Пульсар звезда


Если бы мы могли увидеть радиоволны, в небе сияло бы пять солнц. Остатки вспышек сверхновых в созвездиях Кассиопеи и Тельца, галактика в созвездии Девы и квазар в Лебеде заливают Землю радиосиянием не хуже нашего родного светила.

Вообще же радиоастрономы наблюдают сотни тысяч объектов, в основном, конечно же, очень тусклых. От любого космического радиоисточника приходит во много раз меньше энергии, чем от обыкновенных земных радиостанций. Именно это заставляет астрономов строить огромные антенны. Так, диаметр "тарелки" в Обсерватории Аресибо (Arecibo) превышает 300 метров. Также приходится работать на специально выделенных частотах, свободных от земного радиовещания.

Наблюдаемые объекты разнообразны. Квазары, галактики, природные мазеры (они же лазеры, излучающие радиоволны) на месте будущих звёзд, облака межзвёздного водорода… Распахнув в середине XX века радиоокно во Вселенную, астрономы узнали о ней много нового.

Захватывающая история произошла в 1967 году в Кембриджском университете.


пирантка Джоселин Белл Бёрнелл (Jocelyn Bell Burnell) обнаружила сигнал, периодичность импульсов которого демонстрировала невероятную точность. Как выяснилось впоследствии, по этому показателю он даже может поспорить с атомными часами! Вместе с тем загадочные импульсы явно имели космическое происхождение. Может быть, это маяки?.. Первые открытые радиопульсары обозначались аббревиатурой LGM (Little Green Men, или маленькие зелёные человечки) — так они поразили астрономов своими характеристиками. Учёным попросту не верилось, что сигналы имеют природное происхождение.

Сейчас пульсаров известно уже несколько тысяч. Нет сомнений, что это не творение инопланетян, а нейтронные звёзды, которые очень быстро вращаются. Такой объект обладает огромной плотностью (сотни миллионов тонн в кубическом сантиметре) и мощнейшим магнитным полем.

Электроны в этом магнитном поле разогнаны почти до световой скорости. На таких скоростях, как было известно ещё Эйнштейну, пространство и время ведут себя непривычно – впрочем, научным миром их фокусы давно поняты и описаны. В частности, частицы в атмосфере пульсара излучают радиоволны равномерно во все стороны – но для нас, наблюдателей с Земли, их "во все стороны" сворачивается в чрезвычайно узкий конус, похожий на луч маяка.

В тот краткий миг, когда этот луч направлен на Землю, радиотелескоп принимает яркий импульс излучения. Но пульсар вращается вокруг своей оси, и луч вскоре “отворачивается” от нашей планеты. Наступает молчание на время одного полного оборота. Период между радиосигналами пульсара – это всего лишь период его вращения.


Главная загадка пульсаров давно разгадана, но это не значит, что у них не осталось других тайн. Некоторые из этих объектов демонстрируют очень необычное поведение. Загадочные перебои в ходе "космических часов", высокоинтенсивные импульсы, нестандартные спектры – вопросов по-прежнему больше, чем ответов. К тому же плотность вещества и напряжённость магнитного поля нейтронной звезды не могут быть воссозданы в лаборатории, а значит, не могут быть и исследованы экспериментальной наукой.

Поэтому пульсары сами могут сыграть роль лабораторий, в которых открываются новые законы физики. Наконец, есть к ним и чисто практический интерес – они могут служить эталонами времени и точками отсчёта в пространстве для систем навигации. Поэтому интерес к ”галактическим маякам” не ослабевает.

И вот недавно NASA сообщило, что сеть радиотелескопов LOFAR обнаружила пульсар, который делает 707 оборотов в секунду. Новичка назвали PSR J0952-0607 (здесь PSR – сокращение от английского слова pulsar, а остальные символы обозначают координаты объекта). Он находится в созвездии Секстанта. Расстояние до него трудно определить точно, оно составляет от 3200 до 5700 световых лет.


Скорость вращения этого объекта уникальна, известен только один его "коллега", который вращается быстрее – PSR J1748-2446ad, делающий за секунду около 717 оборотов.

Отметим, что пульсары делятся на две группы – секундные и миллисекундные. Нейтронные звёзды из первой группы, как явствует из названия, делают один оборот за несколько секунд. Именно такие пульсары и составляют подавляющее большинство. Их тоже нельзя назвать сонными и медлительными – всё-таки подобное тело имеет массу порядка солнечной, а ведь нашему светилу на полный оборот требуется около месяца. Но есть ещё небольшая группа нейтронных звёзд, считающих, что в жизни нужно крутиться как можно быстрее. Их луч описывает окружность всего за несколько миллисекунд, поэтому и называются они миллисекундными пульсарами.

Пока ещё не вполне ясно, откуда берутся такие "торопыжки". Предполагается, что каждый из них когда-то был благовоспитанным секундным пульсаром, но у него была звезда-компаньон. Этого, правда, ещё не достаточно для разгона. Ведь на самом деле большинство звёзд в Галактике – двойные или кратные. Одиночное Солнце – исключение, а не правило, хоть нам и кажется правилом всё, к чему мы привыкли.

Чтобы пульсар стал миллисекундным, звезда-компаньон должна быть расположена довольно близко. Достаточно близко, чтобы он стал стягивать вещество с его поверхности. Такие пульсары иногда образно называют "чёрными вдовами" – в честь вида пауков, самки которого съедают самца после спаривания.


Поведение нейтронной звезды в тесной паре тоже иначе как каннибализмом не назовёшь. Например, от звезды-компаньона PSR J0952-0607 осталось, по расчётам, всего 20 масс Юпитера. Для сравнения: Солнце тяжелее Юпитера примерно в тысячу раз.

По мере того как пульсар поглощает плазму звезды-партнёра, увеличивается его момент импульса, а потому и скорость вращения.

Вещество, высасываемое нейтронной звездой из ни в чём не повинного партнёра, разогревается до огромных температур. А такое горячее вещество всегда излучает рентгеновские и гамма-фотоны. Вот и PSR J0952-0607 был вначале обнаружен орбитальным телескопом Fermi как источник жёсткого излучения. Но в тот момент ещё не была ясна его природа.

Между тем инструменты, объединённые в сеть LOFAR, способны принимать радиоволны метровой длины: импульсы PSR J0952-0607 были приняты на длине волны около двух метров.К слову, таких радиотелескопов в мире не так уж и много. Чаще радиоастрономы работают на более коротких волнах (например, сантиметровых), где гораздо меньше сказываются помехи, влияние ионосферы и фоновое излучение Галактики.

Однако некоторые пульсары очень важно наблюдать именно в метровом диапазоне, потому что с уменьшением длины волны их радиосветимость быстро падает (специалисты называют такие спектры крутыми). На сантиметровых волнах их может быть уже попросту не видно.

Возможно, именно этим объясняется факт, давно интересующий астрономов. Они отчего-то не находят ещё более быстрые пульсары, хотя их существование предсказано теоретически. Так, скорость нынешних рекордсменов составляет всего 60% от теоретического максимума. Где же объекты, которые вертятся ещё быстрее?


Возможно, дело именно в том, что их можно обнаружить только на длинноволновых инструментах. Авторы исследования полагают, что самые быстрые пульсары имеют самые крутые спектры, а значит, на большинстве радиотелескопов мира их просто невозможно наблюдать.

Тем ценнее нынешние наблюдения LOFAR. Не исключено, что в будущем к изучению необычайно быстрого "космического волчка" подключатся и российские радиотелескопы. Ведь, к слову, два телескопа, работающих на метровых волнах – БСА и ДКР-1000 – имеются в Пущинской радиоастрономической обсерватории в Московской области.

Научная статья с результатами исследования была опубликована в журнале The Astrophysical Journal Letters.

Источник: nauka.vesti.ru

Пульсары

Пульсары представляют собою сферические компактные объекты, размеры которых не выходят за границу большого города. Удивительно то, что при таком объеме они по массивности превосходят солнечную. Их используют для исследования экстремальных состояний материи, обнаружения планет за пределами нашей системы и измерения космических дистанций. Кроме того, они помогли найти гравитационные волны, указывающие на энергетические события, вроде столкновений сверхмассивных черных дыр. Впервые обнаружены в 1967 году.


Что такое пульсар?

Если высматривать на небе пульсар, то кажется обычной мерцающей звездой, следующей по определенному ритму. На самом деле, их свет не мерцает и не пульсирует, и они не выступают звездами.

Пульсар вырабатывает два стойких узких световых луча в противоположных направлениях. Эффект мерцания создается из-за того, что они вращаются (принцип маяка). В этот момент луч попадает на Землю, а затем снова поворачивается. Почему это происходит? Дело в том, что световой луч пульсара обычно не совмещается с его осью вращения.

Если мигание создается вращением, то скорость импульсов отображает ту, с которой вращается пульсар. Всего было найдено 2000 пульсаров, большая часть их которых делает один оборот в секунду. Но есть примерно 200 объектов, умудряющихся за то же время совершать по сотне оборотов. Наиболее быстрые называют миллисекундными, потому что их количество оборотов за секунду приравнивается к 700.

Пульсары нельзя считать звездами, по крайней мере «живыми». Это скорее нейтронные звезды, формирующиеся после того, как у массивной звезды заканчивается топливо, и она разрушается. В результате создается сильный взрыв – сверхновая, а оставшийся плотный материал трансформируется в нейтронную звезду.


Диаметр пульсаров во Вселенной достигает 20-24 км, а по массе вдвое больше солнечной. Чтобы вы понимали, кусочек такого объекта размером с сахарный куб будет весить 1 миллиард тонн. То есть, у вас в руке помещается нечто весом с Эверест! Правда есть еще более плотный объект – черная дыра. Наиболее массивная достигает 2.04 солнечной массы.

Пульсары обладают сильным магнитным полем, которое от 100 миллионов до 1 квадриллиона раз сильнее земного. Чтобы нейтронная звезда начала излучать свет подобный пульсару, она должна обладать правильным соотношением напряженности магнитного поля и частоты вращения. Случается так, что луч радиоволн может не пройти через поле зрения наземного телескопа и остаться невидимым.

Радиопульсары

Астрофизик Антон Бирюков о физике нейтронных звезд, замедлении вращения и открытии гравитационных волн:

Почему пульсары вращаются?

Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.


Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).

Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.

Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.

Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.


А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.

Поиск пульсаров

Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.

В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости Млечного Пути.

Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.

Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.


Использование пульсаров

Пульсары – не просто удивительные космические объекты, но и полезные инструменты. Испускаемый свет может многое поведать о внутренних процессах. То есть, исследователи способны разобраться в физике нейтронных звезд. В этих объектах настолько высокое давление, что поведение материи отличается от привычного. Странное наполнение нейтронных звезд называют «ядерной пастой».

Пульсары приносят много пользы благодаря точности импульсов. Ученые знают конкретные объекты и воспринимают их как космические часы. Именно так начали появляться догадки о наличии других планет. Фактически, первая найденная экзопланета вращалась вокруг пульсара.

Не забывайте, что пульсары во время «мигания» продолжают двигаться, а значит, можно с их помощью измерять космические дистанции. Они также участвовали в проверке теории относительности Эйнштейна, вроде моментов с силой тяжести. Но регулярность пульсации может нарушаться гравитационными волнами. Это заметили в феврале 2016 года.

Кладбища пульсаров

Постепенно все пульсары замедляются. Излучение питается от магнитного поля, создаваемого вращением. В итоге, он также теряет свою мощность и прекращает посылать лучи. Ученые вывели специальную черту, где еще можно обнаружить гамма-лучи перед радиоволнами. Как только пульсар опускается ниже, его списывают в кладбище пульсаров.

Если пульсар сформировался из остатков сверхновой, то обладает огромным энергетическим запасом и быстрой скоростью вращения. Среди примеров можно вспомнить молодой объект PSR B0531+21. В такой фазе он может пробыть несколько сотен тысяч лет, после чего начнет терять скорость. Пульсары среднего возраста составляют большую часть населения и производят только радиоволны.

Однако, пульсар может продлить себе жизнь, если рядом есть спутник. Тогда он будет вытягивать его материал и увеличивать скорость вращения. Такие изменения могут произойти в любое время, поэтому пульсар способен возрождаться. Подобный контакт называют маломассивной рентгеновской двойной системой. Наиболее старые пульсары – миллисекундные. Некоторые достигают возраста в миллиарды лет.

Нейтронные звезды

Нейтронные звезды – довольно загадочные объекты, превышающие солнечную массу в 1.4 раза. Они рождаются после взрыва более крупных звезд. Давайте узнаем эти формирования поближе.

Когда взрывается звезда, массивнее Солнца в 4-8 раз, остается ядро с большой плотностью, продолжающее разрушаться. Гравитация так сильно давит на материал, что заставляет протоны и электроны сливаться, чтобы предстать в виде нейтронов. Так и рождается нейтронная звезда высокой плотности.

Эти массивные объекты способны достигать в диаметре всего 20 км. Чтобы вы осознали плотность, всего одна ложечка материала нейтронной звезды будет весить миллиард тонн. Гравитация на таком объекте в 2 миллиарда раз сильнее земной, а мощности хватает для гравитационного линзирования, позволяющего ученым рассмотреть заднюю часть звезды.

Толчок от взрыва оставляет импульс, который заставляет нейтронную звезду вращаться, достигая нескольких оборотов в секунду. Хотя они могут разгоняться до 43000 раз в минуту.

Пограничные слои вблизи компактных объектов

Астрофизик Валерий Сулейманов о возникновении аккреционных дисков, звездном ветре и веществе вокруг нейтронных звезд:


Недра нейтронных звезд

Астрофизик Сергей Попов об экстремальных состояниях вещества, составе нейтронных звезд и способах изучения недр:

Когда нейтронная звезда выступает частью двойной системы, где взорвалась сверхновая, картина выглядит еще более впечатляющей. Если вторая звезда уступала по массивности Солнцу, то тянет массу компаньона в «лепесток Роша». Это шарообразное облако материла, совершающее обороты вокруг нейтронной звезды. Если же спутник был больше солнечной массы в 10 раз, то передача массы также настраивается, но не такая устойчивая. Материал течет вдоль магнитных полюсов, нагревается и создаются рентгеновские пульсации.

К 2010 году было найдено 1800 пульсаров при помощи радиообнаружения и 70 через гамма-лучи. У некоторых экземпляров даже замечали планеты.

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.

Когда рентгеновские пульсары отбирают материал у более массивных соседей, то он контактирует с магнитным полем и создает мощные лучи, наблюдаемые в радио, рентгеновском, гамма и оптическом спектре. Так как источник располагается в компаньоне, то их именуют пульсарами с аккрецией.

Вращающиеся пульсары в небе подчиняются вращению звезд, потому что высокоэнергетические электроны взаимодействуют с магнитным полем пульсара над полюсами. Так как вещество внутри магнитосферы пульсара ускоряется, это заставляет его вырабатывать гамма-лучи. Отдача энергии замедляет вращение.

Магнитные поля магнетар в 1000 раз сильнее, чем у нейтронных звезд. Из-за чего заставляют вращаться звезду намного дольше.

Эволюция нейтронных звезд

Астрофизик Сергей Попов о рождении, излучении и разнообразии нейтронных звезд:


Ударные волны вблизи компактных объектов

Астрофизик Валерий Сулейманов о нейтронных звездах, гравитации на космических кораблях и ньютоновском пределе:

Источник: v-kosmose.com

космос

Астрономы изучали небесный покров с незапамятных времен. Однако, только со значительным скачком в развитии технологий, ученым удалось обнаружить такие объекты, которых у прежних поколений астрономов не было даже в воображении. Одними из них стали квазары и пульсары.

космос

Несмотря на громадные расстояния до этих объектов, ученым удалось изучить их некоторые свойства. Но несмотря на это, они скрывают еще очень много нераскрытых тайн.

Что такое пульсары и квазары

Пульсар, как выяснилось – это нейтронная звезда. Его первооткрывателями стали Э.Хьюиш и его аспирант Д.Белл. Им удалось обнаружить импульсы, представляющие собой потоки излучения узкой направленности, которые становятся видны через определенные временные промежутки, поскольку этот эффект происходит за счет вращения нейтронных звезд.

космос

Значительное уплотнение магнитного поля звезды и самой ее плотности происходит при ее сжатии. Она может уменьшиться до размеров в несколько десятков километров, и в такие моменты вращение происходит с невероятно большой скоростью. Эта скорость в некоторых случаях достигает тысячных долей секунды. Отсюда и получаются электромагнитные излучаемые волны.

космос

Квазары и пульсары можно назвать самыми необычными и загадочными открытиями астрономии. Поверхность нейтронной звезды (пульсара) обладает меньшим давлением, нежели ее центр, по этой причине происходит распад нейтронов на электроны и протоны. Электроны разгоняются до неимоверных скоростей за счет наличия мощного магнитного поля. Порой эта скорость достигает скорости света, следствием чего является выброс электронов от магнитных полюсов звезды. Два узких пучка электромагнитных волн – именно так выглядит перемещение заряженных частиц. То есть электронами в сторону своего направления испускается излучение.

космос

Продолжая перечисление необычных явлений, связанных с нейтронными звездами, следует отметить их внешний слой. В этой сфере встречаются пространства, в которых ядро не может быть разрушено по причине недостаточной плотности вещества. Следствием этого является покрытие самой звезды плотной корой за счет образования кристаллической структуры. В итоге накапливается напряжение и в определенный момент эта плотная поверхность начинает трескаться. Этот феномен ученые прозвали «звездотрясением».

Пульсары и квазары остаются полностью неизученными. Но если удивительные исследования поведали нам о пульсарах или т.н. нейтронных звездах много нового, то квазары держат астрономов в напряжении неизведанности.

космос

Впервые мир узнал о квазарах в 1960 году. Открытие гласило, что это объекты с небольшим угловыми размерами, которым свойственна высокая светимость, а по классу они относятся к внегалактическим объектам. По той причине, что они обладают довольно маленьким угловым размером, многие годы считалось, что это просто звезды.

Точного количества обнаруженных квазаров неизвестно, но в 2005 году проводились исследования, в которых насчитывалось 195 тысяч квазаров. Пока ничего доступного для объяснения о них неизвестно. Существует масса предположений, однако ни одно из них не имеет каких-либо подтверждений.

космос

Астрономы выяснили только то, что за временной отрезок менее 24 часов их блеск отмечает достаточную переменность. По этим данным можно отметить их относительно небольшой размер области излучений, который сопоставим с размерами Солнечной системы. Найденные квазары существуют и на расстоянии до 10 миллиардов световых лет. Разглядеть их удалось по причине их высочайшего уровня светимости.

Самый близкий подобный объект к нашей планете расположился приблизительно на отметке в 2 миллиарда световых лет. Возможно, грядущие исследования и используемые в них новейшие технологии предоставят человечеству новые познания о белых пятнах открытого космоса.

Источник: ribalych.ru

Субраманьян Чандрасекар — физик из Индии, который в 24 года рассчитал, при каких условиях звезда превращается в белого карлика, а при каких — в нейтронную.

Уже в своих ранних работах (в 1930-х годах) Чандрасекар показал, что большие и малые звезды ведут себя по-разному после того, как погаснет их ядерный огонь. С помощью квантовой механики и теории относительности он проанализировал поведение звездного вещества в процессе его сжатия, уделяя особое внимание электронам.

Если масса звезды достаточно мала, то гравитационное давление, вызывающее сжатие, постепенно уравновешивается внутренним давлением, и звезда достигает положения равновесия при размерах белого карлика.

Однако если масса звезды превосходит определенную величину, то электроны будут постепенно сжиматься до такой степени, что их скорости станут близки к скорости света, условие, называемое релятивистским вырождением. В результате гравитационное сжатие превзойдет противодействующие силы, и звезда будет продолжать сжиматься до невероятно малого размера и огромной плотности. Критическая масса звезды, ниже которой звезда может стать белым карликом, известна теперь как граница Чандрасекара. Она в 1,4 раза превышает массу Солнца.

А вот, если масса звезды в два и более раза превышает массу Солнца, предсказал Чандрасекар, она выделит такое огромное количество энергии, что, превратившись в сверхновую, взорвется. Ее наружная оболочка будет выброшена в пространство, а остаток сожмется до устойчивой нейтронной звезды, не содержащей электрически заряженных электронов и протонов. Плотность такого объекта должна быть порядка 100 млн. тонн на кубический сантиметр.

Когда индиец опубликовал свои расчеты впервые, ему было всего 24 года. Но ждать окончательного признания своих заслуг ему пришлось еще почти полвека.

Определенно вкладом в космологию стоит считать открытие ускоренного расширения Вселенной посредством наблюдения дальних сверхновых, Нобелевскую премию за которое вручили в 2011 году Солу Перлмуттеру, Адаму Риссу и Брайану Шмидту. А теперь Нобелевский комитет отметил вклад Джима Пиблза, описавшего, в частности, процесс образования крупномасштабных структур в ранней Вселенной – галактик и их скоплений.

Два других лауреата — Мишель Майор и Дидье Кело, как известно, награждены за открытие экзопланеты у другой звезды. И надо отметить, что открытие нового типа астрономических объектов приносило автору Нобелевскую премию даже реже, чем заслуги в области космологии. Но, как минимум, один такой пример привести можно.

Это лауреат премии 1974 года Энтони Хьюиш. Хотя назвать его первооткрывателем не совсем корректно.

Началась эта история в 1965 году, когда Хьюиш работал в университете Кембриджа и завершил работу над проектом особого радиотелескопа для приёма и анализа сигналов космических квазаров. Радиотелескоп должен был занимать участок площадью 4,5 акра. На нём планировалось смонтировать 200 километров проводов стоимостью 15 тысяч фунтов стерлингов. Монтаж проводов выполнила группа студентов и аспирантов, занимавшаяся у профессора Хьюиша.

Сигнал, полученный радиотелескопом записывали самописцы, в день получалась тридцатиметровая бумажная лента, покрытая зигзагообразной кривой, чем-то похожей на электрокардиограмму. Эти показания надо было расшифровывать, причем, на тот момент никто толком не знал, как это делать. Приходилось искать и анализировать закономерности в многочисленных зигзагах, да еще и, в виду отсутствия компьютеров, делать это вручную.

Как это часто бывает, основная черновая работа свалилась на плечи лаборантов, в первую очередь на одну из аспиранток Хьюиша – Джоселин Белл.

Источник: pikabu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.