Протонная звезда


В понедельник, 16 октября, гравитационно-волновая обсерватория LIGO и целый ряд других крупных международных научных групп сообщили о чрезвычайно важном для современной астрономии открытии. Более 70 обсерваторий, работающих во всех диапазонах электромагнитного спектра, а также все три действующие гравитационно-волновые обсерватории впервые зафиксировали во всех подробностях слияние двух нейтронных звезд. В этом материале мы расскажем, что же именно наблюдали астрономы и на какие вопросы о нашей Вселенной помогает ответить новое исследование.

Как все произошло?

17 августа 2017 года, в 15:41:04 по московскому времени детектор обсерватории LIGO в Хенфорде (Вашингтон) услышал рекордно длинную гравитационную волну — сигнал продолжался около ста секунд. Это очень большой промежуток времени — для сравнения, предыдущие четыре фиксации гравитационных волн длились не дольше трех секунд. Сработала автоматическая программа оповещения. Астрономы проверили данные: оказалось, что второй детектор LIGO (в Луизиане) тоже зафиксировал волну, но автоматический триггер не сработал из-за краткосрочных шумов.


На 1,7 секунды позже детектора в Хенфорде, независимо от него, сработала автоматическая система телескопов «Ферми» и «Интеграл» — космических гамма-обсерваторий, наблюдающих одни из самых высокоэнергетических событий во Вселенной. Приборы обнаружили яркую вспышку и примерно определили ее координаты. В отличие от гравитационного сигнала, вспышка длилась всего две секунды. Интересно, что российско-европейский «Интеграл» заметил гамма-всплеск «боковым зрением» — «защитными кристаллами» основного детектора. Тем не менее, это не помешало триангуляции сигнала.

Примерно через час LIGO разослал сведения о возможных координатах источника гравитационных волн в обсерватории по всему миру — установить эту область удалось благодаря тому, что сигнал не был зарегистрирован европейским гравитационным детектором Virgo. По задержкам, с которыми детекторы начали получать сигнал, стало ясно, что, вероятнее всего, источник находится в южном полушарии. Изначальная область, рекомендуемая для поиска, достигала 28 квадратных градусов, что эквивалентно сотням площадей Луны.

Следующим этапом было объединение данных гамма- и гравитационных обсерваторий воедино и поиск точного источника излучения. Так как ни гамма-телескопы, ни тем более гравитационные не позволяли найти требуемую точку с большой точностью, физики инициировали сразу несколько оптических поисков. Один из них — с помощью роботизированной системы телескопов «МАСТЕР», разработанной в ГАИШ МГУ.


Обнаружить среди тысяч возможных кандидатов нужную вспышку удалось чилийскому метровому телескопу Swope — почти через 11 часов после гравитационных волн. Астрономы зафиксировали новую светящуюся точку в галактике NGC 4993 в созвездии Гидры, ее яркость не превышала 17 звездной величины. Такой объект вполне доступен для наблюдения в полупрофессиональные телескопы.

В течение примерно часа после этого, независимо от Swope, источник нашли еще четыре обсерватории, в том числе аргентинский телескоп сети «МАСТЕР». После этого началась масштабная наблюдательная кампания, к которой присоединились телескопы Южной европейской обсерватории, «Хаббл», «Чандра», массив радиотелескопов VLA и множество других приборов — в сумме более 70 групп ученых наблюдали за развитием событий. Через девять дней астрономам удалось получить изображение в рентгеновском диапазоне, а через 16 дней — в радиочастотном. К сожалению, через некоторое время Солнце приблизилось к галактике и в сентябре наблюдения стали невозможными.

Что стало причиной взрыва?

Такая характерная картина взрыва во многих электромагнитных диапазонах была предсказана и описана уже давно. Она соответствует столкновению двух нейтронных звезд — ультракомпактных объектов, состоящих из нейтронной материи.


По словам ученых, масса нейтронных звезд составляла 1,1 и 1,6 массы Солнца (сравнительно точно определена суммарная масса — около 2,7 массы Солнца). Первые гравитационные волны возникли, когда расстояние между объектами составляло 300 километров.

Большой неожиданностью стало небольшое расстояние от этой системы до Земли — около 130 миллионов световых лет. Для сравнения, это всего в 50 раз дальше, чем от Земли до Туманности Андромеды, и почти на порядок меньше, чем расстояние от нашей планеты до черных дыр, столкновение которых фиксировали ранее LIGO и Virgo. Кроме того, столкновение стало самым близким к Земле источником короткого гамма-всплеска.

Двойные нейтронные звезды известны с 1974 года — одну из таких систем открыли нобелевские лауреаты Рассел Халс и Джозеф Тейлор. Однако до сих пор все известные двойные нейтронные звезды находились в нашей Галактике, а стабильность их орбит была достаточной, чтобы они не столкнулись в течение ближайших миллионов лет. Новая пара звезд сблизилась настолько, что началось взаимодействие и стал развиваться процесс переноса вещества

Событие получило название килоновой. Дословно это означает, что яркость вспышки была примерно в тысячу раз мощнее, чем типичные вспышки новых звезд — двойных систем, в которых компактный компаньон перетягивает на себя материю.

Что все это значит?

Полный спектр собранных данных уже позволяет ученым называть событие краеугольным камнем будущей гравитационно-волновой астрономии. По результатам обработки данных за два месяца было написано около 30 статей в крупных журналах: по семь в Nature и Science, а также работы в Astrophysical Journal Letters и других научных изданиях. Соавторами одной из этих статей являются 4600 астрономов из различных коллабораций — это больше трети всех астрономов мира.


Вот ключевые вопросы, к ответам на которые ученым впервые удалось подойти по-настоящему.

Что запускает короткие гамма-всплески?

Гамма-всплески — это одни из самых высокоэнергетических явлений во Вселенной. Мощность одного такого всплеска достаточна, чтобы за секунды выбросить в окружающее пространство столько же энергии, сколько Солнце генерирует за 10 миллионов лет. Различают короткие и длинные гамма-всплески; при этом считается, что это различные по своему механизму явления. К примеру, источником длинных всплесков считаются коллапсы массивных звезд.

Источниками коротких гамма-всплесков предположительно являются слияния нейтронных звезд. Однако до сих пор прямых подтверждений этому не было. Новые наблюдения — самое веское на сегодняшний день доказательство существования этого механизма.

Откуда во Вселенной берутся золото и другие тяжелые элементы?

Нуклеосинтез — слияние ядер в звездах — позволяет получить огромный спектр химических элементов. Для легких ядер реакции слияния протекают с выделением энергии и в целом энергетически выгодны. Для элементов, чья масса близка к массе железа, энергетический выигрыш оказывается уже не настолько большим. Из-за этого в звездах почти не образуются элементы тяжелее железа — исключением являются взрывы сверхновых. Но их совершенно недостаточно, чтобы объяснить распространенность золота, лантанидов, урана и других тяжелых элементов во Вселенной.


В 1989 году физики предположили, что за это может отвечать r-нуклеосинтез в слияниях нейтронных звезд. Подробнее об этом можно прочитать в блоге астрофизика Марата Мусина. До сегодняшнего дня этот процесс был известен лишь в теории.

Спектральные исследования нового события показали отчетливые следы рождения тяжелых элементов. Так, благодаря спектрометрам Очень большого телескопа (VLT) и «Хаббла» астрономы обнаружили присутствие цезия, теллура, золота и платины. Также есть свидетельства образования ксенона, иода и сурьмы. По оценкам физиков, в результате столкновения была выброшена общая масса легких и тяжелых элементов, эквивалентная 40 массам Юпитера. Одного лишь золота, согласно теоретическим моделям, образуется около 10 масс Луны.

Чему равна константа Хаббла?

Оценить экспериментально скорость расширения Вселенной можно с помощью специальных «стандартных свечей». Это объекты, для которых известна абсолютная яркость, а значит, по соотношению между абсолютной и видимой яркостью можно сделать вывод о том, как далеко они находятся. Скорость расширения на данном расстоянии от наблюдателя определяется по доплеровскому смещению, например, линий водорода. Роль «стандартных свечей» играют, например, сверхновые Ia типа («взрывы» белых карликов) — кстати, именно на их выборке было доказано расширение Вселенной.


Константа Хаббла задает линейную зависимость скорости расширения Вселенной на данном расстоянии. Каждое независимое определение ее значения позволяет нам убедиться в справедливости принятой космологии.

Источники гравитационных волн тоже являются «стандартными свечами» (или, как их называют в статье, «сиренами»). По характеру гравитационных волн, которые они создают, можно независимо определить расстояние до них. Именно этим воспользовались астрономы в одной из новых работ. Результат совпал с другими независимыми измерениями — на основе реликтового излучения и наблюдения за гравитационно-линзированными объектами. Константа примерно равна 62–82 километрам в секунду на мегапарсек. Это означает, что две галактики, удаленные на 3,2 миллиона световых лет, в среднем разбегаются со скоростью 70 километров в секунду. Новые слияния нейтронных звезд помогут увеличить точность этой оценки.

Как устроена гравитация?

Общепринятая на сегодняшний день общая теория относительности в точности предсказывает поведение гравитационных волн. Однако квантовая теория гравитации до сих пор не разработана. Есть несколько гипотез о том, как она может быть устроена — это теоретические конструкции с большим количеством неизвестных параметров. Одновременное наблюдение электромагнитного излучения и гравитационных волн позволит уточнить и сузить границы для этих параметров, а также отбросить некоторые гипотезы.


К примеру, тот факт, что гравитационные волны пришли за 1,7 секунды до гамма-квантов, подтверждает то, что они и правда распространяются со скоростью света. Кроме того, сама величина задержки может быть использована для проверки принципа эквивалентности, лежащего в основе ОТО.

Как устроены нейтронные звезды?

Мы знаем строение нейтронных звезд лишь в общих чертах. У них имеются кора из тяжелых элементов и нейтронное ядро — но, к примеру, нам до сих пор не известно уравнение состояния нейтронной материи в ядре. А от этого зависит, например, ответ на такой простой вопрос: что именно образовалось при столкновении, которое наблюдали астрономы?

Как и у белых карликов, у нейтронных звезд есть  понятие критической массы, при превышении которой может начаться коллапс. В зависимости от того, превзошла ли масса нового объекта критическую или нет, есть несколько сценариев дальнейшего развития событий. Если суммарная масса окажется слишком большой, то объект сразу коллапсирует в черную дыру. Если масса немного меньше, то может возникнуть неравновесная быстровращающаяся нейтронная звезда, которая тоже, впрочем, со временем коллапсирует в черную дыру. Альтернативный вариант — образование магнетара, быстровращающейся нейтронной звезды с огромным магнитным полем. По всей видимости, магнетар в столкновении не образовался — сопутствующее ему жесткое рентгеновское излучение зафиксировано не было.


По словам Владимира Липунова, руководителя сети «МАСТЕР», имеющихся сейчас данных недостаточно, чтобы выяснить, что же именно образовалось в результате слияния. Однако у астрономов уже есть ряд теорий, которые будут опубликованы в ближайшие дни. Возможно, из будущих слияний нейтронных звезд удастся определить искомую критическую массу.

Владимир Королёв

Источник: nplus1.ru

Астрономы обнаружили новорождённый магнетар — нейтронную звезду чрезвычайно редкого типа. Никогда ещё эти экзотические объекты не наблюдались в столь юном возрасте. Открытие может пролить новый свет на то, как живут и умирают звёзды.

Достижение описано в научной статье, опубликованной в издании Astrophysical Journal Letters.

Крошечные тяжеловесы

Вести.Ru ранее подробно писали о нейтронных звёздах. Напомним, что подобный объект образуется из ядра светила, взорвавшегося как сверхновая. По массе такие тела сопоставимы с Солнцем, но в диаметре достигают лишь нескольких километров. Из-за такого несоответствия массы и размера у них чудовищная плотность: сотни миллионов тонн "помещаются" в кубическом сантиметре.


Ещё одно свойство этих объектов — мощнейшее магнитное поле. У типичной нейтронной звезды оно в сотни тысяч раз сильнее, чем у самых мощных магнитов, созданных человеком.

Такие экзотические значения плотности материи и напряжённости магнитного поля превращают небесное тело в физическую лабораторию, которую человечество было бы не в силах создать самостоятельно. Поэтому физики пристально изучают нейтронные звёзды в поисках ответов на самые непростые вопросы о законах, управляющих материей.

Свой интерес и у астрономов. Ведь нейтронная звезда — остаток отгоревшего светила. Изучая её свойства, можно понять интимные подробности жизни и смерти звёзд, которые иначе ускользнули бы от наблюдателей.

Магнитные оригиналы

Существует редкий класс нейтронных звёзд, который выглядит экзотичным даже по меркам этих объектов. Это магнетары — нейтронные звёзды, магнитное поле которых в тысячи раз сильнее, чем обычно. Это буквально самые сильные магниты во Вселенной.

Сегодня человечеству известно более трёх тысяч нейтронных звёзд, но среди них есть только 31 магнетар (включая тот, об открытии которого мы сейчас расскажем).

Магнетар Swift J1818.0-1607 был открыт в марте 2020 года благодаря рентгеновской вспышке, пойманной орбитальной обсерваторией Swift. (Поясним, что в спокойном состоянии этот объект был слишком тусклым для существующих телескопов.)

Как только "быстрый" Swift обнаружил вспышку, в ту же точку неба были наведены другие рентгеновские инструменты, а спустя некоторое время и радиотелескоп. Наблюдения помогли астрономам вычислить параметры "найдёныша".


Многообещающий младенец

Оказалось, что J1818.0-1607 находится в 16 тысячах световых лет от Земли. По массе и размеру это типичная нейтронная звезда: будучи вдвое массивнее Солнца, он имеет диаметр около 25 километров. Магнитное поле в 1014 гауссов не оставило у учёных сомнений, что открыт тридцать первый магнетар.

Но удивительным оказалось другое. Судя по периоду вращения вокруг своей оси (всего 1,36 секунды), а также по ряду других признаков, это небесное тело имеет ничтожный по космическим меркам возраст. Когда оно испускало излучение, которое теперь обнаружили телескопы, ему было всего 240 лет отроду (не забудем, что ещё 16 тысяч лет эти электромагнитные волны путешествовали по Вселенной).

Астрономы ещё никогда не наблюдали столь молодой магнетар! Это открытие должно пролить свет на механизмы образования этих сверхмагнитов.

"Может быть, если мы узнаем историю образования этих объектов, мы поймём, почему существует такая огромная разница между количеством обнаруженных нами магнетаров и общим числом известных нейтронных звёзд", — надеется соавтор статьи Нанда Ри (Nanda Rea) из Института космических наук в Барселоне.

Кроме того, новые наблюдения позволят астрономам уточнить свои теории по поводу эволюции магнетаров. Многие модели прогнозируют, как свойства такого объекта меняются с возрастом. И теперь можно будет это проверить, сравнивая "младенца" с более зрелыми собратьями.

Кроме того, Swift J1818.0-1607 является ещё и радиопульсаром. Другими словами, он излучает радиоволны в виде чрезвычайно узкого луча. Когда этот луч попадает в поле зрения радиотелескопа, наблюдается короткая радиовспышка. Она повторяется с каждым оборотом небесного тела вокруг своей оси.

Астрономам известно множество радиопульсаров, но магнетары обычно ими не являются. Swift J1818.0-1607 стал лишь пятым магнетаром, обладающим этим свойством.

Исследователи отмечают, что за последнее десятилетие число известных магнетаров удвоилось. Вероятно, учёные откроют ещё много подобных объектов, и это позволит лучше изучить их удивительные свойства.

К слову, ранее Вести.Ru рассказывали о том, как внутри нейтронной звезды обнаружилось самое жёсткое вещество во Вселенной. Говорили мы и о первой карте поверхности нейтронной звезды.

Источник: www.vesti.ru

Протонная звезда

Когда массивная звезда умирает, становясь сверхновой, взрыв — это только начало конца. Большая часть звездной материи разлетается во все стороны, но железное сердце звезды остается на месте. Это ядро имеет массу около двух солнечных, и быстро сжимается до сферы с радиусом в пару десятков километров. Сокрушительное внутреннее давление — достаточное, чтобы сжать Эверест до размеров кубика сахара — превращает субатомные частицы, такие как протоны и электроны, в нейтроны.

Астрономы знают очень много о том, как рождаются нейтронные звезды. Но что именно происходит потом внутри этих сверхплотных ядер, остается загадкой. Некоторые исследователи предполагают, что они состоят только из нейтронов. Другие считают, что невероятное давление уплотняет материал вблизи центра в более экзотические частицы и состояния материи. Теперь, после десятилетий споров, исследователи приближаются к разгадке этой тайны, отчасти благодаря инструменту на Международной космической станции, называемому «Исследователь внутреннего состава нейтронной звезды» (NICER).

В декабре прошлого года эта космическая обсерватория предоставила астрономам одни из самых точных измерений массы и радиуса нейтронной звезды, а также неожиданные данные о ее магнитном поле. Другие данные поступают из исследовательских центров, занимающихся гравитационными волнами, с помощью которых можно наблюдать, как искажаются нейтронные звезды при столкновении. Такие объединенные наблюдения дают исследователям возможность делать выводы о том, что заполняет внутренности нейтронных звезд.

Для многих специалистов в этой области такие результаты знаменуют собой поворотный момент в изучении одних из самых загадочных объектов Вселенной. «Это начало золотого века физики нейтронных звезд», — говорит Юрген Шаффнер-Билич, физик-теоретик из Университета Гете во Франкфурте, Германия.

Запущенный в 2017 году на борту ракеты SpaceX Falcon 9, телескоп стоимостью 62 миллиона долларов США находится за пределами МКС и собирает рентгеновские лучи, исходящие от пульсаров — вращающихся нейтронных звезд, которые излучают заряженные частицы в узких лучах, которые с одинаковой периодичностью «чиркают» по Земле. Рентгеновские лучи исходят из горячих точек на северном и южном магнитных полюсах пульсара с температурами в несколько миллионов градусов, где мощное магнитное поле отрывает заряженные частицы с поверхности и отправляет их в космос.

Протонная звезда
NICER на борту МКС.

NICER обнаруживает эти рентгеновские лучи с помощью 56 пластинок с золотым напылением, и отмечает время их прибытия с точностью до 100 наносекунд. Благодаря этой способности исследователи могут точно отслеживать горячие точки, когда нейтронная звезда вращается со скоростью до 1000 оборотов в секунду. Гравитация таких космических тел крайне велика, поэтому они искривляют пространство-время настолько сильно, что NICER также обнаруживает излучение от тех нейтронных звезд, лучи из горячих точек которых не направлены в сторону Земли. 

Общая теория относительности Эйнштейна дает возможность вычислить отношение массы звезды к радиусу через величину искривления света. Эти и другие наблюдения позволяют астрофизикам точно определить массы и радиусы таких мертвых звезд. И, в свою очередь, эти два свойства могут помочь в определении того, что происходит внутри ядер.

Глубокая темная тайна

Нейтронные звезды становятся тем сложнее, чем глубже мы пытаемся их узнать. Считается, что под тонкой атмосферой, состоящей в основном из водорода и гелия, остатки звезд имеют внешнюю кору толщиной всего в один-два сантиметра, содержащую атомные ядра и свободно перемещающиеся электроны. Исследователи полагают, что ионизированные элементы упаковываются вместе в следующем слое, создавая решетку во внутренней коре. Еще ниже давление настолько велико, что почти все протоны соединяются с электронами, превращаясь в нейтроны. То, что происходит еще глубже, в лучшем случае туманно.

Физики имеют некоторое представление о том, что там происходит, благодаря ускорителям частиц на Земле. На таких объектах, как Брукхейвенская национальная лаборатория в Аптоне и Большой адронный коллайдер CERN близ Женевы, исследователи объединяют вместе тяжелые атомы, такие как свинец и золото, для создания небольшого количества сверхплотного материала. Но эти кинетические эксперименты генерируют вспышки с температурами в миллиарды или даже триллионы градусов, в которых протоны и нейтроны превращаются в суп из составляющих их кварков и глюонов. Современные приборы мало что могут фиксировать в таких фантастических условиях.

Вполне возможно, что кварки и глюоны свободно перемещаются внутри нейтронных звезд. Или же экстремальные энергии могут привести к созданию частиц, называемых гиперонами. Подобно нейтронам, эти частицы содержат три кварка. Но в то время как нейтроны содержат самые простые и низкоэнергетические кварки, известные как верхний и нижний, в гиперионе по крайней мере один из них заменен экзотическим «странным» кварком. Другая возможность заключается в том, что центр нейтронной звезды – это конденсат Бозе-Эйнштейна, состояние материи, при котором все субатомные частицы действуют как единое квантово-механическое целое.

Протонная звезда
Предполагаемый состав нейтронных звезд.

Важно отметить, что каждая теоретическая модель напрямую зависит от колоссальной гравитации нейтронной звезды. Они имеют различные радиусы и массы, и, следовательно, различные внутренние давления. Например, нейтронная звезда с центром, состоящим из конденсата Бозе-Эйнштейна, вероятно, будет иметь меньший радиус, чем звезда, полностью состоящая из «обычных» нейтронов. А нейтронная звезда с гиперионным ядром будет иметь еще меньший радиус.

Чтобы выяснить, какая из моделей имеет право на существование (или, может быть, они все верны при различных условиях), требуются точные измерения размера и массы нейтронных звезд, но исследователи пока не смогли довести свои методы до нужного уровня, чтобы сказать, какая из возможностей наиболее вероятна. Астрономы обычно вычисляют массы, наблюдая за нейтронными звездами в парах. Когда объекты вращаются вокруг друг друга, они гравитационно влияют на компаньона, что позволяет физиками «взвесить» их. 

Массы примерно 35 нейтронных звезд были измерены таким образом, хотя погрешность доходит до одной массы Солнца, то есть до 50%. Всего лишь для десятка или около того звезд были рассчитаны радиусы, но во многих случаях современные методы не могут определить это значение с точностью выше, чем несколько километров — а ведь это погрешность до одной пятой размера этих необычных космических объектов.

Метод измерения горячих точек впервые использовался рентгеновской обсерваторией XMM-Newton Европейского космического агентства, которая была запущена в 1999 году и все еще работает. Современный NICER в четыре раза более чувствителен и имеет в сотни раз лучшее временное разрешение. 

В течение следующих двух-трех лет команда рассчитывает использовать более точные методы для определения масс и габаритов еще около полудюжины нейтронных звезд, фиксируя их радиусы с точностью до полукилометра. С такой точностью группа будет достаточно подготовлена, чтобы начать конструировать то, что известно как уравнение состояния нейтронной звезды, которое связывает ее массу с радиусом или, что эквивалентно, внутреннее давление с плотностью.

Если ученым особенно повезет и космос предоставит особенно хорошие данные, NICER поможет отбросить некоторые предварительные версии этого уравнения. Но большинство физиков считают, что сама обсерватория, скорее всего, сузит, а не полностью исключит модели того, что происходит в ядрах этих таинственных объектов.

Кропотливая работа

Первой целью NICER был J0030+0451, изолированный пульсар, который вращается примерно 200 раз в секунду и находится в 337 парсеках (1100 световых лет) от Земли, в созвездии Рыб.

Протонная звезда
Пульсар J0030+0451 с возможными горячими точками.

Две группы, одна из которых базируется в Амстердамском университете, а другая возглавляется исследователями из Мэрилендского университета, внимательно изучили 850 часов наблюдений, постоянно проверяя друг друга. Поскольку кривые блеска горячих точек очень сложны, группам потребовались суперкомпьютеры для моделирования различных конфигураций и определения того, какие из них лучше всего соответствуют данным. 

В итоге они получили схожие результаты, обнаружив, что масса J0030 в 1.3-1.4 раза больше массы Солнца, а радиус составляет примерно 13 километров. Эти результаты не являются окончательными, но они могут быть использованы для подтверждения или опровержения моделей, говорящих о внутренностях нейтронных дыр.

Большим сюрпризом для исследователей оказались форма и положения горячих точек. Канонический вид нейтронных звезд предполагает, что линии магнитного поля похожи на те, что окружают стержневой магнит, с северным и южным магнитными полюсами на противоположных концах звезды, где и расположены круглые горячие точки. В отличие от этого, моделирование голландцев на суперкомпьютере показало, что обе горячие точки J0030 находятся в его южном полушарии, и что одна из них имеет форму полумесяца. Мэрилендская команда рассчитала, что возможен сценарий с тремя горячими точками: двумя южными овальными и одним круглым вблизи вращающегося южного полюса.

Эти результаты подкрепляют предыдущие наблюдения и теории, предполагающие, что магнитные поля нейтронных звезд, которые в триллион раз сильнее, чем у Солнца, могут быть более сложными, чем обычно предполагается. Считается, что после формирования пульсары замедляют свое вращение на протяжении миллионов лет. Но если у них есть звезда-компаньон, вращающаяся вокруг них, они могут украсть материал и угловой момент у этого партнера, сильно ускорив свое вращение.

По мере того как вещество, вытянутое из компаньона, осаждается на внешнюю поверхность звезды, некоторые теоретики предполагают, что оно может воздействовать на слой подповерхностных нейтронов, создавая гигантские вихри, которые закручивают магнитное поле нейтронной звезды в странные структуры. Звезда-партнер в конечном счете может быть полностью поглощена или потерять столько массы, что стать гравитационно несвязанной и улететь, как это могло случиться с ныне одинокой J0030.

Протонная звезда
Космический каннибализм: нейтронная звезда пожирает своего компаньона.

Работа продолжается

NICER продолжает наблюдать за J0030 для дальнейшего повышения точности измерения радиуса. В то же время, команда стала анализировать данные с второй цели, чуть более тяжелого пульсара, имеющего спутника в виде белого карлика. Другие астрономы использовали наблюдения орбитального танца этой пары для определения массы пульсара, что означает, что у команды NICER есть независимое измерение, которое они могут использовать для подтверждения своих выводов.

Также команда NICER планирует исследовать по меньшей мере пару пульсаров с большой массой, включая нынешнего рекордсмена — нейтронного «гиганта» с массой около 2.14 солнечных. Это должно позволить исследователям узнать верхний предел — точку, в которой нейтронная звезда коллапсирует в черную дыру. О физике, происходящей в недрах таких пограничных звезд, у ученых вообще нет никаких представлений.

Некоторые исследователи также предположили, что NICER может найти две нейтронные звезды с одинаковой массой, но разными радиусами. Это предполагает наличие точки перехода, в которой различия в начальных условиях создают два отличающихся друг от друга ядра. Например, одно из них может содержать в основном нейтроны, а другое состоять из более экзотического материала.

Хотя NICER находится в авангарде, это не единственный инструмент, который используется для изучения внутренностей пульсаров. В 2017 году американская Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) вместе с детектором Virgo в Италии уловила сигнал от двух нейтронных звезд, слившихся воедино после длительного гравитационного танца. 

Когда объекты вращались вокруг друг друга до столкновения, они излучали гравитационные волны, которые содержали информацию о размерах и структуре этих звезд. Колоссальное гравитационное воздействие каждой звезды притягивало и деформировало ее партнера, превращая обе сферы в тела каплевидной формы. Искажения в последние моменты жизни нейтронных звезд дают физикам ключ к пониманию податливости материала внутри них.

Протонная звезда
Гравитационные волны от столкновения нейтронных звезд.

Обсерватория LIGO зафиксировала второе столкновение нейтронных звезд в апреле прошлого года, и в любое время возможно обнаружение новых таких событий. До сих пор эти два слияния лишь намекали на свойства внутренних слоев нейтронных звезд, предполагая, что они не особенно деформируемы. Но нынешнее поколение установок не может наблюдать решающие заключительные моменты, когда деформация наиболее четко отображала бы условия внутри нейтронных звезд.

Ожидается, что гравитационно-волновой детектор Kamioka в Хиде, Япония, заработает позже в этом году, а индийская Обсерватория для гравитационно-волновых наблюдений вблизи Аундха-Наганатха, Маратхвада, в 2024 году. В сочетании с LIGO и Virgo они улучшат чувствительность, потенциально даже улавливая детали моментов, ведущих к столкновениям нейтронных звезд. В 2027 году планируется запуск европейско-китайского спутника eXTP, который будет изучать как изолированные, так и двойные нейтронные звезды, чтобы помочь определить их уравнение состояния.

Сердца нейтронных звезд, вероятно, всегда будут хранить различные секреты. Но физики в ближайшем будущем, похоже, вполне могут начать понимать их внутреннее устройство. «Это давняя головоломка, которая, как вы понимаете, никогда полностью не решится», — говорит Джоселин Рид, астрофизик из Университета штата Калифорния. «Теперь мы подошли к тому моменту, когда научное сообщество сможет ответить на основные вопросы о структуре нейтронных звезд в течение этого десятилетия».

Источник: www.iguides.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.