Самые тусклые звезды по гиппарху имеют


Темной безлунной ночью на небе видно несколько тысяч звезд. Чтобы не потеряться среди них, люди собрали звезды в созвездия — запоминающиеся звездные рисунки. Но со временем этого оказалось не достаточно. Звезды нужно было как-то дополнительно обозначить, иначе они очень легко путались друг с другом. Чтобы этого не происходило, были выработаны системы их обозначений. Давайте посмотрим, как сейчас обозначаются звезды в созвездиях.

Имена звезд

Прежде всего, наиболее яркие звезды имеют собственные имена. Люди давали звездам имена уже в глубокой древности, поскольку движение звезд по небу регулировало календарь и время сельскохозяйственных работ, помогало ориентироваться морякам и пастухам, купцам и путешественникам.

Самые яркие были пересчитаны еще древними астрономами. Например, в каталоге Гиппарха было 850 звезд, а в каталоге Птолемея уже 1022 звезды. Каждая звезда принадлежала какому-то созвездию и также имела собственное имя, чтобы не перепутать ее с другими звездами. Гиппарх и Птолемей называли звезды просто по их расположению в рисунке созвездия: «крыло», «клешня», «локоть» или «брюхо». Например, хорошо всем знакомое имя Бетельгейзе переводится с арабского как «подмышка» (охотника-Ориона), а Денебола — как хвост (Льва).


Сегодня около 300 звезд имеет собственные имена, официально утвержденные Международным астрономическим союзом. Большая часть имен взята из каталога Птолемея, то есть имеет греческое и римское происхождение. Но мы их знаем в переводе с арабского, так как именно арабы сохранили для нас каталог Птолемея (как часть «Альмагеста» — обширной астрономической энциклопедии той поры).

Собственные имена имеют не только самые яркие звезды. Например, имена получили девять слабых звезд, входящих в состав Плеяд, скопления в созвездии Тельца.

В наше время некоторые звезды называются в честь астрономов, открывших или исследовавших их. Таковы, например, звезда Барнарда и звезда Каптейна, Гранатовая звезда Гершеля или объект Кувано. Как правило, все эти звезды очень слабые и видны только в телескоп. Зато они обладают характеристиками, выделяющими их на фоне других звезд. Это может быть быстрое перемещение в пространстве, или цвет, или необычный химический состав.

Обозначения ярких звезд в созвездиях

Астрономы давно поняли, что при детальном изучении звездного неба одними лишь именами обойтись не удастся — звезд слишком много!


Система Байера

В 1603 году немецкий астроном Иоганн Байер издал звездный атлас «Уранометрия», в котором впервые звезды обозначались буквами греческого алфавита в порядке убывания блеска. Самая яркая звезда в созвездии обозначалась буквой α (альфа), вторая по яркости — β (бета), третья — γ (гамма) и так далее, вплоть до омеги. Если в созвездии было много звезд и 24 букв алфавита не хватало, Байер использовал латинский алфавит: сначала строчные буквы, а затем и заглавные (последние только до буквы Q).

В атласе Байера ярчайшая звезда ночного неба, Сириус, стала обозначаться как α Большого Пса, а звезда Арктур как α Волопаса.

Эта система прижилась в астрономии и широко используется по сей день. Правда, принцип убывания яркости не всегда соблюдается. Например, звезды ковша Большой Медведицы обозначены не по яркости, а просто справа налево: крайняя звезда ковша — α Большая Медведицы, а крайняя звезда ручки ковша — η Большой Медведицы. Бывает и так, что самая яркая звезда в созвездии не альфа, а бета или гамма. Нередко это связано с тем, что во времена Байера яркость звезд определялась очень неточно, на глаз.

Как обозначаются звезды в созвездиях: Система Флемстида

В XVII веке английский астроном Флемстид предложил обозначать звезды в созвездиях просто цифрами. При этом порядок присвоения цифр звездам созвездия зависел не от их яркости, а от порядка пересечения ими небесного меридиана. (То есть в конечном счете от координат звезды.)


В этой системе Сириус стал обозначаться как 9 Большого Пса. Это значит, что Сириус — девятая по очередности звезда из созвездия Большого Пса, которая пересечет небесный меридиан на юге.

Сегодня на картах звездного неба самые яркие звезды в созвездиях обозначены греческими буквами по системе Байера, а более тусклые обозначены цифрами по системе Флемстида. Латинские буквы Байера для обозначения звезд используются редко, зато на карты часто наносят имена самых ярких звезд.

Другие обозначения звезд

Еще более тусклые звезды также имеют свои обозначения. Как правила это номера из разных звездных каталогов, куда они были когда-то занесены. Например, HD 7898 — звезда под номером 7898 из каталога Генри Дрепера (Henry Draper), HIP 32344 — звезда под номером 32344 из каталога космического спутника Гиппаркос, который измерял параллаксы звезд в девяностых годах XX века.

Особым образом обозначаются в созвездиях переменные звезды, то есть звезды, которые изменяют свой блеск. Для этого вначале используются заглавные буквы латинского алфавита, начиная с R до Z. Например, R Большой Медведицы, или T Лисички. Затем берутся комбинации из этих букв с каждой последующей (RR, RS, RT и так далее до ZZ), затем комбинации всех букв от A до Q, начиная с AA до QZ. Таким образом в каждом созвездии можно обозначить 334 переменные звезды. Если же таких звезд больше, то они просто обозначаются заглавной буквой V (от лат. variable — переменный) и порядковым номером, начиная с 335.


Как правило, каждая более или менее яркая звезда имеет множество обозначений. Мы уже видели, что Сириус — это и α Большого Пса, и 9 Большого Пса. Но HIP 32349, и FK5 257, GJ 244 и ADS 5423 — это тоже Сириус, вернее, обозначения этой звезды в разных каталогах.

Сегодня в каталоги занесено несколько миллиардов звезд. Все они имеют номера или какие-то другие обозначения. Но это всего лишь 1% от всех звезд, входящих в состав нашей Галактики! Остальные 99% светил безымянны и даже не посчитаны. Какую-то часть из этих звезд можно увидеть только в самые мощные телескопы. Другая часть не видна вовсе из-за облаков космической пыли, которые скрывают от нас огромные сектора Галактики.

Источник: skygazer.ru

Даже далекие от астрономии люди знают, что звезды имеют разный блеск. Наиболее яркие звезды без труда видны на засвеченном городском небе, а самые тусклые едва различимы при идеальных условиях наблюдения.

Для характеристики блеска звезд и других небесных светил (например, планет, метеоров, Солнца и Луны) ученые выработали шкалу звездных величин.

Видимая звездная величина (m; часто ее называют просто «звездная величина») указывает поток излучения вблизи наблюдателя, т. е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него.


Это безразмерная астрономическая величина, характеризующая создаваемую небесным объектом вблизи наблюдателя освещенность.

Освещённость – световая величина, равная отношению светового потока, падающего на малый участок поверхности, к его площади.
Единицей измерения освещённости в Международной системе единиц (СИ) служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС (сантиметр-грамм-секунда) – фот (один фот равен 10 000 люксов).

Освещённость прямо пропорциональна силе света источника света. При удалении источника от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (закон обратных квадратов).

Субъективно видимая звездная величина воспринимается как блеск (у точечных источников) или яркость (у протяженных).

При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды.

Звездную величину сначала ввели как указатель видимого блеска звезд в оптическом диапазоне, но позже распространили и на другие диапазоны излучения: инфракрасный, ультрафиолетовый.

Таким образом, видимая звёздная величина m или блеск является мерой освещённости Е, создаваемой источником на перпендикулярной к его лучам поверхности в месте наблюдения.

Исторически все началось более 2000 лет назад, когда древнегреческий астроном и математик Гиппарх (II век до нашей эры) поделил видимые глазом звезды на 6 величин.


Самым ярким звездам Гиппарх присвоил первую звездную величину, а самым тусклым, едва видимым глазом, – шестую, остальные равномерно распределил по промежуточным величинам. Причем, разделение на звездные величины Гиппарх произвел так, чтобы звезды 1-й величины казались настолько ярче звезд 2-й величины, насколько те кажутся ярче звезд 3-й величины и т. д. То есть от градации к градации блеск звезд изменялся на одну и ту же величину.

Как позже выяснилось, связь такой шкалы с реальными физическими величинами логарифмическая, поскольку изменение яркости в одинаковое число раз воспринимается глазом как изменение на одинаковую величину – эмпирический психофизиологический закон Вебера – Фехнера, согласно которому интенсивность ощущения прямо пропорциональна логарифму интенсивности раздражителя.

Это связано с особенностями человеческого восприятия, для примера, если в люстре последовательно зажигается 1, 2, 4, 8, 16 одинаковых лампочек, то нам кажется, что освещенность в комнате все время увеличивается на одну и ту же величину. То есть количество включаемых лампочек должно увеличиваться в одинаковое число раз (в примере вдвое), чтобы нам казалось, что прирост яркости постоянен.

Логарифмическая зависимость силы ощущения Е от физической интенсивности раздражителя Р выражается формулой:


Е = к log P + a,   (1)

где k и a – некие постоянные, определяемые данной сенсорной системой.

В середине 19 в. английский астроном Норман Погсон осуществил формализацию шкалы звездных величин, которая учитывала психофизиологический закон зрения.

Основываясь на реальных результатах наблюдений, он постулировал, что

ЗВЕЗДА ПЕРВОЙ ВЕЛИЧИНЫ РОВНО В 100 РАЗ ЯРЧЕ ЗВЕЗДЫ ШЕСТОЙ ВЕЛИЧИНЫ.

При этом в соответствии с выражением (1) видимая звездная величина определяется равенством:

m = -2,5 lg E + a,   (2)

где:

-2,5 – коэффициент Погсона, знак минус – дань исторической традиции (более яркие звезды имеют меньшую, в т. ч. отрицательную, звездную величину);
a – нуль-пункт шкалы звёздных величин, устанавливаемый международным соглашением, связанным с выбором базовой точки измерительной шкалы.

Если Е1 и Е2 соответствуют звёздным величинам m1 и m2, то из (2) следует, что:

E2/E1 = 100,4(m1— m2)   (3)

Уменьшение звездной величины на единицу m1 — m2 = 1 приводит к увеличению освещённости Е примерно в 2,512 раза. При m1 — m2 = 5, что соответствует диапазону от 1-й до 6-й звездной величины, изменение освещенности будет Е21=100.


Формула Погсона в её классическом виде устанавливает связь между видимыми звездными величинами:

m2 — m1 = -2,5 (lgE2 — lgE1)   (4)

Данная формула позволяет определять разницу звёздных величин, но не сами величины.

Чтобы с её помощью построить абсолютную шкалу, необходимо задать нуль-пункт – блеск, которому соответствует нулевая звездная величина (0m). Сначала в качестве 0m был принят блеск Веги. Потом нуль-пункт был переопределён, но для визуальных наблюдений Вега до сих пор может служить эталоном нулевой видимой звёздной величины (по современной системе, в полосе V системы UBV, её блеск равен +0,03m, что на глаз неотличимо от нуля).

Обычно же нуль-пункт шкалы звездных величин принимают условно по совокупности звезд, тщательная фотометрия которых выполнена различными методами.

Также за 0m принята вполне определенная освещенность, равная энергетической величине E=2,48*10-8 Вт/м². Собственно, именно освещенность и определяют при наблюдениях астрономы, а уже потом ее специально переводят в звездные величины.

Делают они это не только потому что «так привычнее», но и потому что звездная величина оказалась очень удобным понятием.

звездная величина оказалась очень удобным понятием

Измерять освещенность в ваттах на квадратный метр крайне громоздко: для Солнца величина получается большой, а для слабых телескопических звезд – очень маленькой. В то же время оперировать звездными величинами гораздо легче, так как логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин.


Погсоновская формализация в последующем стала стандартным методом оценки звёздной величины.

Правда, современная шкала уже не ограничивается шестью звездными величинами или только видимым светом. Очень яркие объекты могут иметь отрицательную звездную величину. Например, Сириус, ярчайшая звезда небесной сферы, имеет звездную величину минус 1,47m. Современная шкала позволяет также получить значение для Луны и Солнца: полнолуние имеет звездную величину -12,6m, а Солнце -26,8m. Орбитальный телескоп «Хаббл» может наблюдать объекты, блеск которых составляет величины примерно до 31,5m.

Шкала звездных величин
(шкала – обратная: меньшим значениям соответствуют более яркие объекты)

Источник: myvera.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.