Новые звезды астрономия


Спустя сотни лет в записях китайских и арабских астрономов от 1054 года также встречаются упоминания о появлении яркой звезды на небосводе, свет которой и днем и ночью в течение трех недель удивлял наблюдателей.

Но древние люди, наблюдая за ярким свечением, даже предположить не могли, что яркая вспышка на небе – это не рождение новой звезды, а смерть старого, отжившего свой век, небесного тела, в котором прекратились термоядерные реакции и под влиянием собственных гравитационных сил произошел большой взрыв, который был виден за десятки световых лет. Для систем,находящихся поблизости, это катастрофа, несущая гибель в радиусе 50 световых лет. Ведь энергия взрыва достигает 1046 Дж, а температура сверхновых звезд – 100 миллиардов градусов!

Отличия новой и сверхновой

Древние наблюдатели не задумывались о том, что яркое небесное тело на небосклоне может быть итогом разных процессов. Священный трепет и невозможность заметить разницу без специального оборудования не позволяли постичь это знание. И лишь с появлением телескопов различия были обнаружены. Оказалось, что то, что мы называем новой или сверхновой звездой – это не сама звезда, а всего лишь ее взрыв.


И хотя названия похожи, процессы, происходящие при этих астрономических явлениях, имеют довольно значительные отличия.

Чтобы лучше понять, что же происходит на бескрайних просторах Вселенной, вспомним начала астрономии по учебнику «Астрономия. 10-11 классы» под редакцией Воронцова-Вельяминова.

Вспышка сверхновой звезды

Во время жизни огненного светила происходит непримиримая борьба между разнонаправленными силами. К центру звездной массы сжимает звезду изо всех сил гравитация, стараясь превратить огненный огромный шар в футбольный мячик. Термоядерные реакции, кипящие в толще звездных масс и на поверхности, стараются разорвать светило на мелкие кусочки.

В толще юной звезды запасы водорода огромны, и благодаря постоянно протекающим реакциям образования гелия из атомов водорода, силы гравитации и термоядерных реакций находятся в относительном равновесии.

Но ничто не вечно, и за пару-тройку миллиардов лет запасы водорода истощаются и некогда активная звезда стареет. Ядро становится комком раскаленного гелия, по краям которого выгорает водород. В предсмертных конвульсиях догорают последние запасы водорода и вот уже небесное светило не в силах противостоять собственной гравитации.


Звезда сжимается и уменьшается в несколько сотен тысяч раз. И единовременно практически весь запас звездной энергии высвобождается наружу. Последний вздох умирающей звезды – яркая вспышка взрыва , что в летописях и трактатах наблюдатели-астрономы описывают как рождение сверхновой.

Взрыв неимоверной мощи по яркости превосходит светимость целой галактики, а тяжелые элементы космический ветер разносит по межзвездному пространству. Из остатков звезды образуются новые планеты в звездных системах, расположенных в сотнях световых лет от места, где произошла космическая трагедия.

Железо, алюминий и другие металлы на нашей планете – и есть остатки некогда погибшей сверхновой звезды. После взрыва звезда превращается в нейтронную звезду или черную дыру, в зависимости от ее первоначальной массы. Процессы, происходящие на поверхности звезды, описаны на странице 168 «Астрономия. 10-11 классы» под редакцией Воронцова-Вельяминова.

В зависимости от типа погибшей звезды выделяют:

  • сверхновые I типа, когда взрыв происходит с белым карликом массой до 1.4 солнечной;
  • сверхновые II типа с исходной массивной звездой в 8-15 раз больше Солнца.

При взрыве сверхновой звезда погибает навсегда, превращаясь либо в черную дыру, либо в нейтронную звезду.

Взрыв новой звезды

Взрыв новой – зрелище не менее впечатляющее (ведь светимость ничем не примечательного небесного тела увеличивается от 50 тысяч до 100 тысяч раз), но более частое.
ычно это происходит в системе из двух звезд, в которой одна планета значительно старше и в своем возрасте находится на главной последовательности или перешла в стадию красного гиганта и уже успела заполнить свою полость Роша, а вторая звезда – белый карлик. В результате тесного взаимодействия на белый карлик от гигантской соседки через окрестности точки Лагранжа L1 перетекает газ, содержащий до 90% водорода.

Изображение с сайта NASA

Полученное карликом вещество формирует вокруг меньшей звезды аккреционный диск. Скорость аккреции на белый карлик – постоянная величина, и, зная параметры звезды-компаньона и отношение масс звёзд-компонентов двойной системы, это значение можно рассчитать.

Но жадность еще никого до добра не доводила, и когда водорода вокруг белого карлика становится в избытке, происходит взрыв невероятной силы, а если масса белого карлика достигает 1.4 солнечной, происходит необратимый взрыв сверхновой.

Если подвести итог сказанному выше, новой звездой называют взрыв в результате термоядерных реакций на поверхности небольшой плотной звезды. А в результате взрыва сверхновой происходит сжатие ядра огромной звезды, по своей массе в десятки раз больше чем Солнце, с полным уничтожением окружающих звезду слоев.

И, как иногда шутят астрономы, «Мне не дано знать, был ли распят Христос за меня, но я точно уверен, что мое тело создано из остатков сотен звезд».


Известные в истории сверхновые

Крабовидная туманность, которую с помощью космических телескопов мы можем наблюдать на потрясающих воображение снимках космоса, и есть та самая таинственная сверхновая, которую описывали наблюдатели в арабских странах и Китае в 1054 году.

Но такое везение выпало не только на долю древних астрономов.

В феврале 1987 года астрономы зафиксировали яркую вспышку в Большом Магеллановом Облаке – галактике, расположенной всего в 168 тысячах световых лет от Солнечной системы. Поскольку это была первая сверхновая, которую зафиксировали в 1987 году, она получила название – SN 1987A.

Любителям астрономии в южном полушарии повезло. Несколько недель яркое небесное тело с блеском 4-звездной величины было доступно для наблюдения невооруженным глазом.

Это была первая сверхновая на таком близком расстоянии, которая взорвалась после изобретения телескопа. И благодаря современному оборудованию ученые смогли изучить фотометрические и спектральные характеристики, и вот уже более тридцати лет астрономы наблюдают за превращением сверхновой в расширяющуюся газовую туманность.

Рождение сверхновой звезды

Современные ученые официально предсказывают, что в 2022 году невооруженным взглядом астрономы Земли смогут наблюдать за ярчайшим взрывом сверхновой. На расстоянии 1800 световых лет от нашей голубой планеты, в созвездии Лебедя, катастрофа настигнет тесную двойную систему KIC 9832227.

Пожалуй, это будет первый в истории эпизод, когда ученые-астрономы будут наблюдать, прильнув к окулярам телескопов, за катастрофой во всеоружии, однако не в силах ее предупредить. Яркая вспышка сверхновой будет видна на небе в созвездии Лебедя и Северного креста.

Методические советы


Воспользуйтесь интерактивным приложением для атласа по астрономии, чтобы закрепить теорию на практике и с пользой провести остаток урока.

#ADVERTISING_INSERT#

Источник: rosuchebnik.ru

Алексей Левин
«Наука из первых рук» №2(82), 2019

«Ведь, если звезды зажигают — значит — это кому-нибудь нужно?» Этот вопрос с точки зрения астрономии допускает двойное толкование, о котором юный Маяковский, конечно, не думал. Под зажиганием можно понимать как рождение звезды, так и практически мгновенное (за месяцы, дни или даже секунды) увеличение ее яркости — подчас на много порядков. Такие вспышки могут закончиться гибелью звезды, но могут и неоднократно повторяться без ее разрушения. Эти внезапно вспыхивающие звезды называют «новыми».

Термином «новая звезда» наука обязана великому датчанину Тихо Браге, астроному и астрологу Возрождения. 11 ноября 1572 г.
 увидел в созвездии Кассиопеи внезапно вспыхнувшую звезду и долго следил за изменением ее блеска. Звезду заметили, и даже раньше, многие другие европейские астрономы. Но только Браге детально описал свои наблюдения в монографии De Nova Stella («О новой звезде») (1573), первом астрономическом труде на эту тему, который принес его автору европейскую известность. В декабре 2008 г. международная группа астрофизиков подтвердила, что Браге наблюдал сверхновую типа Ia, о чем еще в 1945 г. догадался работавший в США немецкий астроном Вальтер Бааде.

К концу первой четверти прошлого века астрономы выяснили, что новые звезды зажигаются и во Млечном Пути, и в соседних галактиках, расстояния до которых были приблизительно известны. Результаты фотометрических измерений показали, что абсолютная яркость (суммарная мощность излучения) новых звезд различается как минимум на три порядка. В 1925 г. шведский астроном Кнут Лундмарк предложил выделить звезды с максимальной светимостью в группу новых высшего класса, двумя годами позже Бааде назвал их «главными новыми», но эти термины не прижились.

В начале 30-х гг. переселившийся в США из Швейцарии и мигрировавший из физики в астрономию Фриц Цвикки в лекциях для аспирантов Калтеха стал называть такие вспышки super-novae (сверхновыми). Термин имел успех, лишь лишился дефиса. Дальнейшая классификация новых звезд пришлась на вторую половину прошлого века. Сегодня эта группа включает несколько семейств: карликовые, обычные (классические), симбиотические, повторные, сверхновые различных типов и даже гиперновые. По всей вероятности, и эта классификация неокончательная.

Как зажигаются звезды


Судьба одиночного светила зависит от его начальной массы. Звезды образуются в результате гравитационного коллапса газовых облаков, состоящих в основном из молекулярного водорода и гелия (один атом He на 12 атомов Н2), следовых количеств более тяжелых элементов и твердых пылевых частиц. Коллапс завершается рождением протозвезды, которая имеет шанс превратиться в полноправное светило. Для этого в ее ядре должно начаться устойчивое термоядерное горение водорода, способное полностью компенсировать потери энергии, уносимой в космос излучением звезды (гелий в этом процессе не участвует, поскольку для его поджога требуются куда большие температуры). Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн К. Согласно модельным вычислениям, для достижения этого порога масса протозвезды должна превысить 0,075 массы Солнца.

Существуют и «недоразвившиеся» светила, возникшие из протозвезд с массой от 0,07 до 0,075 массы Солнца, их называют коричневыми карликами.
к это нередко случается в астрономии, они были открыты «на кончике пера»: в 1962 г. их существование предсказал Шив Кумар, двадцатитрехлетний американский астроном индийского происхождения, только что защитивший докторскую диссертацию в Мичиганском университете. Первый коричневый карлик был обнаружен спустя треть столетия, в 1995 г. Считается, что общая масса коричневых карликов составляет десятую часть от массы всех звезд нашей Галактики.

В ядрах коричневых карликов идут реакции синтеза гелия из водорода, но их интенсивность очень низка, и выделившаяся энергия покрывает не более половины потерь на излучение. Поэтому коричневый карлик охлаждается, несмотря на тлеющую в его ядре водородную печь, сохраняющую активность от одного до десяти миллиардов лет. Затем синтез гелия прекращается, хотя в ядре и остается немало несожженного водорода. Наблюдать коричневые карлики сложно из-за их малой яркости. Завершая свою жизнь постепенным остыванием, коричневые карлики никогда не взрываются.

Начальные массы настоящих звезд лежат в диапазоне от 0,075 до двух-трех сотен масс Солнца. Самые легкие (с массами не выше половины солнечной) относятся к семейству красных карликов, самые массивные — голубых сверхгигантов. Все они до конца сжигают свои водородные ядра, после чего теряют стабильность и претерпевают различные изменения. Для достаточно массивных (но не самых!) звезд все заканчивается взрывом. Продолжительность нормальной жизни самых легких красных карликов исчисляется триллионами лет, голубых сверхгигантов — миллионами. Таким образом, разброс начальных масс составляет четыре порядка, зато разброс возрастов — целых шесть.


Но начальная масса определяет эволюцию лишь тех звезд, которые не имеют близких соседей. Однако примерно половина светил не существуют, как Британия былых времен, in splendid isolation: звезды любят объединяться в пары, связанные взаимным притяжением. В таких системах возможен, и часто происходит, перенос (или, если угодно, «перетек») вещества с одной звезды на другую. Эти процессы имеют прямое отношение ко вспышкам новых звезд различных типов.

«Замученной звезды молочно-белый свет»

Чтобы закончить жизнь по взрывному сценарию, новорожденная звезда должна тянуть как минимум на восемь солнечных масс. Однако в бинарных системах взрываются звезды и с весьма скромной начальной массой, с которых мы и начнем.

Звезды с массами до половины солнечной (красные карлики) синтезируют в своих ядрах гелий из водорода и на этом успокаиваются. Светила потяжелее ведут себя гораздо интересней. Когда в центре такой звезды образуется гелиевое ядро, где горение уже не идет, оно начинает сжиматься под действием тяготения.
и сжатии температура ядра возрастает, и прилегающий слой водорода нагревается до порога, за которым начинаются термоядерные реакции. Поскольку тепло перетекает из этого слоя к поверхности звезды, ее атмосфера раздувается настолько, что звезда разбухает в десятки и сотни раз. В процессе расширения звездная оболочка постепенно остывает, максимум ее оптического спектра смещается в сторону длинных волн, и звезда превращается в красный гигант. Такая судьба ожидает и наше Солнце.

Судьба звездного ядра также зависит от начальной массы звезды. Если она ненамного больше половины солнечной, ядро остается гелиевым. До поры до времени оно продолжает сжиматься, но не нагревается до температур порядка 100 млн градусов, когда начинаются новые термоядерные превращения. Ядра более массивных звезд нагреваются так, что становятся способны производить углерод и кислород. Если же начальная масса звезды в несколько (но не более, чем в восемь) раз превосходит солнечную, то в ее ядре синтезируются неон и магний. А вот элементы с большими атомными номерами там не возникают, поскольку такая звезда не способна спрессовать ядро для достижения температур, нужных для их синтеза.

Пока в ядре и вокруг него продолжается генерация термоядерной энергии, оболочка звезды еще больше расширяется, и красный гигант становится сверхгигантом. Однако эти космические исполины не отличаются устойчивостью. В конечном счете страдающая гигантизмом звезда сбрасывает внешние слои и оставляет после себя лишь оголенное ядро — новорожденный белый карлик. В юности эффективная температура его поверхности измеряется десятками тысяч градусов, из-за чего он предстает в виде бело-голубого светила — отсюда и название (прямо по «Томлинсону» Киплинга, где у Адовых врат «горел замученной звезды молочно-белый свет»). Но одиночный карлик обречен на постепенное остывание. Он будет желтеть, краснеть, а потом и вовсе потухнет в оптическом диапазоне. Дело это небыстрое, счет идет на многие миллиарды лет. Пока что самые тусклые белые карлики, внесенные в астрономические каталоги, немногим холоднее Солнца.

Более легкие звезды дают начало гелиевым белым карликам, а более массивные (такие как наше Солнце) — углеродно-кислородным. Радиус типичного белого карлика сравним с земным, а масса составляет 0,6–1,2 массы Солнца. Белые карлики с массами свыше 1,44 солнечной массы не существуют и не могут существовать, но об этом позже.

Материя белого карлика сжата до давлений, при которых разрушаются атомные электронные оболочки. Возникает особого рода плазма, состоящая из атомных ядер и вырожденного газа обобществленных электронов, движением которых управляют законы квантовой механики. Давление такого газа (так называемое давление Ферми) не зависит от температуры и определяется исключительно плотностью, поэтому остывание белого карлика не сказывается на его внутренней структуре. В отличие от звезды-родительницы, это чрезвычайно устойчивая физическая система: если белый карлик не будет проглочен черной дырой, он просуществует до тех пор, пока протоны не начнут распадаться, как им предписывают современные теории физики элементарных частиц. Период же их полураспада заведомо превышает 1032 лет.

Коллапсирующие ядра

Звезды с начальной массой свыше восьми солнечных заканчивают жизнь взрывами фантастической мощности, вызванными очень быстрым сжатием (коллапсом) их ядер. В ходе такого взрыва выделяется гравитационная энергия исполинского масштаба — вплоть до 1053–1054 эрг. При этом 99% выделившейся энергии уносят нейтрино, а остаток приходится на долю кинетической энергии барионной материи. Одна сотая этого остатка (т. е. одна десятитысячная полного выхода энергии) переходит в энергию фотонов, улетающих в космическое пространство. И хотя световые вспышки гибнущих массивных звезд представляют из себя феерическое зрелище, на их долю приходится лишь одна сотая доля процента высвобожденной энергии.

Именно эти космические катаклизмы и называют сверхновыми звездами, или просто сверхновыми. Их подразделяют на группы в соответствии с оптическими спектрами. Эту классификацию 80 лет назад предложили Бааде и его коллега по обсерватории Маунт-Вильсон Рудольф Минковский, племянник знаменитого математика, эмигрировавший из Германии. Излучение сверхновых I типа не содержит линий испускания водорода, которые есть у сверхновых II типа, зато они включают семейство, спектры которого демонстрируют наличие ионизированного кремния. Представители группы Ia взрываются на основе иного механизма, нежели гравитационный коллапс их ядер, поэтому о них поговорим позднее.

Открытые в 1985 г. сверхновые двух других семейств первого типа (Ib и Ic), равно как и сверхновые второго типа, «проходят по ведомству коллапса». В среднем в каждой крупной галактике типа Млечного Пути ежегодно загораются две-три сверхновые, причем на каждую вспышку из группы Ia приходится три-пять сверхновых прочих разновидностей.

Хотя в наши дни процессы коллапса массивных звезд обсчитывают с использованием хорошо проработанных физических моделей и мощных компьютерных ресурсов, многие детали этого процесса еще далеки от ясности. Для иллюстрации рассмотрим в общих чертах типичную судьбу голубого сверхгиганта с начальной массой порядка 20–25 солнечных масс. Водородное топливо он сжигает за 7 млн лет, еще полмиллиона лет займет формирование углеродно-кислородного ядра, нагретого до 200 млн К. С его возникновением термоядерный синтез останавливается, но ненадолго. В отсутствие тепловой подпитки ядро сжимается под действием тяготения звездного вещества и соответственно нагревается. По достижении температуры 600–800 млн К углерод начинает гореть с образованием неона и магния, а спустя еще 600 лет при температуре 2,3 млрд К начинается горение кислорода. Оно запускает цепочки ядерных превращений, которые приводят к синтезу различных изотопов кремния, серы, фосфора, аргона, калия, кальция и скандия.

За сутки до кончины звезды ее ядро нагревается до 3,3 млрд К. При этой температуре кванты гамма-излучения разбивают ядра изотопа кремния-28 на ядра магния-24 и альфа-частицы, которые поглощаются другими ядрами с образованием все более тяжелых элементов. Все это завершается образованием железа-56, рекордсмена по стабильности среди всех атомных ядер. Последние поглощаются другими ядрами, образуя все более тяжелые элементы. Поскольку далее термоядерный синтез не идет, железное ядро сжимается и нагревается. В результате возрастает кинетическая энергия атомов железа, и они претерпевают хаотические превращения. Некоторые из них распадаются, а некоторые, напротив, вступают в реакции слияния и порождают более тяжелые элементы, такие как платина и золото. Поскольку эти реакции идут за счет накопленной тепловой энергии, температура звездного ядра уменьшается, давление его вещества падает, и ядро вновь начинает сжиматься. Этот процесс ускоряется, если в окрестностях ядра продолжаются процессы термоядерного синтеза, которые порождают новые и новые ядра железа.

Затем наступает финальный катаклизм. Это происходит, когда масса ядра достигает порога, при котором давление вырожденного электронного газа уже не может противостоять гравитационному сжатию (этот порог, так называемый предел Чандрасекара, примерно на 44% превышает массу Солнца). Ядро схлопывается со скоростью, достигающей 20% световой. Электроны прижимаются к ядрам и сливаются с протонами, превращаясь в нейтроны и нейтрино. Нейтроны остаются на месте, а нейтрино вылетают в пространство. В результате сердцевина звезды охлаждается, давление ее вещества вновь падает, а темп сжатия увеличивается. Этот процесс имплозии начинается и завершается за считанные секунды, поэтому внешние слои звезды не успевают ничего почувствовать. Наружный наблюдатель в течение еще нескольких часов не заметит ни малейших перемен.

На этой стадии возможны два сценария. Полагают, что звезды с массой от 30 до 100 солнечных масс коллапсируют полностью и дают начало черным дырам. У звезд в диапазоне 12–30 (по другим модельным симуляциям 12–20) солнечных масс образуются ядра из нейтронной материи, плотность которой в 100 триллионов раз превышает плотность воды. Внешние слои звезды обрушиваются на ядро и «отскакивают» от него со скоростью в десятки тысяч километров в секунду. Поскольку эта скорость значительно превышает скорость звука в звездном веществе, образуется ударная волна, буквально разрывающая звезду изнутри. По всей вероятности, ей «помогают» тепловые нейтрино, приходящие из «вскипающего» нейтронного ядра, нагретого как минимум до 150 млрд К (это самая высокая температура, возможная в нынешней Вселенной). От звезды остается деформированный нейтронный шар радиусом около десяти километров, окруженный облаком сверхгорячей плазмы. Это и есть нейтронная звезда.

Возможно, что этот сценарий еще подвергнется коррекции: некоторые из трехмерных динамических симуляций коллапсирующих сверхновых, над которыми с 2015 г. работают в ряде научных центров, демонстрируют более сложную картину возникновения и распространения ударных волн. Однако подобные симуляции выполняются лишь при значительном упрощении базовых моделей и при этом требуют месяцев работы суперкомпьютеров. Чтобы сделать их более реалистичными, необходимы компьютеры, на два порядка более мощные, но появятся они не раньше, чем через десять лет.

Как ни парадоксально, но надежней всего моделируется гравитационный коллапс самых массивных звезд с начальной массой более 100 солнечных. В их недрах уже на стадии синтеза кислорода появляются жесткие гамма-кванты, которые при взаимных столкновениях превращаются в электронно-позитронные пары. Поскольку часть гамма-квантов при этом теряется, происходит падение лучевого давления, которое противодействовало гравитационному сжатию звезды и удерживало ее в состоянии гидростатического равновесия. Далее все зависит от начальной массы. Если она не превышала 130–140 солнечных, то в недрах звезды возникают пульсации, способные инициировать быстрый выброс части вещества внешних оболочек, однако недостаточно сильные, чтобы полностью разрушить ее изнутри. Эти пульсации быстро гасятся, и звезда возобновляет коллапс, приводящий к образованию железного ядра.

Для самых «легких» гигантов — звезд с начальной массой 8–12 солнечной — модельные симуляции дают несколько иную картину. Они также порождают коллапсирующие железные ядра, но в этом случае на стадии термоядерного горения углерода ядро прекращает дальнейшее сжатие, так что кислород не поджигается. Когда углерод полностью выгорает, превратившись в неон и магний, кислородно-неоново-магниевое ядро сжимается до тех пор, пока сила тяготения не уравновешивается квантовым давлением вырожденного электронного газа. Однако эта задержка недолговечна. Ядра неона и магния поглощают электроны и превращаются в изотопы элементов с меньшими номерами по таблице Менделеева. Плотность электронного газа падает, сердцевина звезды стягивается, и процесс все равно заканчивается коллапсом железного ядра.

Гиперновые, сила аккреции и чудеса связанных пар

В апреле 2007 г. международная команда астрономов зарегистрировала сверхновую аномально высокой мощности, выбросившую в пространство огромное количество кремния и радиоактивного никеля-56. В каталоги она вошла под индексом SN 2007bi. Не исключено (хотя пока и не доказано!), что это было первое наблюдение сверхновой с парной нестабильностью, предсказанной теоретиками еще в 1960-е гг. Опубликованные тогда сценарии описывали эволюцию звезд с начальными массами от 130 до 250 солнечных. Масса звезды-предшественницы новооткрытой сверхновой лежала как раз в середине этого промежутка.

Звезды этой группы обычным образом (но очень быстро) сжигают водород и гелий. После сгорания углерода в их ядрах возникают гамма-кванты, которые при столкновениях превращаются в электронно-позитронные пары, а возможно, и в более тяжелые частицы и античастицы. Однако в этом случае пульсаций не возникает, и внешние слои звезды падают в ее центр. Эта имплозия еще больше разогревает недра звезды и запускает термоядерные реакции, в результате которых синтезируется ряд тяжелых элементов, в том числе и никель-56. Давление в перегретом ядре катастрофически возрастает, ядро взрывается, не успев сколлапсировать в черную дыру. Поскольку вся звездная материя без остатка выбрасывается в пространство, такие сверхновые — один из главных источников элементов с большими атомными номерами.

Взрывы сверхмассивных звезд принято называть гиперновыми. Строго говоря, этот термин не относится к финальной стадии жизни звезд с начальной массой более 250–260 солнечных масс, которые изобиловали в ранней Вселенной. В их центральных зонах порождаются гамма-кванты, энергии которых достаточны для возбуждения и последующего распада атомных ядер (этот процесс называется фотодезинтеграцией). Такие звезды не взрываются, а просто исчезают, давая начало черным дырам.

***

От взрывов одиночных звезд перейдем к звездным парам.

Сначала посмотрим на системы, состоящие из нормальных звезд главной последовательности, обращающихся вокруг общего центра инерции. Каждая звезда окружена областью пространства, где господствует ее собственное притяжение. Если такие области пересечь плоскостью, в которой движутся оба светила, получатся две вытянутые в линию петли с общей точкой на отрезке, соединяющем звездные центры (для наглядности придется остановить время, поскольку вся фигура вращается). В этой точке каждая из звезд тянет в свою сторону с одинаковой силой. Эту точку называют первой точкой Лагранжа. В 1772 г. Жан-Батист Лагранж описал пять точек, которые сейчас носят его имя, однако первые три еще в 1765 г. идентифицировал Леонард Эйлер.

Пространственные пузыри, о которых идет речь, именуют полостями Роша. Космические частицы внутри полости Роша вращаются лишь вокруг той звезды, которую эта полость охватывает. Однако вещество может перетекать сквозь горловину, соединяющую полости, т. е. через окрестности первой точки Лагранжа. Материя, которая находится вне полостей, может стабильно обращаться вокруг звездной пары в целом, но ее траектории не ограничиваются путями, охватывающими одну-единственную звезду.

Как правило, обе звезды бинарной системы порождены одним и тем же молекулярным облаком, поэтому имеют одинаковый состав, но различные начальные массы. Более тяжелая звезда первой сжигает в ядре водород, теряет стабильность и становится красным гигантом. Поэтому она способна не только заполнить собственную полость Роша, но и выйти за ее границу. При этом тяготение центра звезды не может удержать частицы раздувшейся оболочки, и звезда теряет вещество, часть которого попадает в гравитационный плен к ее «компаньонке». Из-за «похудания» звезды-донора ее полость Роша стягивается, а скорость утечки вещества растет. Даже при уравнивании звездных масс утечка лишь замедляется, но не прекращается вовсе.

Перенос вещества приводит к сложной эволюции звездной пары. Менее массивная звезда захватывает материю «соседки» и увеличивает свой угловой момент. Чтобы сохранить суммарный момент инерции бинарной системы, звезды сближаются. Позже, когда первая звезда становится легче «компаньонки», они начинают расходиться — опять же в силу сохранения общего углового момента. Если вторая звезда успевает выйти за границы своей полости Роша, она тоже оказывается обреченной на потерю плазмы.

Эти превращения чреваты различными исходами. Часть выброшенной материи выходит на орбиты, целиком окружающие звездную пару. Обычно она образует плоское вращающееся кольцо, которое называется диском экскреции (позднелатинское слово excrētiō переводится как ‘выделение’). В особых обстоятельствах звездная пара может утонуть в шарообразном газовом облаке, порожденном ушедшей в пространство плазмой. В то же время каждая звезда имеет шансы обзавестись собственным кольцом поменьше и поплотнее — аккреционным диском (accrētiō — ‘прирост’). Возможны и более экзотические сценарии (такие как столкновение и слияние звезд или же съедание соседки более крупной звездой), но в такие дебри мы не станем заглядывать.

До сих пор речь шла о нормальных звездных парах, но это не обязательно. Для запуска аккреции достаточно, чтобы лишь один из партнеров обладал газовой оболочкой, способной раздуться и уйти сквозь горловину полости Роша. Поэтому аккреция возникает и в бинарных системах, объединяющих обычную звезду с компактным телом из вырожденной материи (белым карликом либо нейтронной звездой) или даже с черной дырой. Кстати, аккреционные диски впервые обнаружили при наблюдении белых карликов, имеющих в компаньонах обычные звезды. Такие процессы нередко приводят к очень экзотическим исходам: например, рождению рентгеновского пульсара при аккреции на сильно намагниченную нейтронную звезду. Однако нас интересуют только различные сценарии рождения новых звезд. Они практически всегда реализуются при аккреции вещества водородной оболочки звезды-донора на белый карлик.

***

Сначала рассмотрим обширный класс космических объектов, объединенных названием катаклизмические переменные. Это тесные бинарные системы, состоящие из не утратившей активности звезды и белого карлика. Они проявляют себя нестабильным излучением — отсюда и название.

Аккреционный диск всегда нагревается внутренним трением и охлаждается собственным излучением. При сбалансированности этих процессов он находится в тепловом равновесии, при нарушении которого в диске могут возникнуть волны тепловой нестабильности, резко увеличивающие генерацию фотонов. Светимость диска за несколько месяцев может вырасти на один-три порядка, составив от одной до десяти светимостей Солнца. Эти «внутридисковые» катаклизмы называются карликовыми новыми. Первая карликовая новая была замечена в созвездии Близнецов еще в 1855 г., однако механизм генерации таких вспышек лишь через 119 лет расшифровал астроном из Кейптаунского университета Брайан Уорнер.

Куда эффектней классические новые звезды, или просто новые. Они вспыхивают в результате падения (со скоростью порядка тысячи км в секунду) на поверхность белого карлика вещества аккреционного диска. Это вещество почти полностью состоит из водорода и может служить топливом термоядерных реакций — для этого нужно, чтобы водород разогрелся до критической температуры около 10 млн К. Поскольку при термоядерных реакциях интенсивно выделяется энергия, на поверхности белого карлика возникают ударные волны, которые буквально взрывают его внешний слой и выбрасывают сверхгорячую плазму в окружающее пространство. Светимость системы в течение нескольких суток возрастает на три-шесть порядков, достигая 100 тыс. светимостей Солнца. По завершении вспышки белый карлик начинает копить на поверхности новый запас водорода — горючее для будущего очередного взрыва. Согласно теории, классические новые могут периодически загораться с интервалом в 10 тыс. лет, но до сих пор это не было подтверждено наблюдениями — история астрономии значительно короче.

Другой вид катаклизмических переменных — повторные новые. Эти весьма редкие «звери» космического «зоопарка» (в нашей Галактике их известен всего десяток) увеличивают свою яркость в среднем не больше, чем тысячекратно, зато вспыхивают каждые 10–100 лет. Механизм этих вспышек пока в точности неизвестен. Предполагается, что они возникают при интенсивной (до одной десятимиллионной солнечной массы в год) аккреции водорода на поверхность самых массивных белых карликов, масса которых лишь немногим меньше предела Чандрасекара.

Еще один интересный подкласс — симбиотические новые, которые отличаются очень широким спектром излучения, охватывающим большинство диапазонов электромагнитных волн. Они возникают в звездных парах, состоящих из пульсирующего красного сверхгиганта на последней стадии своей эволюции и молодого, а потому очень горячего белого карлика средней массы. Звезда-донор в заключительной фазе интенсивно сбрасывает вещество своей оболочки и приближается к превращению (через несколько миллионов лет) в белый карлик. Считается, что именно этот процесс лежит в основе специфического характера спектра симбиотических новых, хотя многие детали еще не ясны.

Самый блистательный (и в прямом, и в переносном смысле!) результат аккреции водорода на углеродно-кислородный белый карлик — это вспышка сверхновой. Согласно стандартному сценарию (а есть и другие), она происходит, когда приток аккретированного вещества доводит массу карлика-акцептора до предела Чандрасекара. Поскольку в этом случае давление вырожденного электронного газа уже не может противостоять гравитации, карлик сжимается примерно в три раза, и температура его центральной зоны резко возрастает. Когда она достигает 400 млн К, начинается термоядерное горение углерода, которое дополнительно нагревает ядро. Поскольку при этом давление вырожденного газа не увеличивается (вспомним, что оно не зависит от температуры!), ядро не расширяется и, следовательно, не охлаждается. Это приводит к катастрофическому росту темпа термоядерных реакций, которые за доли секунды порождают все более тяжелые ядра, в том числе и радиоактивный никель-56. Фронт термоядерного горения движется от ядра карлика к его поверхности, скорее всего, сначала с дозвуковой, а потом и со сверхзвуковой скоростью. В результате карлик взрывается без остатка, разбрасывая «новорожденную» (если угодно, новосинтезированную) материю по окружающему пространству. В этом смысле его взрыв похож на взрыв коллапсирующей звезды с начальной массой 130–250 солнечных масс, хотя физические механизмы совершенно различны.

Поскольку углеродно-кислородный карлик лишен водорода, линии этого элемента в спектре излучения сверхновой отсутствуют, из-за чего ее и относят к I типу, а конкретно, к подтипу Ia. К подтипам Ib и Ic, напротив, относят бедные водородом коллапсирующие сверхновые (а сверхновым Ic не хватает еще и гелия). Принято считать, что эти звезды лишились внешних слоев еще до взрыва, что и объясняет их спектральные аномалии.

Сверхновые подтипа Ia очень эффектны. Выброшенный в пространство никель-56 дает начало радиоактивному изотопу кобальта с таким же атомным весом, а тот — стабильному изотопу железа. При распаде ядер никеля и кобальта возникает гамма-излучение, которое нагревает остатки взорвавшейся звезды и заставляет их интенсивно светиться в рентгеновском и видимом диапазонах. Эти сверхновые обладают замечательной особенностью, за которую их очень любят астрономы и космологи: у них примерно одинаковая пиковая светимость, в четыре миллиарда раз превышающая солнечную. И хотя их постоянство не абсолютно, однако отклонения от среднего уровня не превышают 20–30% и без особых проблем поддаются учету. Поэтому наблюдение таких сверхновых сыграло первостепенную роль в открытии ускоренного расширения Вселенной, состоявшемся два десятилетия назад. Но это уже совсем другая история.

Исследование звездных вспышек сейчас ведется весьма активно: и посредством наблюдений, и через обсчет моделей. Так, в 2010 г. было объявлено об открытии аномально слабых сверхновых с максимальной светимостью не более 400 млн светимостей Солнца, излучение которых демонстрирует столь же аномальное изобилие кальция, как и у нашего светила. Уже зарегистрировано полтора десятка таких звезд, но механизм их появления на свет пока неизвестен.

В наши дни эти исследовательские программы осуществляются на базе новейшей многоканальной астрономии (multimessenger astronomy) с широким использованием ресурсов астроинформатики. Эта новая научная дисциплина, возникшая в последнем десятилетии, стимулировала очень плотную кооперацию между астрономами и специалистами по вычислительным системам и компьютерным кодам. Перефразируя великого Булгакова, не побоюсь предречь, что этот научный «роман» принесет еще сюрпризы.

Литература
1. Сурдин В. Г. Звезды. М.: Физматлит, 2009. 428 с.
2. Шкловский И. С. Звезды: их рождение, жизнь и смерть. 3-е изд., перераб. М.: Наука, 1984. 384 с.
3. Шкловский И. С. Сверхновые звезды и связанные с ними проблемы. 2-е изд., перераб. и доп. М.: Наука, 1976. 440 с.
4. Branch D., Wheeler J. C. Supernova Explosions. Springer, 2017. 721 p.
5. Lequeux J. Birth, Evolution and Death of Stars. World Scientific Publishing Co., 2013. 172 p.
6. Loeb A. How Did the First Stars and Galaxies Form? Princeton U. Press, Princeton, N. J., 2010. 193 p.

Источник: elementy.ru

Не только взрывы звезд

Однако на самом деле не все сверхновые являются конечной стадией жизни массивных звезд. Под современную классификацию сверхновых взрывов, помимо взрывов сверхгигантов, входят также некоторые другие явления.

Новые и сверхновые

SN 1604 или Сверхновая Кеплера

Термин «сверхновая» перекочевал от термина «новая звезда». «Новыми» называли звезды, которые возникали на небосклоне практически на пустом месте, после чего постепенно угасали. Первые «новые» известны ещё по китайским летописям, датируемым вплоть до второго тысячелетия до нашей эры.  Что интересно, среди этих новых нередко встречались сверхновые. К примеру, именно сверхновую в 1571 году наблюдал Тихо Браге, который впоследствии ввёл термин «новая звезда». Сейчас нам известно, что в обоих случаях речь не идёт о рождении новых светил в буквальном смысле.

Новые и сверхновые звезды обозначают резкое увеличение яркости какой-либо звезды или группы звезд. Как правило, раньше люди не имели возможности наблюдать звёзды, которые порождали эти вспышки. Это были слишком тусклые объекты для невооруженного глаза или астрономического прибора тех лет. Их наблюдали уже в момент вспышки, что естественно походило на рождение нового светила.

Не смотря на схожесть этих явлений, в наши дни существует резкое различие в их определениях. Пиковая светимость сверхновых звезд в тысячи и сотни тысяч раз больше пиковой светимости новых. Такое расхождение объясняется принципиальным различием природы этих явлений.

Рождение новых звезд

Сверхновая вспыхнувшая в 1604 году

Новые вспышки являются термоядерными взрывами, происходящим в некоторых тесных звездных системах. Такие системы состоят из белого карлика и более крупной звезды-компаньона (звезды главной последовательности, субгиганта или гиганта). Могучее тяготение белого карлика притягивает вещество из звезды-компаньона, в результате чего вокруг него образуется аккреционный диск. Термоядерные процессы, происходящие в аккреционном диске, временами теряют стабильность и приобретают взрывной характер.

В результате такого взрыва яркость звездной системы увеличивается в тысячи, а то и в сотни тысяч раз. Так происходит рождение новой звезды. Доселе тусклый, а то и невидимый для земного наблюдателя объект приобретает заметную яркость. Как правило, своего пика такая вспышка достигает всего за несколько дней, а затухать может годами. Нередко такие вспышки повторяются у одной и той же системы раз в несколько десятилетий, т.е. являются периодичными. Также вокруг новой звезды наблюдается расширяющаяся газовая оболочка.

Сверхновые взрывы обладают совершенно иной и более разнообразной природой своего происхождения.

Классификация сверхновых

Классификация сверхновых

Сверхновые принято разделять на два основных класса (I и II). Эти классы можно назвать спектральными, т.к. их отличает присутствие и отсутствие линий водорода в их спектрах. Также эти классы заметно отличаются визуально. Все сверхновые I класса схожи как по мощности взрыва, так и по динамике изменения блеска. Сверхновые же II класса весьма разнообразны в этом плане. Мощность их взрыва и динамика изменения блеска лежит в весьма обширном диапазоне.

Все сверхновые II класса порождаются гравитационным коллапсом в недрах массивных звезд. Другими словами, этот тот самый, знакомый нам, взрыв сверхгигантов. Среди сверхновых первого класса существуют те, механизм взрыва которых скорее схож с взрывом новых звезд.

Смерть сверхгигантов

Остаток сверхновой звезды W49B

Сверхновыми становятся звезды, масса которых превышает 8-10 солнечных масс. Ядра таких звезд, исчерпав, водород, переходят к термоядерным реакциям с участием гелия. Исчерпав гелий, ядро переходит к синтезу всё более тяжелых элементов. В недрах звезды создаётся всё больше слоёв, в каждом из которых происходит свой тип термоядерного синтеза.  В конечной стадии своей эволюции такая звезда превращается в «слоёный» сверхгигант.  В его ядре происходит синтез железа, тогда как ближе к поверхности продолжается синтез гелия из водорода.

Слияние ядер железа и более тяжёлых элементов происходит с поглощением энергии. Поэтому, став железным, ядро сверхгиганта больше не способно выделять энергию для компенсации гравитационных сил. Ядро теряет гидродинамическое равновесие и приступает к беспорядочному сжатию. Остальные слои звезды продолжают поддерживать это равновесие, до тех пор, пока ядро не сожмётся до некого критического размера. Теперь гидродинамическое равновесие теряют остальные слои и звезда в целом. Только в этом случае «побеждает» не сжатие, а энергия, выделившая в ходе коллапса и дальнейших беспорядочных реакций. Происходит сброс внешней оболочки – сверхновый взрыв.

Классовые различия

Остаток сверхновой Кассиопея А

Различные классы и подклассы сверхновых объясняются тем, какой звезда была до взрыва. К примеру, отсутствие водорода у сверхновых I класса (подкласса Ib, Ic) является следствие того, что водорода не было у самой звезды. Вероятнее всего, часть её внешней оболочки была потеряна в ходе эволюции в тесной двойной системе. Спектр подкласса Ic отличается от Ib отсутствием гелия.

В любом случае сверхновые таких классов происходят у звезд, не имеющих внешней водородно-гелиевой оболочки. Остальные же слои лежат в довольно строгих пределах своего размера и массы. Это объясняется тем, что термоядерные реакции сменяют друг друга с наступлением определенной критической стадии.  Поэтому взрывы звезд Ic и Ib класса так похожи. Их пиковая светимость примерно в 1,5 миллиардов раз превышает светимость Солнца. Эту светимость они достигают за 2-3 дня. После этого их яркость в 5-7 раз слабеет за месяц и медленно уменьшается в последующие месяцы.

Звёзды сверхновых II типа обладали водородно-гелиевой оболочкой. В зависимости от массы звезды и других её особенностей это оболочка может иметь различные границы. Отсюда объясняются широкий диапазон в характерах сверхновых. Их яркость может колебаться от десятков миллионов до десятков миллиардов солнечных светимостей (исключая гамма-всплески – см. дальше). А динамика изменения яркость имеет самый различный характер.

Трансформация белого карлика

Сверхновая типа Ia

Особую категорию сверхновых составляет вспышки Ia класса. Это единственный класс сверхновых звезд, который может происходить в эллиптических галактиках. Такая особенность говорит о том, что эти вспышки не являются продуктом смерти сверхгигантов. Сверхгиганты не доживают до того момента, как их галактики «состарятся», т.е. станут эллиптическими. Также все вспышки этого класса имеют практически одинаковую яркость. Благодаря этому сверхновые Ia типа являются «стандартными свечами» Вселенной.

Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.

По мере «пожирания» своего компаньона, белый карлик увеличивается в массе до тех пор, пока не достигнет предела Чандрасекара. Этот предел, примерно равный 1,38 солнечной массы, является верхней границы массы белого карлика, после которого он превращается в нейтронную звезду. Такое событие сопровождается термоядерным взрывом с колоссальным выделением энергии, на много порядков превышающим обычный новый взрыв. Практически неизменное значение предела Чандрасекара объясняет столь малое расхождение в яркостях различных вспышек данного подкласса. Эта яркость почти в 6 миллиардов раз превышает солнечную светимость, а динамика её изменения такая же, как у сверхновых Ib, Ic класса.1

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых гипергигантами. Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Сверхновая звезда GRB 080913

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной – гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

Прародители жизни

Несмотря на всю свою катастрофичность, сверхновые по праву можно назвать прародителями жизни во Вселенной. Мощность их взрыва подталкивает межзвездную среду на образования газопылевых облаков и туманностей, в которых впоследствии рождаются звезды. Ещё одна их особенность состоит в том, что сверхновые насыщают межзвездную среду тяжелыми элементами.

Именно сверхновые порождают все химические элементы, что тяжелее железа. Ведь, как отмечалось ранее, синтез таких элементов требует затрат энергии. Только сверхновые способны «зарядить» составные ядра и нейтроны на энергозатратные производство новых элементов. Кинетическая энергия взрыва разносит их по пространству вместе с элементами, образовавшимися в недрах взорвавшейся звезды. В их число входят углерод, азот и кислород и прочие элементы, без которых невозможна органическая жизнь.

Наблюдение за сверхновыми

Сверхновая SN 1987A

Сверхновые взрывы являются крайне редкими явлениями. В нашей галактике, содержащей более сотни миллиардов звёзд, происходит всего лишь несколько вспышек за столетие. Согласно летописным и средневековым астрономическим источникам, за последние две тысячи лет были зафиксированы лишь шесть сверхновых, видимых невооруженным глазом. Современным астрономам ни разу не доводилось наблюдать сверхновых в нашей галактике. Наиболее ближайшая произошла в 1987 в Большом Магеллановым Облаке, в одном из спутников Млечного Пути. Каждый год учёные наблюдают до 60 сверхновых, происходящих в других галактиках.

Именно из-за этой редкости сверхновые практически всегда наблюдаются уже в момент вспышки. События, предшествующие ей почти никогда не наблюдались, поэтому природа сверхновых до сих пор во многом остаётся загадочной. Современная наука не способна достаточно точно спрогнозировать сверхновые. Любая звезда-кандидат способна вспыхнуть лишь через миллионы лет. Наиболее интересна в этом плане Бетельгейзе, которая имеет вполне реальную возможность озарить земное небо на нашем веку.

Вселенские вспышки

Гамма вспышка в галактике 4C 71,07

Гиперновые взрывы случаются ещё реже. В нашей галактике такое событие случаются раз в сотни тысяч лет. Однако, гамма-всплески, порождаемые гиперновыми, наблюдаются почти ежедневно. Они настолько мощны, что регистрируются практически со всех уголков Вселенной.

К примеру, один из гамма-всплесков, расположенных в 7,5 миллиардов световых лет, можно было разглядеть невооружённым глазом. Произойти он в галактике Андромеда, земное небо на пару секунд осветила звезда с яркостью полной луны. Произойти он на другом краю нашей галактики, на фоне Млечного Пути появилось бы второе Солнце! Получается, яркость вспышки в квадриллионы раз ярче Солнца и в миллионы раз ярче нашей Галактики. Учитывая, что галактик во Вселенной миллиарды, неудивительно, почему такие события регистрируются ежедневно.

Влияние на нашу планету

Маловероятно, что сверхновые могут нести угрозу современному человечеству и каким-либо образом повлиять на нашу планету. Даже взрыв Бетельгейзе лишь осветит наше небо на несколько месяцев. Однако, безусловно, они решающим образом влияли на нас в прошлом. Примером тому служит первое из пяти массовых вымираний на Земле, произошедших 440 млн. лет назад. По одной из версий причиной этому вымиранию послужил гамма-вспышка, произошедшая в нашей Галактике.

Более примечательна совсем иная роль сверхновых. Как уже отмечалось, именно сверхновые создают химические элементы, необходимые для появления углеродной жизни. Земная биосфера не была исключением. Солнечная система сформировалось в газовом облаке, которые содержали осколки былых взрывов. Получается, мы все обязаны сверхновым своим появлением.

Более того, сверхновые и в дальнейшем влияли на эволюцию жизни на Земле. Повышая радиационный фон планеты, они заставляли организмы мутировать. Не стоит также забывать про крупные вымирания. Наверняка сверхновые не единожды «вносили коррективы» в земную биосферу. Ведь не будь тех глобальный вымираний, на Земле бы сейчас господствовали совсем другие виды.

Масштабы звездных взрывов

Чтобы наглядно понять, какой энергией обладают сверхновые взрывы, обратимся к уравнению эквивалента массы и энергии. Согласно нему, в каждом грамме материи заключено колоссальное количество энергии.  Так 1 грамм вещества эквивалентен взрыву атомной бомбы, взорванной над Хиросимой. Энергия царь-бомбы эквивалента трём килограммам вещества.

Каждую секунду ходе термоядерных процессов в недрах Солнца 764 миллиона тонн водорода превращается в 760 миллион тонн гелия.   Т.е. каждую секунду Солнце излучает энергию, эквивалентную 4 млн. тоннам вещества. Лишь одна двухмиллиардная часть всей энергии Солнца доходит до Земли, это эквивалентно двум килограммам массы. Поэтому говорят, что взрыв царь-бомбы можно было наблюдать с Марса. К слову, Солнце доставляет на Землю в несколько сотен раз больше энергии, чем потребляет человечество. То есть, чтобы покрыть годовые энергетические потребности всего современного человечества нужно превращать в энергию всего несколько тонн материи.

Учитывая вышесказанное, представим, что средняя сверхновая в своём пике «сжигает» квадриллионы тон вещества. Это соответствует массе крупного астероида. Полная же энергия сверхновой эквивалентна массе планеты или даже маломассивной звезды. Наконец, гамма-всплеск за секунды, а то и за доли секунды своей жизни, выплёскивает энергию, эквивалентную массе Солнца!

Такие разные сверхновые

Термин «сверхновая» не должен ассоциироваться исключительно с взрывом звёзд. Эти явления, пожалуй, также разнообразны, как разнообразны сами звёзды. Науке только предстоит понять многие их секреты.

Полная версия: http://spacegid.com/sverhnovyie-zvezdyi.html

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.