Классификация звезд по массе


Это то, во что превращаются средние и малые звезды в конце своей эволюции. Термоядерные реакции уже закончились, однако, они остаются очень горячими плотными газовыми шарами. Звезды медленно остывают, светясь ярким белым светом. Участь белого карлика ожидает и наше Солнце, так как его масса ниже критической. Критическая масса равна 1,4 массы Солнца. Это значение называется пределом Чандрасекара. Чандрасекар – индийский ученый астроном, который рассчитал это значение.

Состоянием нейтронной звезды заканчивается эволюция таких звезд, массы которых превышает солнечную в несколько раз. Нейтронная звезда возникает в результате вспышки сверхновой. При массе в 1,5-2 раза больше солнечной, она имеет радиус 10-20 км. Нейтронная звезда быстро вращается и периодически испускает потоки элементарных частиц и электромагнитное излучение. Такие звезды называются пульсарами. Состояние нейтронной звезды также определяется ее массой. Предел Оппенгеймера-Волкова – величина, определяющая максимально возможную массу нейтронной звезды. Чтобы находиться стабильно в таком состоянии, необходимо, чтобы ее масса не превышала трех солнечных масс.


Если масса нейтронной звезды превосходит это значение, то чудовищная сила гравитации так сжимает ее в объятиях коллапса, что она становится черной дырой.

Черная дыра – это то, что получается, когда гравитационное сжатие массивных тел неограниченно, т.е. когда звезда сжимается до такой степени, что становится абсолютно невидимой. Ни один луч света не может покинуть ее поверхность. И здесь также есть показатель, определяющий состояние космического объекта в качестве черной дыры. Это гравитационный радиус, или радиус Шварцшильда. Еще его называют горизонтом событий, так как описать или увидеть, что происходит внутри сферы с таким радиусом на месте сколапсированной звезды, невозможно.

Может быть, внутри это сферы есть прекрасные яркие миры или выход в другую Вселенную. Но для простого наблюдателя это просто провал в пространстве, который закручивает вокруг себя свет, идущий от других звезд и поглощает космическое вещество. По тому, как ведут себя рядом с ней другие космические объекты, мы можем делать предположения об ее свойствах.

Например, можно предположить, что самые массивные черные дыры, находятся в том месте, где наблюдается самое яркое свечение звездных скоплений. Притягивая к себе звездное вещество и другие космические объекты, черные дыры заставляют их светиться, окружая себя, ярким светящимся ореолом — квазаром. Тьма не может существовать без света, а свет существует благодаря тьме. Это доказывает эволюция звезд.

Источник: cosmoss1.blogspot.com

Виды звёзд


Звёзды различают по таким параметрам, как масса, размер и светимость. Цвет их изменяется от красного до голубого. И чем ближе к голубому — тем выше температура космического объекта.

Красный (класс M) — 2000-3500 градусов.
Оранжевый (класс K) — от 3500 до 5000 градусов.
Жёлтый (класс G) — 5-6 тысяч градусов. К данному типу относится и наше Солнце.
Жёлто-белый (класс F) — от 6000 К до 7500 К.
Белый (класс A) — 7500 К — 10000 К.
Бело-голубой (класс B) — 10-30 тысяч градусов.
Голубой (класс O) — 30-60 тысяч К.

Коричневый карлик. Это тип звёзд, которые на излучение тратят больше энергии, чем получают в результате ядерной реакции. Их температура около 300-500 градусов.

Белый карлик. Практически все звёзды завершают свою эволюцию превращением в белых карликов.
В конце своей жизни они начинают сжиматься, уменьшаясь в сотни раз от своего первоначального размера. При этом они обретают плотность, превосходящую плотность воды в миллион раз. Однако, теряют источники энергии и постепенно остывают. Такую участь ждёт и наше Солнце (но сейчас его относят к типу жёлтых карликов).


Красный гигант. Тип звёзд, имеющих относительно низкую температуру (3-5 тысяч градусов), но при этом обладающие огромной светимостью.

Типа Вольфа — Райе. Класс звёзд, обладающих очень высокой температурой и светимостью.

Сверхновые. Это те звёзды, которые закачивают свой цикл взрывным процессом. Если в спектре такой вспышки присутствуют линии водорода — это Сверхновая 2 типа, если нет — 1 типа.

Новые. Это Сверхновые, вспышка которых гораздо слабее — не такая яркая, и выделяет не так много энергии.

Гиперновые. Это очень большие Сверхновые.
Или, другими словами, Гиперновые — это очень большие и тяжёлые звёзды (более 100 масс Солнца), оканчивающие свою эволюцию взрывом.

Яркие голубые переменные (ЯГП). Очень яркие гигантские звёзды, ещё и пульсирующие при этом. Их сияние может быть, представьте только, в миллион раз сильнее солнечного.
Полагают, это объясняется тем, что звёзды такого типа сбрасывают излишки энергии — отсюда и такое яркое сияние.

Ультраяркие рентгеновские источники. Это тип звёзд, имеющих очень сильное излучение, но только в рентгеновском диапазоне.

Нейтронные звёзды. Это тип звёзд, сжатие Ядра которых не прекращается до тех пор, пока практически все частицы не превратятся в нейтроны.
Масса таких звёзд превосходит массу Солнца в полтора — три раза, но их диаметр при этом около 10 км. Это насколько же высокой плотностью они обладают?!

Звёздные системы


Звёздные системы могут состоять из одной звезды, двух или более.
Самый распространённый тип звёздных систем — двойной (две звезды, связанные гравитационно друг с другом и обращающиеся вокруг одного центра масс) — около 70% всех звёзд являются двойными.

Бывают случаи, когда более десятка звёзды образуют систему. В таком случае они называются звёздным скоплением.

Огромные скопления звёзд, вращающиеся вокруг одного центра масс — это Галактики.

Источник: naturae.ru

3. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЗВЕЗД

    Звезда — это горячий газовый шар, разогреваемый за счет ядерной энергии и удерживаемый силами тяготения. Основную информацию о звездах дает испускаемый ими свет и электромагнитное излучение в других областях спектра. Главными факторами, определяющими свойства звезды, являются её масса, химический состав и возраст. Звезды должны меняться со временем, так как они излучают энергию в окружающее пространство. Информация о звездной эволюции может быть получена из диаграммы Герцшпрунга-Рассела, представляющей собой зависимость светимости звезды от температуры её поверхности (рис.9).

Рис.9
Pис. 9. Диаграмма Герцшпрунга-Рассела. Линия показывает начальные положения звезд с различными массами на главной последовательности

    На диаграмме Герцшпрунга-Рассела звезды распределены неравномерно. Около 90% звезд сконцентрировано в узкой полосе, пересекающей диаграмму по диагонали. Эту полосу называют главной последовательностью. Её верхний конец расположен в области ярких голубых звезд. Различие в заселенности звезд, находящихся на главной последовательности и областей, примыкающих к главной последовательности, составляет несколько порядков величины. Причина в том, что на главной последовательности находятся звезды на стадии горения водорода, которая составляет основную часть времени жизни звезды. Солнце находится на главной последовательности. Его положение указано на рис. 9.
    Следующие по населенности области после главной последовательности — белые карлики, красные гиганты и красные сверх-гиганты. Красные гиганты и сверхгиганты — это в основном звезды на стадии горения гелия и более тяжелых ядер.
    Светимость звезды — полная энергия, испускаемая звездой в единицу времени. Светимость звезды может быть вычислена по энергии, достигающей Земли, если известно расстояние до звезды.
    Из термодинамики известно, что, измеряя длину волны в максимуме излучения черного тела, можно определить его температуру.


рное тело с температурой 3 K будет иметь максимум спектрального распределения на частоте 3·1011 Гц. Черное тело с температурой 6000 K будет излучать зеленый свет. Температуре 106 K соответствует излучение в рентгеновском диапазоне. В таблице 2 приведены интервалы длин волн, соответствующие различным цветам, наблюдаемым в оптическом диапазоне.

Таблица 2

Цвет и длина волны

    Температура поверхности звезды рассчитывается по спектральному распределению излучения.
    Классификацию спектрального класса звезд легко понять из таблицы 3.
    Каждая буква характеризует звезды определенного класса. Звезды класса O самые горячие, класса N — самые холодные. В звезде класса O видны в основном спектральные линии ионизованного гелия. Солнце принадлежит к классу G, для которого характерны линии ионизованного кальция.
    В таблице 4 приведены основные характеристики Солнца. Пределы изменения таких характеристик звезд как масса (M), светимость (L), радиус (R) и температура поверхности (T) даны в таблице 5.

Таблица 3

Спектральные классы звезд

 

Рис.10
Рис. 10. Соотношение масса-светимость

    Для звезд главной последовательности с известной массой зависимость масса-светимость показана на рис.10 и имеет вид
L ~ Mn, где n = 1.6 для звезд малой массы (M < MКлассификация звезд по массе ) и n = 5.4 для звезд большой массы (M > MКлассификация звезд по массе). Это означает, что перемещение вдоль главной последовательности от звезд меньшей массы к звездам большей массы приводит к увеличению светимости.

 

 

 

Таблица 4

Основные характеристики Солнца

Таблица 5

Пределы изменения характеристик различных звезд

10-1 MКлассификация звезд по массе < M < 50 MКлассификация звезд по массе

10-4 LКлассификация звезд по массе < L < 106 L


Классификация звезд по массе

10-2 RКлассификация звезд по массе < R < 103 RКлассификация звезд по массе

2·103 K < T < 105 K

За единицу измерения M, R, L приняты соответствующие характеристики Солнца, T- температура поверхности.

    Таким образом, более массивные звезды оказываются и более яркими.
    В левой нижней части диаграммы (рис.9) — вторая по численности группа — белые карлики. В правом верхнем углу диаграммы группируются звезды с высокой светимостью, но низкой температурой поверхности — красные гиганты и сверхгиганты. Этот тип звезд встречается реже. Названия “гиганты” и “карлики” связаны с размерами звезд. Белые карлики не подчиняются зависимости масса-светимость, характерной для звезд главной последовательности. При одной и той же массе они имеют значительно меньшую светимость, чем звезды главной последовательности.
    Звезда может находиться на главной последовательности на определенном этапе эволюции и быть гигантом или белым карликом на другом. Большинство звезд находится на главной последовательности потому, что это наиболее длительная по времени фаза эволюции звезды.
    Одним из существенных моментов в понимании эволюции Вселенной является представление о распределении образующихся звезд по массам.


учая наблюдаемое распределение звезд по массам и учитывая время жизни звезд различной массы, можно получить распределение звезд по массам в момент рождения. Установлено, что вероятность рождения звезды данной массы, очень приближенно, обратно пропорциональна квадрату массы (функция Солпитера):

F(M) ~ M-7/3.

Однако это лишь общая закономерность. В некоторых областях наблюдается дефицит массивных звезд. В областях, где много молодых звезд, звезд малой массы меньше. Считается, что первые звезды были в основном яркими, массивными и короткоживущими.
    По-видимому, функция масс должна обрываться на нижнем конце около масс ~ (0.1 — 0.025) MКлассификация звезд по массе . Используя в качестве нижней оценки два значения масс M ~ 0.1 MКлассификация звезд по массе и 0.025 MКлассификация звезд по массе , можно получить относительную массу звезд, имеющих массы больше 5MКлассификация звезд по массе :

и долю массы звезд, имеющих массу меньше солнечной, —

    Для того, чтобы объяснить наблюдаемые распространенности различных элементов, необходимо предположить, что в звездах происходят ядерные реакции, в которых и образуются эти элементы. Особенности протекания ядерных реакций рассмотрены ниже.

Источник: nuclphys.sinp.msu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.