Особенности затаенно переменных звезд


image
На этом фото с Хаббла видна RS Puppis – переменная звезда типа цефеиды. Период изменений цефеид довольно большой – к примеру, у этой звезды яркость меняется в пять раз каждые 40 дней. Она окружена плотными тёмными облаками пыли, что позволяет детально наблюдать эффект светового эха.

Быть – значит, быть значением переменной.
— Уиллард Ван Орман Куайн

Читатель спрашивает:

Посмотрев видео о переменной звезде RS Puppis, снятой телескопом им. Хаббла, я очень хотел бы узнать о том, что такое переменные звёзды.

Действительно, было такое видео, на котором была представлена звезда RS Puppis, яркость которой меняется со временем, и там было показано, как это приводит к появлению светового эха:


Выглядит это потрясающе, и я очень хочу рассказать вам об этом, но мне на ум приходят три различных способа, которыми это можно сделать, в зависимости от точки зрения, которой вы хотели бы придерживаться: исторический, научный или физический. В этом явлении очень много нюансов, поэтому давайте рассмотрим все три подхода!

image

1) Исторический. Давным-давно считалось, что звёзды — это фиксированные точки на небосводе. Иногда случалось катастрофическое событие вроде появления сверхновой, которое создавало временный яркий объект на небосводе. Но такие события были достаточно редкими, и совсем мало таких явлений можно было наблюдать невооруженным глазом на протяжении истории человечества. Хотя большинство звёзд действительно не меняют своего положения и яркости, но это верно не для всех них. В 1596 году Дэвид Фабрициус узрел на небе нечто, и решил, что это — сверхновая звезда, потому что он увидел точку на небосводе, которая ярко светила в августе и затем полностью исчезла в конце октября. Но к его удивлению точка снова появилась на небосводе в 1609 году. Никакая сверхновая не появлялась до этого дважды. То, что увидел Фабрициус, было не сверхновой, а Мирой – по сути, первой открытой переменной звездой.

image


Сначала считалось, что переменные звёзды довольно редки, потому что прошло целых два столетия, прежде чем их насчитали 10 штук. Но количество обнаруженных переменных звёзд резко возросло с появлением астрофотографии. Стало возможным точно измерять и напрямую сравнивать видимую яркость звезды в течение дней, недель, месяцев, и даже лет — как силу изменения яркости, так и период его изменения.

image

В начале 1890-х молодая женщина по имени Генриетта Льюит посещала Общество коллегиальных институтов для женщин, теперь известное, как Рэдклиффский колледж. В 1893 году ее наняли в Обсерваторию Гарварда для измерения и каталогизирования яркости звёзд, запечатлённых в коллекции фотографических пластинок обсерватории. В частности, она каталогизировала звёзды, найденные в Малом Магеллановом облаке, и за последующие двадцать лет нашла более тысячи переменных звёзд разных классов, которые она занесла в каталог.

image

Но один из классов звёзд, цефеиды, был особенно интересным, что и заметила Льюит. Когда она пронаблюдала 25 самых ярких цефеид, то увидела, что их период изменения яркости больше, чем у остальных звёзд — период, за который они достигали максимальной яркости, затем становились тусклее и снова возвращались к максимальной яркости.
е звёзды менялись в яркости примерно на одну и ту же величину (в смысле визуальный величины), но у самых ярких звёзды уходило несколько месяцев на то, чтобы пройти от яркого до тусклого состояния, и обратно до яркого. Когда средняя яркость наблюдаемых звёзд уменьшалась, уменьшался и период изменения яркости. Чем тусклее была звезда, тем быстрее менялась её яркость, вплоть до периода в один день. Фактически, она нашла хорошо наблюдаемую корреляцию между тем, насколько яркой была среда в среднем и периодом изменения её яркости.

image

Эта связь известна сегодня, как отношение периода и яркости, и это открытие привело к удивительным последствиям, которые и приводят нас ко второму способу ответа на вопрос о переменных звёздах.

image

2) Научный. Касательно цефеид, обнаруженных Льюит, можно сказать, что это были звёзды, находящиеся от нас на довольно больших расстояниях — примерно 199 000 световых лет. А физический размер объекта, в котором находились эти звёзды, составлял примерно 7 000 световых лет. Из-за этого все звёзды в Малом Магеллановом облаке находятся примерно на одном и том же расстоянии от Земли. Изменения в яркости звёзд соответствует фактической их светимости. Если есть связь между периодом пульсации звезды и её яркостью, это означает, что если вы измеряете период переменной звезды-цефеиды, вы будете знать какая у неё фактическая светимость. А если вы измерили светимость, то зная, как связана яркость и расстояние, вы можете рассчитать расстояние до неё.


image

Мы называем эти объекты «стандартами свечами» потому, что если вы знаете реальную яркость, с которой светится объект, и затем вы измеряете видимую яркость, то вы можете понять, насколько далеко объект находится от вас. Благодаря работе Генриетты Льюит, посвященной цефеидам, у нас есть стандартные свечи для измерения огромных расстояний в космосе. А благодаря Эдвину Хабблу и открытию переменных звёзд, располагающихся в спиральных туманностях, которые он наблюдал в 1920-х годах, мы смогли понять, как далеко находится эти объекты (оказавшиеся галактиками) на самом деле.

image

Существует большое количество типов переменных звёзд, которые отличаются друг от друга цветом и яркостью. В дополнение к цефеидам, обнаруженым Льюит (которых бывает 2 типа) есть звёзды с меньшей массой и меньшим периодом RR Lyrae, переменные красные гиганты (такие, как Мира), пульсирующие белые карлики и целая толпа других, некоторые из которых показаны на картинке ниже.


image

По большей части, существует хорошо опредёленная корреляция между периодами изменения этих объектов и их номинальной светимостью, что означает, что если мы находим и идентифицируем их где-нибудь, то мы сразу можем с высокой точностью узнать, как далеко находится объект. И, как считает наука, это одно из наиболее важных открытий, связанных с лестницей космических расстояний. Лучший способ измерения расстояний до звёзд — это параллакс, или изменение их позиций на небе в течение года (когда Земля вращается вокруг Солнца). Но этот способ работает только для звёзд, находящихся на расстоянии 1600 световых лет от нас. Хотя, миссия Gaia, запущенная недавно, попытается увеличить это расстояние в десять раз.

image

Но на расстоянии в 1600 световых лет от Земли есть довольно много переменных звёзд, для которых мы вели измерения и при помощи параллакса. А также есть много переменных звёзд, расстояние до которых, судя по подсчётам, составляет не менее 100 миллионов световых лет.

image


Наблюдая за тем, как меняются эти звёзды со временем, как меняется их яркость, какой у них период изменения яркости, мы относили эти звёзды к соответствующему классу переменных, и таким образом уже определили расстояния до тысяч космических объектов, находящихся за пределами нашей галактики. Значит, теперь мы знаем, как мы их открыли, мы знаем, для чего они используются, но почему же меняется их яркость? И это приводит нас к третьему варианту ответа.

image

3) Физический. Можно решить (и это будет неправильно), что ядро звезды, где происходит ядерный синтез, испытывает некие изменения, которые передаются на поверхность, что и приводит к пульсациям. Это маловероятно, потому, что время, которое тратит фотон, созданный в ядре, на достижение поверхности звезды, равно примерно 100 000 лет. За это время он испытывает триллионы соударений! Вообще говоря, скорость синтеза в ядре для всех известных типов звезд практически одинакова. И, тем не менее, яркость звёзд меняется

У большинства переменных звёзд изменения яркости объясняются тем, что происходит во внешних слоях.

image

Фотосфера звезды, слой, с которого фотоны улетают со звезды навсегда — это особое место с точки зрения физики. Для очень стабильной звезды фотосфера будет сохраняться постоянной с течением времени. Давление излучения, которое выталкивает частицы наружу, на поверхности будет полностью компенсироваться силой гравитации, которая тянет частицы в центр звезды. Солнце является близкой аппроксимацией этой модели, но даже такая скучная звезда, как Солнце, в этом смысле не совершенна.


image

Даже у Солнца внешние слои испытывают конвекцию — подъём и спуск материи. В подобных системах равновесие никогда не достигается, и внешние слои подвержены циклическому процессу, в котором:

  • слишком большое давление вынуждает звезду расширяться
  • когда она расширяется, и верхний слой удаляется от центра звезды, гравитация падает, но давление излучения падает быстрее
  • в результате чего ускорение внешнего слоя замедляется, проходит точку равновесия и достигает состояния, когда гравитация оказывается сильнее давления излучения
  • затем он начинает с ускорением двигаться внутрь, из-за чего звезда сжимается
  • он снова проходит через точку равновесия в другую сторону, когда радиационное давление повышается до точки, где оно начинает снова с силой толкать слои наружу и цикл повторяется.

Интенсивность нашего Солнца колеблется на уровне 0,1%.

image

Но у звёзд, которые мы называем переменными, яркость и радиус могут меняться на огромное значение — на 90% или даже больше! У таких звёзд, как Мира, фактическая светимость меняется в течение одного цикла в тысячу раз, в то время как у обычных цефеид радиус меняется на миллионы километров, а температуры на тысячи градусов.


image

Эта тема — кладезь интересной информации, ведь любители и профессионалы проводят целые жизни, изучая подобные объекты. Я дал вам вводную на тему переменных звёзд, и теперь мы знаем, как их открыли, для чего они используются, и почему они являются переменными. Для дальнейшего изучения я рекомендую вам AAVSO (American Association for Variable Star Observers, Американская ассоциация наблюдателей за переменными звёздами). Там найдется интересная информация как для исследователей, так и для простых любителей.

image

Источник: habr.com

Затменными переменными называются такие неразрешимые в телескопы тесные пары звезд, видимая звездная величина которых меняется вследствие периодически наступающих для земного наблюдателя затмений одного компонента системы другим. В этом случае звезда с большей светимостью называется главной, а с меньшей — спутником. Типичными примерами звезд этого типа являются звезды Алголь b Персея) и b Лиры. Вследствие регулярно происходящих затмений главной звезды спутником, а также спутника главной звездой суммарная видимая звездная величина затменных переменных звезд меняется периодически.


График, изображающий изменение потока излучения звезды со временем, называется кривой блеска. Момент времени, в который звезда имеет наименьшую видимую звездную величину, называется эпохой максимума, а наибольшую — эпохой минимума. Разность звездных величин в минимуме и максимуме называется амплитудой, а промежуток времени между двумя последовательными максимумами или минимумами — периодом переменности. У Алголя, например, период переменности равен 2d 20h 49m, а у b Лиры — 12d 21h 48m.

По характеру кривой блеска затменной переменной звезды можно найти элементы орбиты одной звезды относительно другой, относительные размеры компонентов, а в некоторых случаях даже получить представление об их форме.  На всех кривых заметны два минимума: глубокий (главный, соответствующий затмению главной звезда спутником), и слабый (вторичный), возникающий, когда главная звезда затмевает спутник.

На основании детального изучения кривых блеска можно получить следующие данные о компонентах затменных переменных звезд:

1.
рактер затмений (частное, полное или центральное) определяется наклонением i и размерами звезд. Когда i = 90ё, затмение центральное, как у b Лиры. В тех случаях, когда диск одной звезды полностью перекрывается диском другой, соответствующие области кривой блеска имеют характерные плоские участки (как у IH Кассиопеи), что говорит о постоянстве общего потока излучения системы в течение некоторого времени, пока меньшая звезда проходит перед или за диском большей. В случае только частных затмений минимумы острые (как у RX Геркулеса или b Персея).

2. На основании продолжительности минимумов находят радиусы компонентов R1 и R2 , выраженные в долях большой полуоси орбиты, так как продолжительность затмения пропорциональна диаметрам звезд.

3. Если затмение полное, то по отношению глубин минимумов можно найти отношение светимостей, а при известных радиусах, — также и отношение эффективных температур компонентов.

4. Отношение промежутков времени от середины главного минимума до середины вторичного минимума и от вторичного минимума до следующего главного минимума зависит от эксцентриситета орбиты е и долготы периастра w. Точнее, фаза наступления вторичного минимума зависит от произведения е cos w. Если вторичный минимум лежит посередине между двумя главными минимумами (как у RX Геркулеса), то орбита симметрична относительно луча зрения и, в частности, может быть круговой. Асимметрия положения вторичного минимума позволяет найти произведение е cos w.

5. Наклон кривой блеска, иногда наблюдаемый между минимумами, позволяет количественно оценить эффект отражения одной звездой излучения другой, как, например, у b Персея.

6. Плавное изменение кривой блеска, как, например, у b Лиры, говорит об эллипсоидальности звезд, вызванной приливным воздействием очень близких компонентов двойных звезд. К таким системам относятся звезды типа b Лиры и W Большой Медведицы . В этом случае по форме кривой блеска можно установить форму звезд.

7. Детальный ход кривой блеска в минимумах иногда позволяет судить о законе потемнения диска звезды к краю. Выявить этот эффект, как правило, очень трудно. Однако, в отличие от Солнца, это единственный имеющийся в настоящее время метод изучения распределения яркости по дискам звезд.

В итоге на основании вида кривой блеска затменной переменной звезды в принципе можно определить следующие элементы и характеристики системы:

i — наклонение орбиты;

Р — период;

Т — эпоха главного минимума;

е — эксцентриситет орбиты; 

w — долгота периастра;

R1 и R2 — радиусы компонентов, выраженные в долях большой полуоси; для звезд типа b Лиры — эксцентриситеты эллипсоидов, представляющих форму звезд;

L1/L2 — отношение светимостей компонентов или их температур T1/T2 .

Для некоторых особых типов звезд (например, Вольфа — Райе), если они затменные, удается найти ряд дополнительных характеристик.

Задача определения всех этих величин весьма сложна и далеко не всегда может быть решена до конца. Обычно по общему виду кривой блеска сначала грубо определяют тип и поименную ориентацию орбиты, после чего точно вычисляются элементы орбиты. В настоящее время известно свыше 4000 затменных переменных звезд различных типов. Минимальный известный период — менее часа, наибольший — 57 лет.

Информация о затменных звездах становится более полной и надежной при дополнении фотометрических наблюдений спектральными.

Источник: www.o8ode.ru

Затменно-переменные звезды

Угасания звезды Алголь (Ветта Персея) были замечены еще в древности, а объяснены в 1783 году Джоном Гудрайком. Примерно каждые 69 часов звезда на 10 часов меркнет — это видно невооруженным глазом. Поэтому Алголь — в таблице переменных звезд в Практикуме № 40. За «подмигиванием» звезды скрывается тесная пара «вальсирующих» Алголя, в которой одна периодически заслоняет другую. Конечно, мы наблюдаем затмения в этой паре только потому, что обе звезды и Земля находятся примерно на одной прямой (отклонение меньше 8°). И это значит, что вообще-то в паре Алголя затмения не полные: как Луна на нашем небе иногда частично заслоняет Солнце, так и здесь одна звезда частично заслоняет другую — частные затмения. При этом общий свет двух звезд пары гаснет на 1,З m. Если бы плоскость орбиты звезд наклонилась к линии «звезда-Земля» на 27°, то затмения нами не наблюдались бы, и Алголь не считался бы переменной звездой. А если бы угол сократился до 3°, затмения стали бы полными, и тогда мы увидели бы гораздо более глубокие угасания Алголя — более чем на З m (т. е. на полчаса Алголь становился бы не виден глазу). По старинным летописям астрономы выяснили, что такое бывало. Как медленно покачивается из стороны в сторону ось быстро вращающегося волчка, так и плоскость орбиты Алголя поворачивается с периодом около 20 ООО лет. В начале нашей эры Алголь не был переменной звездой. Вот почему его «подмигивания», хорошо заметные глазу, не упоминают древние астрономы Гиппарх и Птолемей, хотя они изучили небо при составлении своих звездных каталогов. С 161 по 1482 год нашей эры затмения были, как и сейчас, частичными. А в 1482-1768 годах — полными. Что и привлекло внимание Джона Гудрайка и других астрономов XVIII века. Частичные затмения продолжатся до 3044 года.

Пульсирующие переменные звезды

Звезда б Цефея и ей подобные пульсируют: то раздуваются и, соответственно, охлаждаются и тускнеют, то сжимаются, нагреваются и становятся ярче. Кстати, это напоминает работу автомобильного двигателя: недра звезды выступают в роли горючего, а оболочка — в роли поршня. Горючее превращается в газ, давление которого толкает поршень. Как и в двигателе, процесс имеет несколько этапов. В общем случае энергия звезды, рвущаяся к поверхности из глубин, в неком слое на промежуточной глубине расходуется на распад молекул на атомы или на ионизацию вещества — то есть накапливается в этом слое и до поверхности не доходит. Когда все вещество в упомянутом слое превратится в атомы или ионизируется, энергия глубин больше не задерживается в нем, прорывается к внешним слоям звезды и идет на ее расширение. Расширение оболочки охлаждает и особый слой, где запасалась энергия. Фактически краткое время, пока звезда имеет максимальный размер и яркость, она выпускает в космическое пространство энергию, запасенную в этом особом слое. Он остывает: атомы соединяются в молекулы, или ионы — в атомы. Остывшая звезда сжимается под воздействием притяжения собственных частиц, и цикл повторяется. Помним, что любая звезда находится в равновесии двух сил: взаимного притяжения собственных частиц и давления горячего вещества из глубин. Пульсации — по сути, борьба этих сил, идущая с переменным успехом.

Ближайшая к Земле цефеида, звезда типа Цефея — Полярная звезда. К тому же она является тройной системой. Близкая звезда-спутник летает вокруг центральной звезды с периодом около 30 лет. Но, кроме одного наблюдения, выполненного телескопом «Хаббл», Полярная и ее звезда-спутник всегда наблюдались совместно, а орбитальные характеристики вычислялись по изменениям их общей яркости. Однако все осложняется тем, что Полярная меняет яркость из-за пульсаций, да еще и имеет некие странные долгопериодические изменения яркости: за XX век амплитуда ее переменности уменьшилась с 8 % почти до нуля (в XXI веке Полярная почти не пульсирует!) при том, что в среднем за последний век она стала ярче на 15 %. Выходит, главные открытия по физике Полярной звезды и всех цефеид еще впереди. И хотя Полярная не отмечена в Практикуме № 40, но поглядывайте на нее — вдруг явно вспыхнет или погаснет у вас на глазах. Кстати, как Полярная, многие пульсирующие звезды с гигантскими оболочками пульсируют неправильно. Отсюда — большое разнообразие непериодических и полупериодических гигантов.

Звезды производят алмазы. И об их добыче уже можно задуматься, потому что эти драгоценности интенсивно рассеиваются звездами в пространство вместе с остальной пылью. Особенно интенсивно пыль, газ, включая молекулы и органические вещества, теряют сильно раздувшиеся звезды-гиганты и сверхгиганты. На периферии их прохладных оболочек притяжение звезды столь мало, что частицы вещества запросто покидают звезду Напоминаем, что такая звезда в итоге должна сбросить свою оболочку в виде планетарной туманности и стать белым карликом. Поэтому звезды на грани такого превращения исключительно интересны: они особенно сильно пульсируют и меняют яркость с большой амплитудой; являются самыми красными, даже невероятно красно-бордовыми из-за сильного поглощения света запыленной оболочкой; в спектре демонстрируют удивительные вещества оболочки, например, фуллерены, кристаллы из 60 и более атомов углерода; и обречены пребывать в этом состоянии столь недолго, что можно дождаться радикальных изменений у нас на глазах. Для десятка таких звезд астрономы ждут вспышки и сброса оболочки уже в этом столетии!

Звезда Омикрон Кита каждые 332 дня появляется на небе среди ярчайших звезд (звездная величина 2 m), а затем исчезает для глаза (10 m, в телескоп «Галилей-200» видна на пределе). Астроном Давид Фабрициус в 1596 году назвал ее Mira, что по-латински значит «удивительная». Астрономы удивлялись ей до XXI века! Для объяснения переменности Миры и ей подобных звезд (они называются мириды), вроде бы не годились оба механизма: затмевающий спутник у нее не наблюдался, а чтобы объяснить столь невиданные перепады яркости, нужны пульсации в сотни раз. Представьте, что Солнце каждый год то раздувалось бы на половину Солнечной системы, то сжималось бы до своего нынешнего размера. Звезде просто неоткуда взять столько энергии, да и вряд ли она пережила бы такие пульсации!

Ситуация стала проясняться, когда обнаружился очень тусклый спутник Миры — белый карлик. Но он расположен так далеко от основной звезды, что напрямую не может влиять на нее. В 2007 году ультрафиолетовый телескоп GALEX обнаружил, что Мира летит в пространстве с огромной скоростью более 100 км/с и оставляет позади себя исполинский хвост газа и пыли длиной в 13 световых лет. Этот хвост дотягивается не только до спутника звезды, но и до соседних звезд. Пришлось пересмотреть и потери вещества: Мира каждый год теряет массу, равную массе Луны. В этом потоке много черной сажи — углерода и его соединений. Ну в точности — дымящий паровоз на полном ходу! А звезда-спутник Миры, «вагончик паровоза», собирает часть этой копоти на себя. Настолько много, что слой копоти на «вагончике» во много раз превышает вес самого вагончика и, кстати, делает его еще менее заметным: искали его 200 лет. В результате, спутник Миры, летая вокруг нее, управляет потоком ее вещества: пропускает или задерживает и, таким образом, проявляет или заволакивает Миру. Когда проявляет — ее звездная величина взлетает до 2m. Кстати, сажа, графит и алмаз — это все один и тот же углерод. Алмазы, кристаллизующиеся в ядре Миры, можно поискать в дыму этого «космического паровоза». Похожую роль выполняет и невидимый пока спутник звезды R Скульптора (рис. 5): теряемое звездой вещество он превращает в видимую нами спираль.

Световое эхо

RS Кормы (RS Pup) — цефеида, меняющая яркость в 5 раз с периодом 41,4 дня. При взгляде на ее окрестности кажется, что от нее разлетаются облака газа (рис. 6). На самом деле в разных фазах пульсации звезды ею по-разному подсвечиваются окружающие ее неподвижные облака пыли. Они состоят из нескольких слоев и поэтому выглядят как светящиеся кольца вокруг звезды. Суть возникающего здесь эффекта светового эха состоит в том, что наблюдатель видит свет звезды, пришедший к нему разными путями: напрямую и отразившись от разных участков пылевого облака. Для большого облака (как в случае RS Кормы) роль играет скорость света: свет, отраженный близкой к звезде частью облака, приходит к нам заметно позже, чем напрямую. А свет, отраженный далекой частью облака, приходит еще позже. Из-за этого далекие от звезды части облака «загораются» для нас позже, и, таким образом, возникает видимость распространяющихся светлых колец. Особенно впечатляюще световое эхо звезды V838 Единорога.

Недавно астрономы воспользовались световым эхом для того, чтобы в прямом смысле слова увидеть далекое прошлое. Вспышку сверхновой SN1572 увидели в 1572 году — это свет пришел по прямой. А в 2008 году очень слабое отражение той вспышки было замечено как световое эхо на облаках Млечного Пути. Вспышку сверхновой Кассиопея А около 1660 года вообще на Земле не заметили из-за заслонивших ее космических облаков. Но световое эхо, отражение той вспышки на других космических облаках увидели в 2010 году.

Эруптивные переменные звезды

Редкие сильные вспышки присущи разным звездам. Например, перетекание вещества с обычной звезды на белый карлик может вызывать повторяющиеся мощные взрывы, которые по традиции называются новыми звездами. Вспыхивают молодые звезды типа Т Тельца. Возможны и вспышки при разрушении планеты около молодой звезды.

Вращающиеся переменные звезды

В 1984 году космический телескоп IRAS обнаружил у звезды Веги пылевой диск. Такие характерны для очень юных звезд, возрастом менее 100 млн лет, вокруг которых из газопылевого диска формируются планеты. Вега старше — около 450 млн лет. В поисках разгадки ученые обнаружили, что Вега очень быстро вращается: на ее экваторе скорость 280 км/с. Для сравнения — скорость вращения Солнца в 140 раз меньше — всего 2 км/с. При такой скорости Вега — вовсе не шар, а сильно сплющенный эллипсоид, поэтому экватор Веги заметно дальше от ее центра и потому холоднее полюсов. Температура связана с яркостью. Поэтому экватор Веги — темная полоса, а полюса — светлые шапки.
Мы все время видели один из полюсов и не подозревали, что волчок-то полосатый. Если однажды Вега повернется к нам так, что будет попеременно наблюдаться то полюсами, то боками, она станет переменной звездой.

Световое эхо — эффект, возникающий в астрономии, когда свет от вспышки светила приходит к наблюдателю, отражаясь от «экранов» вдали от светила, позже, чем свет, пришедший по прямой. При этом в некоторых случаях возникает видимость удаления отражающего свет «экрана» от светила-источника со скоростью выше скорости света.

Кроме того, скорость вращения Веги на экваторе равна скорости отрыва вещества от звезды центробежными силами. Иногда сгустки вещества действительно отрываются от Веги и присоединяются к окружающему ее диску. Поэтому, хотя звездный ветер и сдувает вещество диска в космос, но диск постоянно пополняется новым веществом от звезды. Конечно, диск около звезды должен вращаться, иначе он упадет на звезду. Из-за вращения разные части диска в разное время слегка заслоняют нам саму Вегу. Так возникают небольшие колебания ее яркости, обнаруженные недавно.

Газопылевые диски вокруг звезд иногда играют столь важную роль, что не ясно, к какой категории отнести некоторые переменные звезды.

Источник: innotechnews.com

Затменно-переменные звёзды

затменно-переменные звёзды

Затменно-переменные звёзды — тесные пары звёзд, которые нельзя разделить даже в самые мощные телескопы, видимая звёздная величина меняется из-за периодически наступающих для наблюдателя с Земли затмений одного компонента системы другим. Звезда с большей светимостью — главная, с меньшей — спутник. Самыми популярными примерами являются: β Персея (Алголь) и β Лиры.

Из-за перекрытия одной звезды другой суммарная звёздная величина изменяется периодически.

Кривая блеска — график, который изображает изменение потока излучения звезды в зависимости от времени. Когда звезда имеет максимальную яркость, то это эпоха максимума, минимальную (или наибольшую звёздную величину) — эпохой минимума. Разность между максимумом и минимумом звёздных величин называется амплитуда, а временной интервал между двумя максимумами (минимумами) — периодом переменности.

Исходя из данных графика можно определить относительные размеры компонентов, получить общее представление об их форме.  Минимальные значение (впадины) на графике могут отличаться по значению звёздной величины в зависимости от того, какая из звёзд перекрыла своего компонента: главная спутника или спутник главную.

На сегодня известно около 4000 затменных звёзд разных типов. Минимальный известный астрономами период обращения звёзд — чуть меньше часа, максимальный — 57 лет.

Физические переменные звёзды

Цефеиды

Цефеиды — пульсирующие гиганты спектрального класса F и G, которые получили своё название в честь звезды δ (дельта) Цефея. Период пульсации колеблется в диапазоне от 1,5 до 50 суток. Амплитуда (разница между максимумом и минимумом) блеска цефеид может достигать 1,5m. Типичным представителем цефеид является Полярная звезда.

При изменении блеска изменяются температура фотосферы, показатели цвета, радиус фотосферы. Пульсация звезды происходит когда непрозрачность наружных слоёв звезды задерживает некоторую часть излучения внутренних слоёв. Это связано с веществом гелий, который вначале ионизируется, а затем охлаждается и рекомбинируется.

В нашей галактике Млечный Путь на сегодня насчитывается больше 700 цефеид.

В свою очередь цефеиды делятся ещё на 3 группы:

  1. Дельта цефеиды (Cδ) — классические цефеиды.
  2. Цефеиды типа W Девы (CW) — расположены не в плоскости галактики. Как правило встречаются в шаровых звёздных скоплениях. Интересно то, что максимальной температуры они достигают в промежутках между максимумом и минимумом светимости.
  3. Дзета цефеиды (Cζ) — малоамплитудные цефеиды. Обладают симметричными кривыми блеска.

Звёзды типа RR Лиры

В отдельный тип относятся звёзды типа RR Лиры. Это гиганты спектрального класса A. Период переменности для этих звёзд 0,2 — 1,2 суток. Они очень быстро меняют блеск, при этом амплитуда достигает одной звёздной величины. С изменением блеска изменяется показатель цвета, что связано с изменением температуры фотосферы. При максимуме звезда светлеет (белеет), т.е. становится горячее. Также изменяется радиус звезды (лучевые скорости).

Подавляющее большинство звёзд этого типа сосредоточено в шаровых звёздных скоплениях. Ниже на диаграмме Герцшпрунга-Рассела (спектр-светимость) показано примерное расположение цефеид и звёзд типа RR Лиры:

Мириды

Мириды по-другому называют долгопериодическими переменными звёздами. Это звёзды типа ω (омега) Кита. Амплитуда изменения блеска достигает 10-й (!) звёздной величины. Период переменности сильно разнится и лежит в интервале 90 — 730 суток.

К миридам относятся сверхгиганты спектрального класса M (и дополнительных S и N — ещё более холодных).

Переменность блеска возникает из-за колебаний температуры. К миридам относятся звёзды, у которых в спектрах появляются эмиссионные линии.

Неправильные переменные

Это звёзды, у которых происходит непредсказуемое изменение блеска. Их сложно наблюдать и приходится затрачивать больше времени на определение их характеристик. Представителем это типа звёзд является μ (мю) Цефея.

Амплитуда изменения блеска не превышает одну звёздную величину. Моменты максимумов или минимумов нельзя определить по формулам, или посчитать их периодичность. Кривая изменения блеска  может иметь период до 4500 суток. В книге по астрономии нашел график звезды μ Цефея, яркость которого вычислялась с 1916 по 1928 года:

кривая блеска мю Цефея

Если получается определить среднее значение цикла и наблюдается некоторая периодичность, их называют полуправильными, в ином случае — неправильными.

Эруптивные переменные

Переменная карликовая звезда, которая проявляет свою переменность в виде повторяющихся вспышек, объясняющихся различного рода выбросами вещества (эрупций) называется эруптивной переменной. Эруптивные звёзды могут быть как молодыми, так и старыми.

Молодые звёзды

Звёзды, которые не завершили процесс гравитационного сжатия называются молодыми. Например, T Тельца. К молодым звёздам относятся карлики спектральных классов F и G с эмиссионными линиями в спектре. Много молодых звёзд можно обнаружить в туманности Ориона (в созвездии Ориона), где идёт процесс активного звёздообразования. Установить закономерность изменения таких звёзд невозможно. Амплитуда изменения блеска может достигать 3m.

Хаотическую переменность объясняют тем, что вокруг молодых звёзд наблюдаются небольшие яркие туманности, что говорит о существовании у них обширных газовых оболочек.

Отдельно выделяют вспыхивающие звёзды типа UV Кита. Это карлики спектральных классов K и M. Они отличаются очень быстрым возрастанием светимости во время вспышек. Менее чем за одну минуту поток излучения может увеличиться в несколько раз. Однако, есть большая группа вспыхивающих звёзд, у которых вспышки длятся продолжительное время, превышающее несколько минут. В скоплении Плеяды все звёзды относятся к таким звёздам.

На сегодня обнаружено всего около 80 вспыхивающих звёзд, имеющих небольшую светимость и их можно наблюдать на небольшом удалении от Солнца.


В общем-то и всё, что вам необходимо знать и понимать о переменных звёздах. И теперь, встречая непонятные названия или обозначения типа переменной звезды, вы всегда сможете обратиться к этой статье, чтобы узнать что есть что.

Спасибо что уделили своё время на чтение этой важной темы. Если есть вопросы, не стесняйтесь, пишите в комментариях, будем вместе разбираться.

Источник: 2i.by


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.