобы лучше понять, что же происходит на бескрайних просторах Вселенной, вспомним начала астрономии по учебнику «Астрономия. 10-11 классы» под редакцией Воронцова-Вельяминова.

Вспышка сверхновой звезды

Во время жизни огненного светила происходит непримиримая борьба между разнонаправленными силами. К центру звездной массы сжимает звезду изо всех сил гравитация, стараясь превратить огненный огромный шар в футбольный мячик. Термоядерные реакции, кипящие в толще звездных масс и на поверхности, стараются разорвать светило на мелкие кусочки.

В толще юной звезды запасы водорода огромны, и благодаря постоянно протекающим реакциям образования гелия из атомов водорода, силы гравитации и термоядерных реакций находятся в относительном равновесии.

Но ничто не вечно, и за пару-тройку миллиардов лет запасы водорода истощаются и некогда активная звезда стареет. Ядро становится комком раскаленного гелия, по краям которого выгорает водород. В предсмертных конвульсиях догорают последние запасы водорода и вот уже небесное светило не в силах противостоять собственной гравитации.

Звезда сжимается и уменьшается в несколько сотен тысяч раз. И единовременно практически весь запас звездной энергии высвобождается наружу. Последний вздох умирающей звезды – яркая вспышка взрыва , что в летописях и трактатах наблюдатели-астрономы описывают как рождение сверхновой.

Взрыв неимоверной мощи по яркости превосходит светимость целой галактики, а тяжелые элементы космический ветер разносит по межзвездному пространству. Из остатков звезды образуются новые планеты в звездных системах, расположенных в сотнях световых лет от места, где произошла космическая трагедия.

Железо, алюминий и другие металлы на нашей планете – и есть остатки некогда погибшей сверхновой звезды. После взрыва звезда превращается в нейтронную звезду или черную дыру, в зависимости от ее первоначальной массы. Процессы, происходящие на поверхности звезды, описаны на странице 168 «Астрономия. 10-11 классы» под редакцией Воронцова-Вельяминова.

В зависимости от типа погибшей звезды выделяют:

  • сверхновые I типа, когда взрыв происходит с белым карликом массой до 1.4 солнечной;
  • сверхновые II типа с исходной массивной звездой в 8-15 раз больше Солнца.

При взрыве сверхновой звезда погибает навсегда, превращаясь либо в черную дыру, либо в нейтронную звезду.

Взрыв новой звезды

Взрыв новой – зрелище не менее впечатляющее (ведь светимость ничем не примечательного небесного тела увеличивается от 50 тысяч до 100 тысяч раз), но более частое. Обычно это происходит в системе из двух звезд, в которой одна планета значительно старше и в своем возрасте находится на главной последовательности или перешла в стадию красного гиганта и уже успела заполнить свою полость Роша, а вторая звезда – белый карлик. В результате тесного взаимодействия на белый карлик от гигантской соседки через окрестности точки Лагранжа L1 перетекает газ, содержащий до 90% водорода.

Изображение с сайта NASA

Полученное карликом вещество формирует вокруг меньшей звезды аккреционный диск. Скорость аккреции на белый карлик – постоянная величина, и, зная параметры звезды-компаньона и отношение масс звёзд-компонентов двойной системы, это значение можно рассчитать.

Но жадность еще никого до добра не доводила, и когда водорода вокруг белого карлика становится в избытке, происходит взрыв невероятной силы, а если масса белого карлика достигает 1.4 солнечной, происходит необратимый взрыв сверхновой.

Если подвести итог сказанному выше, новой звездой называют взрыв в результате термоядерных реакций на поверхности небольшой плотной звезды. А в результате взрыва сверхновой происходит сжатие ядра огромной звезды, по своей массе в десятки раз больше чем Солнце, с полным уничтожением окружающих звезду слоев.

И, как иногда шутят астрономы, «Мне не дано знать, был ли распят Христос за меня, но я точно уверен, что мое тело создано из остатков сотен звезд».

Известные в истории сверхновые

Крабовидная туманность, которую с помощью космических телескопов мы можем наблюдать на потрясающих воображение снимках космоса, и есть та самая таинственная сверхновая, которую описывали наблюдатели в арабских странах и Китае в 1054 году.

Но такое везение выпало не только на долю древних астрономов.

В феврале 1987 года астрономы зафиксировали яркую вспышку в Большом Магеллановом Облаке – галактике, расположенной всего в 168 тысячах световых лет от Солнечной системы. Поскольку это была первая сверхновая, которую зафиксировали в 1987 году, она получила название – SN 1987A.

Любителям астрономии в южном полушарии повезло. Несколько недель яркое небесное тело с блеском 4-звездной величины было доступно для наблюдения невооруженным глазом.

Это была первая сверхновая на таком близком расстоянии, которая взорвалась после изобретения телескопа. И благодаря современному оборудованию ученые смогли изучить фотометрические и спектральные характеристики, и вот уже более тридцати лет астрономы наблюдают за превращением сверхновой в расширяющуюся газовую туманность.

Рождение сверхновой звезды

Современные ученые официально предсказывают, что в 2022 году невооруженным взглядом астрономы Земли смогут наблюдать за ярчайшим взрывом сверхновой. На расстоянии 1800 световых лет от нашей голубой планеты, в созвездии Лебедя, катастрофа настигнет тесную двойную систему KIC 9832227.

Пожалуй, это будет первый в истории эпизод, когда ученые-астрономы будут наблюдать, прильнув к окулярам телескопов, за катастрофой во всеоружии, однако не в силах ее предупредить. Яркая вспышка сверхновой будет видна на небе в созвездии Лебедя и Северного креста.

Методические советы

Воспользуйтесь интерактивным приложением для атласа по астрономии, чтобы закрепить теорию на практике и с пользой провести остаток урока.

#ADVERTISING_INSERT#

Источник: rosuchebnik.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.