Цвет звезд


Каждый человек знает, как выглядят звезды на небе. Крошечные, сияющие холодным белым светом огоньки. В древности люди не могли придумать объяснения этому явлению. Звезды считали глазами богов, душами умерших предков, хранителями и защитниками, оберегающими покой человека в ночной тьме. Тогда никто и подумать не мог, что Солнце – это тоже звезда.

Что такое звезда

Много веков прошло, прежде чем люди поняли, что представляют собой звезды. Виды звезд, их характеристики, представления о происходящих там химических и физических процессах – это новая область знания. Древние астрономы даже предположить не могли, что такое светило на самом деле вовсе не крохотный огонек, а невообразимых размеров шар раскаленного газа, в котором происходят реакции термоядерного синтеза. Есть странный парадокс в том, что неяркий звездный свет – это ослепительное сияние ядерной реакции, а уютное солнечное тепло – чудовищный жар миллионов кельвинов.

Все звезды, которые можно увидеть на небосводе невооруженным глазом, находятся в галактике Млечный Путь. Солнце – тоже часть этой звездной системы, причем расположено оно на ее окраине. Невозможно себе вообразить, как выглядело бы ночное небо, если бы Солнце находилось в центре Млечного Пути. Ведь количество звезд в этой галактике – более 200 миллиардов.

Немного об истории астрономии


Древние астрономы тоже могли бы рассказать необычное и интересное о звездах на небе. Уже шумеры выделяли отдельные созвездия и зодиакальный круг, они же впервые рассчитали деление полного угла на 3600. Они же создали лунный календарь и смогли синхронизировать его с солнечным. Египтяне считали, что Земля находится в центре Вселенной, но при этом знали, что Меркурий и Венера вращаются вокруг Солнца.

В Китае астрономией как наукой занимались уже в конце ІІІ тысячелетия до н. э., а первые обсерватории появились в XII в. до н. э. Они изучали лунные и солнечные затмения, сумев при этом понять их причину и даже рассчитав прогнозные даты, наблюдали метеоритные потоки и траектории комет.

Древние инки знали различия между звездами и планетами. Есть косвенные доказательства того, что им были известны Галилеевы спутники Юпитера и визуальная размытость очертаний диска Венеры, обусловленная наличием на планете атмосферы.

Древние греки смогли доказать шарообразность Земли, выдвинули предположение о гелиоцентричности системы. Они пытались рассчитать диаметр Солнца, пускай и ошибочно. Но греки были первыми, кто в принципе предположил, что Солнце больше Земли, до этого все, полагаясь на визуальные наблюдения, считали иначе. Грек Гиппарх впервые создал каталог светил и выделил разные виды звезд. Классификация звезд в этом научном труде опиралась на интенсивность свечения. Гиппарх выделил 6 классов яркости, всего в каталоге было 850 светил.

На что обращали внимание древние астрономы


Первоначальная классификация звезд основывалась на их яркости. Ведь именно этот критерий является единственно доступным для астронома, вооруженного только телескопом. Самые яркие или обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь – названия арабские, Сириус – латинское, а Антарес – греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых важных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому именно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это вовсе не самая яркая звезда на небосклоне. Полярная звезда внешне никак не выделяется – ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.

На чем основывается звездная классификация


Современные астрономы, отвечая на вопрос о том, какие виды звезд бывают, вряд ли станут упоминать яркость свечения или расположение на ночном небосводе. Разве что в порядке исторического экскурса или в лекции, рассчитанной на совсем уж далекую от астрономии аудиторию.

Современная классификация звезд основывается на их спектральном анализе. При этом обычно еще указывают массу, светимость и радиус небесного тела. Все эти показатели даются в соотношении с Солнцем, то есть именно его характеристики приняты в качестве единиц измерения.

Классификация звезд опирается на такой критерий, как абсолютная звездная величина. Это видимая степень яркости небесного тела без атмосферы, условно расположенного на расстоянии 10 парсек от точки наблюдения.Кроме этого учитывают переменности блеска и размеры звезды. Виды звезд в настоящее время определяются их спектральным классом и уже детальнее — подклассом. Астрономы Рассел и Герцшпрунг независимо друг от друга проанализировали зависимость между светимостью, абсолютной звездной величиной, температурной поверхностью и спектральным классом светил. Они построили диаграмму с соответствующими осями координат и обнаружили, что результат вовсе не хаотичен. Светила на графике располагались отчетливо различимыми группами. Диаграмма позволяет, зная спектральный класс звезды, определить хотя бы с приблизительной точностью ее абсолютную звездную величину.

Как рождаются звезды


Эта диаграмма послужила наглядным доказательством в пользу современной теории эволюции данных небесных тел. На графике отчетливо видно, что самым многочисленным классом являются относящиеся к так называемой главной последовательности звезды. Виды звезд, принадлежащих к этому сегменту, находятся в наиболее распространенной в данный момент во Вселенной точке развития. Это этап развития светила, при котором энергия, затраченная на излучение, компенсируется полученной в ходе термоядерной реакции. Длительность пребывания на данном этапе развития определяется массой небесного тела и процентным содержанием элементов тяжелее гелия.

Общепризнанная в данный момент теория эволюции звезд гласит, что на начальном этапе развития светило представляет собой разряженное гигантское газовое облако. Под влиянием собственного тяготения оно сжимается, постепенно превращаясь в шар. Чем сильнее сжатие, тем интенсивнее гравитационная энергия переходит в тепловую. Газ раскаляется, и когда температура достигает 15-20 млн К, в новорожденной звезде запускается термоядерная реакция. После этого процесс гравитационного сжатия приостанавливается.

Основной период жизни звезды

Поначалу в недрах юного светила преобладают реакции водородного цикла. Это самый длительный период жизни звезды. Виды звезд, находящихся на этом этапе развития, и представлены в самой массовой главной последовательности описанной выше диаграммы.
временам водород в ядре светила заканчивается, превратившись в гелий. После этого термоядерное горение возможно только на периферии ядра. Звезда становится ярче, ее внешние слои значительно расширяются, а температура понижается. Небесное тело превращается в красный гигант. Этот период жизни звезды намного короче предыдущего. Дальнейшая ее судьба изучена мало. Есть различные предположения, но достоверных им подтверждений пока не получено. Самая распространенная теория гласит, что когда гелия становится слишком много, звездное ядро, не выдерживая собственной массы, сжимается. Температура растет до тех пор, пока уже гелий не вступает в термоядерную реакцию. Чудовищные температуры приводят к очередному расширению, и звезда превращается в красного гиганта. Дальнейшая судьба светила, по предположениям ученых, зависит от его массы. Но теории, касающиеся этого, всего лишь результат компьютерного моделирования, не подтвержденный наблюдениями.

Остывающие звезды

Предположительно, красные гиганты с малой массой будут сжиматься, превращаясь в карликов и постепенно остывая. Звезды средней массы могут трансформироваться в планетарные туманности, при этом в центре такого образования продолжит свое существование лишенное внешних покровов ядро, постепенно остывая и превращаясь в белого карлика. Если центральная звезда испускала значительное инфракрасное излучение, возникают условия для активации в расширяющейся газовой оболочке планетарной туманности космического мазера.


Массивные светила, сжимаясь, могут достигать такого уровня давления, что электроны буквально вминаются в атомные ядра, превращаясь в нейтроны. Поскольку между этими частицами нет сил электростатического отталкивания, звезда может сжаться до размера нескольких километров. При этом ее плотность превысит плотность воды в 100 миллионов раз. Такая звезда называется нейтронной и представляет собой, по сути, огромное атомное ядро.

Сверхмассивные звезды продолжают свое существование, последовательно синтезируя в процессе термоядерных реакций из гелия – углерод, затем кислород, из него – кремний и, наконец, железо. На этом этапе термоядерной реакции и происходит взрыв сверхновой. Сверхновые звезды, в свою очередь, могут превратиться в нейтронные либо, если их масса достаточно велика, продолжить сжатие до критического предела и образовать черные дыры.

Размеры

Классификация звезд по размеру может быть реализована двояко. Физический размер звезды может определяться ее радиусом. Единицей измерения в этом случае выступает радиус Солнца. Существуют карлики, звезды средней величины, гиганты и сверхгиганты. Кстати, само Солнце является как раз карликом. Радиус нейтронных звезд может достигать всего нескольких километров. А в сверхгиганте целиком поместится орбита планеты Марс. Под размером звезды может также пониматься ее масса. Она тесно связана с диаметром светила. Чем звезда больше, тем ниже ее плотность, и наоборот, чем светило меньше, тем плотность выше. Этот критерий вирируется не так уж сильно. Звезд, которые были бы больше или меньше Солнца в 10 раз, очень мало. Большая часть светил укладывается в интервал от 60 до 0,03 солнечных масс. Плотность Солнца, принимаемая за стартовый показатель, составляет 1,43 г/см3. Плотность белых карликов достигает 1012 г/см3, а плотность разреженных сверхгигантов может быть в миллионы раз меньше солнечной.


В стандартной классификации звезд схема распределения по массе выглядит следующим образом. К малым относят светила с массой от 0,08 до 0,5 солнечной. К умеренным – от 0,5 до 8 солнечных масс, а к массивным – от 8 и более.

Классификация звезд. От голубых до белых

Классификация звезд по цвету на самом деле опирается не на видимое свечение тела, а на спектральные характеристики. Спектр излучения объекта определяется химическим составом звезды, от него же зависит ее температура.Наиболее распространенной является Гарвардская классификация, созданная в начале 20 века. Согласно принятым тогда стандартам классификация звезд по цвету предполагает деление на 7 типов.

Так, звезды с самой высокой температурой, от 30 до 60 тыс. К, относят к светилам класса О. Они голубого цвета, масса подобных небесных тел достигает 60 солнечных масс (с. м.), а радиус – 15 солнечных радиусов (с. р.). Линии водорода и гелия в их спектре достаточно слабые. Светимость подобных небесных объектов может достигать 1 млн 400 тыс. солнечных светимостей (с. с.).


К звездам класса В относят светила с температурой от 10 до 30 тыс. К. Это небесные тела бело-голубого цвета, их масса начинается от 18 с. м., а радиус – от 7 с. м. Самая низкая светимость объектов такого класса составляет 20 тыс. с. с., а линии водорода в спектре усиливаются, достигая средних значений.

У звезд класса А температура колеблется от 7,5 до 10 тыс. К, они белого цвета. Минимальная масса таких небесных тел начинается от 3,1 с. м., а радиус – от 2,1 с. р. Светимость объектов находится в границах от 80 до 20 тыс. с. с. Линии водорода в спектре этих звезд сильные, появляются линии металлов.

Объекты класса F на самом деле желто-белого цвета, но выглядят белыми. Их температура колеблется в пределах от 6 до 7,5 тыс. К, масса варьируется от 1,7 до 3,1 с.м., радиус – от 1,3 до 2,1 с. р. Светимость таких звезд варьируется от 6 до 80 с. с. Линии водорода в спектре ослабевают, линии металлов, наоборот, усиливаются.

Таким образом, все виды белых звезд попадают в пределы классов от А до F. Дальше, согласно классификации, следуют желтые и оранжевые светила.

Желтые, оранжевые и красные звезды

Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.

Звезды класса G, к которым относится и Солнце, достигают температуры от 5 до 6 тыс. К, они желтого цвета. Масса таких объектов – от 1,1 до 1,7 с. м., радиус – от 1,1 до 1,3 с. р. Светимость – от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.


Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Выглядят они желто-оранжевыми, но истинный цвет этих звезд – оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса – от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.

Самые холодные и маленькие звезды – класса М. Их температура всего 2,5 – 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус – от 0,4 до 0,9 с. р. Светимость – всего 0,04 — 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые карлики. Для них выделили отдельный класс М-Т.

Источник: FB.ru

Голубые звезды

Звезды голубого цвета — самые большие и горячие. Температура их внешних слоев составляет, в среднем, 10000 по Кельвину, а может достигать и 40000 для отдельных звездных гигантов.

В этом диапазоне излучают новые звезды, только начинающие свой «жизненный путь». Например, Ригель , одна из двух главных светил созвездия Ориона, голубовато-белая.

Желтые звезды


Центр нашей планетной системы — Солнце — имеет температуру поверхности, превосходящую 6000 по Кельвину. Из космоса оно и подобные ему светила выглядят ослепительно белыми, хотя с Земли кажутся, скорее, желтыми. Золотые звезды имеют средний возраст.

Из других известных нам светил белой звездой является и Сириус , хотя на глаз его цвет определить довольно сложно. Это происходит потому, что он занимает низкое положение над горизонтом, и по пути к нам его излучение сильно искажается за счет многократного преломления. В средних широтах Сириус, часто мерцая, способен всего за полсекунды продемонстрировать весь цветовой спектр!

Красные звезды

Темный красноватый оттенок имеют звезды с низкой температурой , например, красные карлики, масса которых составляет менее 7,5% от веса Солнца. Их температура ниже 3500 по Кельвину, и хотя их свечение представляет собой богатый перелив множества цветов и оттенков, мы видим его красным.

Гигантские светила, чье водородное топливо закончилось, также выглядят красными или даже коричневыми. В целом, в этом диапазоне спектра находится излучение старых и остывающих звезд.

Отчетливый красный оттенок имеет вторая из главных звезд созвездия Ориона, Бетельгейзе , а чуть правее и выше ее располагается на карте неба Альдебаран , имеющий оранжевый цвет.

Старейшая красная звезда из ныне существующих — HE 1523-0901 из созвездия Весов — гигантское светило второго поколения, найденное на окраинах нашей галактики на удалении в 7500 световых лет от Солнца. Ее возможный возраст составляет около 13,2 миллиарда лет, что не намного меньше предполагаемого возраста Вселенной.

Цвет звезд

Каждый человек знает, как выглядят звезды на небе. Крошечные, сияющие холодным белым светом огоньки. В древности люди не могли придумать объяснения этому явлению. Звезды считали глазами богов, душами умерших предков, хранителями и защитниками, оберегающими покой человека в ночной тьме. Тогда никто и подумать не мог, что Солнце — это тоже звезда.

Что такое звезда

Много веков прошло, прежде чем люди поняли, что представляют собой звезды. Виды звезд, их характеристики, представления о происходящих там химических и физических процессах — это новая область знания. Древние астрономы даже предположить не могли, что такое светило на самом деле вовсе не крохотный огонек, а невообразимых размеров шар раскаленного газа, в котором происходят реакции термоядерного синтеза. Есть странный парадокс в том, что неяркий звездный свет — это ослепительное сияние ядерной реакции, а уютное солнечное тепло — чудовищный жар миллионов кельвинов.

Все звезды, которые можно увидеть на небосводе невооруженным глазом, находятся в галактике Солнце — тоже часть этой причем расположено оно на ее окраине. Невозможно себе вообразить, как выглядело бы ночное небо, если бы Солнце находилось в центре Млечного Пути. Ведь количество звезд в этой галактике — более 200 миллиардов.

Немного об истории астрономии

Древние астрономы тоже могли бы рассказать необычное и интересное о звездах на небе. Уже шумеры выделяли отдельные созвездия и зодиакальный круг, они же впервые рассчитали деление полного угла на 360 0 . Они же создали лунный календарь и смогли синхронизировать его с солнечным. Египтяне считали, что Земля находится в но при этом знали, что Меркурий и Венера вращаются вокруг Солнца.

В Китае астрономией как наукой занимались уже в конце ІІІ тысячелетия до н. э., а

Цвет звездпервые обсерватории появились в XII в. до н. э. Они изучали лунные и солнечные затмения, сумев при этом понять их причину и даже рассчитав прогнозные даты, наблюдали метеоритные потоки и траектории комет.

Древние инки знали различия между звездами и планетами. Есть косвенные доказательства того, что им были известны Галилеевы и визуальная размытость очертаний диска Венеры, обусловленная наличием на планете атмосферы.

Древние греки смогли доказать шарообразность Земли, выдвинули предположение о гелиоцентричности системы. Они пытались рассчитать диаметр Солнца, пускай и ошибочно. Но греки были первыми, кто в принципе предположил, что Солнце больше Земли, до этого все, полагаясь на визуальные наблюдения, считали иначе. Грек Гиппарх впервые создал каталог светил и выделил разные виды звезд. Классификация звезд в этом научном труде опиралась на интенсивность свечения. Гиппарх выделил 6 классов яркости, всего в каталоге было 850 светил.

На что обращали внимание древние астрономы

Первоначальная классификация звезд основывалась на их яркости. Ведь именно этот критерий является единственно доступным для астронома, вооруженного только телескопом. Самые яркие или обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь — названия арабские, Сириус — латинское, а Антарес — греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых важных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому именно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это вовсе не самая яркая звезда на небосклоне. Полярная звезда внешне никак не выделяется — ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.

На чем основывается звездная классификация

Современные астрономы, отвечая на вопрос о том, какие виды звезд бывают, вряд ли станут упоминать яркость свечения или расположение на ночном небосводе. Разве что в порядке исторического экскурса или в лекции, рассчитанной на совсем уж далекую от астрономии аудиторию.

Современная классификация звезд основывается на их спектральном анализе. При этом обычно еще указывают массу, светимость и радиус небесного тела. Все эти показатели даются в соотношении с Солнцем, то есть именно его характеристики приняты в качестве единиц измерения.

Классификация звезд опирается на такой критерий, как абсолютная Это видимая степень яркости без атмосферы, условно расположенного на расстоянии 10 парсек от точки наблюдения.

Цвет звездКроме этого учитывают переменности блеска и размеры звезды. Виды звезд в настоящее время определяются их спектральным классом и уже детальнее — подклассом. Астрономы Рассел и Герцшпрунг независимо друг от друга проанализировали зависимость между светимостью, абсолютной звездной величиной, температурной поверхностью и спектральным классом светил. Они построили диаграмму с соответствующими осями координат и обнаружили, что результат вовсе не хаотичен. Светила на графике располагались отчетливо различимыми группами. Диаграмма позволяет, зная спектральный класс звезды, определить хотя бы с приблизительной точностью ее абсолютную звездную величину.

Как рождаются звезды

Эта диаграмма послужила наглядным доказательством в пользу современной теории эволюции данных небесных тел. На графике отчетливо видно, что самым многочисленным классом являются относящиеся к так называемой главной последовательности звезды. Виды звезд, принадлежащих к этому сегменту, находятся в наиболее распространенной в данный момент во Вселенной точке развития. Это этап развития светила, при котором энергия, затраченная на излучение, компенсируется полученной в ходе термоядерной реакции. Длительность пребывания на данном этапе развития определяется массой небесного тела и процентным содержанием элементов тяжелее гелия.

Общепризнанная в данный момент теория эволюции звезд гласит, что на начальном

Цвет звездэтапе развития светило представляет собой разряженное гигантское газовое облако. Под влиянием собственного тяготения оно сжимается, постепенно превращаясь в шар. Чем сильнее сжатие, тем интенсивнее гравитационная энергия переходит в тепловую. Газ раскаляется, и когда температура достигает 15-20 млн К, в новорожденной звезде запускается термоядерная реакция. После этого процесс гравитационного сжатия приостанавливается.

Основной период жизни звезды

Поначалу в недрах юного светила преобладают реакции водородного цикла. Это самый длительный период жизни звезды. Виды звезд, находящихся на этом этапе развития, и представлены в самой массовой главной последовательности описанной выше диаграммы. Со временам водород в ядре светила заканчивается, превратившись в гелий. После этого термоядерное горение возможно только на периферии ядра. Звезда становится ярче, ее внешние слои значительно расширяются, а температура понижается. Небесное тело превращается в красный гигант. Этот период жизни звезды

Цвет звезднамного короче предыдущего. Дальнейшая ее судьба изучена мало. Есть различные предположения, но достоверных им подтверждений пока не получено. Самая распространенная теория гласит, что когда гелия становится слишком много, звездное ядро, не выдерживая собственной массы, сжимается. Температура растет до тех пор, пока уже гелий не вступает в термоядерную реакцию. Чудовищные температуры приводят к очередному расширению, и звезда превращается в красного гиганта. Дальнейшая судьба светила, по предположениям ученых, зависит от его массы. Но теории, касающиеся этого, всего лишь результат компьютерного моделирования, не подтвержденный наблюдениями.

Остывающие звезды

Предположительно, красные гиганты с малой массой будут сжиматься, превращаясь в карликов и постепенно остывая. Звезды средней массы могут трансформироваться в планетарные туманности, при этом в центре такого образования продолжит свое существование лишенное внешних покровов ядро, постепенно остывая и превращаясь в белого карлика. Если центральная звезда испускала значительное инфракрасное излучение, возникают условия для активации в расширяющейся газовой оболочке планетарной туманности космического мазера.

Массивные светила, сжимаясь, могут достигать такого уровня давления, что электроны буквально вминаются в атомные ядра, превращаясь в нейтроны. Поскольку между Цвет звездэтими частицами нет сил электростатического отталкивания, звезда может сжаться до размера нескольких километров. При этом ее плотность превысит плотность воды в 100 миллионов раз. Такая звезда называется нейтронной и представляет собой, по сути, огромное атомное ядро.

Сверхмассивные звезды продолжают свое существование, последовательно синтезируя в процессе термоядерных реакций из гелия — углерод, затем кислород, из него — кремний и, наконец, железо. На этом этапе термоядерной реакции и происходит взрыв сверхновой. Сверхновые звезды, в свою очередь, могут превратиться в нейтронные либо, если их масса достаточно велика, продолжить сжатие до критического предела и образовать черные дыры.

Размеры

Классификация звезд по размеру может быть реализована двояко. Физический размер звезды может определяться ее радиусом. Единицей измерения в этом случае выступает радиус Солнца. Существуют карлики, звезды средней величины, гиганты и сверхгиганты. Кстати, само Солнце является как раз карликом. Радиус нейтронных звезд может достигать всего нескольких километров. А в сверхгиганте целиком поместится орбита планеты Марс. Под размером звезды может также пониматься ее масса. Она тесно связана с диаметром светила. Чем звезда больше, тем ниже ее плотность, и наоборот, чем светило меньше, тем плотность выше. Этот критерий вирируется не так уж сильно. Звезд, которые были бы больше или меньше Солнца в 10 раз, очень мало. Большая часть светил укладывается в интервал от 60 до 0,03 солнечных масс. Плотность Солнца, принимаемая за стартовый показатель, составляет 1,43 г/см 3 . Плотность белых карликов достигает 10 12 г/см 3 , а плотность разреженных сверхгигантов может быть в миллионы раз меньше солнечной.

В стандартной классификации звезд схема распределения по массе выглядит следующим образом. К малым относят светила с массой от 0,08 до 0,5 солнечной. К умеренным — от 0,5 до 8 солнечных масс, а к массивным — от 8 и более.

Классификация звезд. От голубых до белых

Классификация звезд по цвету на самом деле опирается не на видимое свечение тела, а на спектральные характеристики. Спектр излучения объекта определяется химическим составом звезды, от него же зависит ее температура.

Цвет звездНаиболее распространенной является Гарвардская классификация, созданная в начале 20 века. Согласно принятым тогда стандартам классификация звезд по цвету предполагает деление на 7 типов.

Так, звезды с самой высокой температурой, от 30 до 60 тыс. К, относят к светилам класса О. Они голубого цвета, масса подобных небесных тел достигает 60 солнечных масс (с. м.), а радиус — 15 солнечных радиусов (с. р.). Линии водорода и гелия в их спектре достаточно слабые. Светимость подобных небесных объектов может достигать 1 млн 400 тыс. солнечных светимостей (с. с.).

К звездам класса В относят светила с температурой от 10 до 30 тыс. К. Это небесные тела бело-голубого цвета, их масса начинается от 18 с. м., а радиус — от 7 с. м. Самая низкая светимость объектов такого класса составляет 20 тыс. с. с., а линии водорода в спектре усиливаются, достигая средних значений.

У звезд класса А температура колеблется от 7,5 до 10 тыс. К, они белого цвета. Минимальная масса таких небесных тел начинается от 3,1 с. м., а радиус — от 2,1 с. р. Светимость объектов находится в границах от 80 до 20 тыс. с. с. Линии водорода в спектре этих звезд сильные, появляются линии металлов.

Объекты класса F на самом деле желто-белого цвета, но выглядят белыми. Их температура колеблется в пределах от 6 до 7,5 тыс. К, масса варьируется от 1,7 до 3,1 с.м., радиус — от 1,3 до 2,1 с. р. Светимость таких звезд варьируется от 6 до 80 с. с. Линии водорода в спектре ослабевают, линии металлов, наоборот, усиливаются.

Таким образом, все виды белых звезд попадают в пределы классов от А до F. Дальше, согласно классификации, следуют желтые и оранжевые светила.

Желтые, оранжевые и красные звезды

Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.

Звезды класса G, к которым относится и Солнце, достигают температуры от 5 до 6 тыс. К, они желтого цвета. Масса таких объектов — от 1,1 до 1,7 с. м., радиус — от 1,1 до 1,3 с. р. Светимость — от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.

Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Выглядят они желто-оранжевыми, но истинный цвет этих звезд — оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса — от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.

Самые холодные и маленькие звезды — класса М. Их температура всего 2,5 — 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус — от 0,4 до 0,9 с. р. Светимость — всего 0,04 — 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые карлики. Для них выделили отдельный класс М-Т.

Источник: arsochi.ru

Когда мы смотрим на звезды, то легко заметить, что они вовсе не белые, а имеют самые различные цвета. Для этого имеются легко объяснимые причины.

Невооруженным глазом на небосводе можно различить чуть более четырех с половиной тысяч звезд различного цвета. Изучение спектра звезды может раскрыть подробности о ее возрасте, особенностях происхождения, температуре, расстоянии от Земли, яркости и массе. При определенном упрощении звезды ведут себя сообразно физике излучения темного тела. Железный прут, например, темный сам по себе, при нагреве начинает менять цвет. Сперва он становится красным, потом оранжевым, желтым, белым и голубым. Примерно то же самое происходит и с веществом звезд. Самые горячие звезды — голубые гиганты, великолепным примером которых является Ригель в созвездии Ориона, яркость которого в сорок тысяч раз превосходит имеющуюся у Солнца.

Читайте также: Нейтронная звезда оказалась сверхтекучей

От горячих к холодным звезды распределяются по следующим классам: O — голубые звезды, B — голубые/белые, A — белые, F — белые/желтые, G — желтые, K — оранжевые, M — оранжевые/красные. Для того, чтобы запомнить классы, принято использовать акроним «Один Бритый Англичанин Финики Жевал Как Морковки», где первые буквы слов это, конечно же, обозначения классов. Внутри этих классов также имеются числовые категории, обозначающие температуру планет, где 0 — самая горячая звезда, а 9 — самая холодная. Так, Солнце представляет собой желтого карлика, классифицирующегося как G2.

Читайте также: Мы видим свет звезд, которых уже нет

Примерно 88 процентов звезд во вселенной принадлежат к холодным классам K и M. Звезды класса G, как наше Солнце, составляют 8 процентов всех известных нам. А звезды класса О встречаются одна на три миллиона. Звезды излучают видимый свет различного цвета, но их спектр имеет пики в определенном цвете и распространяется далеко за пределы нашего зрения. Нейтронные звезды излучают по большей части рентгеновские лучи. А зеленые и фиолетовые звезды невозможно увидеть человеческим глазом. Зеленые звезды будут выглядеть белыми для нас, а фиолетовые — голубыми.

Цвет звезды меняется с течением ее жизни и находится в зависимости от массы звезды и той фазе существования, в которой она находится и которая определяет сжигаемый ею элемент.

Читайте также: Новые сюрпризы от «хвостатой» звезды

Во время наблюдения за звездным небом великолепный пример разноцветных звезд может быть найден в группе созвездий, называемых Зимним Кругом. В северном полушарии это возможно сделать с декабря по март. Наблюдению оказываются доступны следующие звезды:

  • Голубой гигант Ригель в созвездии Ориона, находящийся в 900 световых годах.
  • Процион в созвездии Малого Пса — желтая звезда в 11,4 светового года от нас.
  • Желтый гигант Капелла в созвездии Возничего — 42,2 светового года от Земли.
  • Арктур — оранжевый гигант в 34 световых годах.
  • Кастор и Поллукс — белая и оранжевая звезды в созвездии Близнецов. Первый находится в 33,7 светового года от Земли, а второй — в 52 световых годах.
  • Альдебаран в созвездии Тельца. Это оранжево-красный гигант, до которого 65 световых лет.
  • Бетельгейзе в созвездии Ориона — красный сверхгигант на удалении в 1400 световых лет.

Читайте также: Шесть самых загадочных объектов Вселенной

Фото привью: sat-madi.com.ua

Источник: www.ecosever.ru

Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.

Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.

Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.

Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Источник: myvera.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.