Классификация двойных звезд


Система, где две звезды связаны друг с другом гравитационным взаимодействием и обращаются по орбитам вокруг общего центра масс, называется двойной системой. А каждый участник этой системы — двойной звездой. Они очень распространёны во вселенной, сюда половину всех звёзд. Астрономам эти объекты полезны тем, что если известны расстояние между звездами и период их обращения, то можно вычислить их массы. Такая методика считается превалирующей для определения масс звёздных объектов.

Кратные звёздные системы

Тройные. Такие сообщества встречаются уже много реже систем двойных – примерно, в 20 раз. Чаще всего, это главная пара, состоящая из двойной звезды, имеющая отдалённый спутник. Его вращение происходит вокруг этой пары, являющейся для него словно единым телом. Ближайшая к нам звезда – Проксима созвездия Центавра – как раз и есть спутник двойной системы того же созвездия – Альфа А и Альфа В.


Системы из четырёх звёзд. Для такого сообщества, встречающегося очень редко, необходимо иное строение системы. Это две тесные звёздные пары, разделённые расстоянием, которое не может быть меньше пятикратного расстояния между самими звёздами (пример — Эпсилон созвездия Лиры).

Пять и шесть членов. Это предел для кратности звёздных систем, а встречаются они чрезвычайно редко. Примером может быть Кастор, главная звезда Близнецов. Он состоит из шести объектов – двойной спутник обращается вокруг пары звёзд, которые тоже двойные – Кастор А и Кастор В.

Образование двойных и кратных систем

Формирование двойной звезды немного отличается от формирования одиночной. Вот некоторые общепринятые теории:

  1. Теория промежуточного ядра. Этот вариант подразумевает, что формирование звёзд происходит вследствие разделения протооблака, которое происходило быстро или очень рано.
  2. Теория промежуточного диска. В массивном протозвёздном диске, который подвержен гравитационной нестабильности, происходит резкое охлаждение газа. По этой причине в одной плоскости возникают несколько компаньонов.
  3. Динамические теории. Образование двойных звёзд – это динамические процессы, которые стимулирует соревновательная аккреция (приращение тела веществом из космического пространства).

Взаимодействие двойных и кратных звёзд

В силу того, что расстояния между участниками в двойных и иных звёздных сообществах различны, их взаимодействие имеет разный характер.

Поэтому периоды обращения в этих системах могут укладываться в часы и сутки. Если же расстояния в парах очень велики, то периоды обращений могут достигать тысячелетий, а взаимодействие членов сообщества будет практически незаметно. Также имеет значение взаимодействие двойных звёзд с иными объектами. Ими могут стать, например, молекулярные облака гигантских размеров.

Классификация двойных звёзд

Классификация двойных звёзд производится по способу их наблюдения.

Визуально-двойные. К звёздам такого типа относятся объекты, которые реально увидеть раздельно, то есть, они могут быть разрешены. Поскольку наблюдение их происходит с помощью телескопов, то большей частью они расположены не очень далеко от Солнца, а периоды их обращений достаточно велики. Каталоги WDS и CCDM насчитывают 78 000 и 110 000 подобных объектов. Но лишь для сотни из них точность вычисленных орбит позволяет определить массы компонентов.

Спектрально-двойные. Таковыми звёзды считаются, если их двойную природу определили при помощи спектрального анализа. Каталог SB9, считающийся самым известным и обширным, содержит 2839 объектов, относящихся к классу спектрально-двойных звёзд.

Источник: light-science.ru

Сириус.


Сириус, как и a Центавра, тоже состоит из двух звезд – А и В, однако в отличие от неё обе звезды имеют спектральный класс A (A-A0, B-A7) и, следовательно, значительно большую температуру (A-10000 K, B- 8000 K). Масса Сириуса А – 2,5Mсолнца , Сириуса В – 0,96Mсолнца . Следовательно, поверхности одинаковой площади излучают у этих звезд одинаковое кол-во энергии, но по светимости спутник в 10 000 раз слабее, чем Сириус. Значит, его радиус меньше в 100 раз, т.е. он почти такой же, как Земля. Между тем масса у него почти такая же, как и у Солнца. Следовательно, белый карлик имеет огромную плотность — около 10 59 0 кг/м 53 0. Существование газа такой плотности было объяснено таким образом: обычно предел плотности ставит размер атомов, являющихся системами, состоящими из ядра и электронной оболочки. При очень высокой температуре в недрах звезд и при полной ионизации атомов их ядра и электроны становятся независимыми друг от друга. При колоссальном давление вышележащих слоев это "крошево" из частиц может быть сжато гораздо сильнее, чем нейтральный газ. Теоретически допускается возможность существования при некоторых условиях звезд с плотностью, равной плотности атомных ядер. При исследовании Сириуса, даже зная о существовании спутника, его долго не могли обнаружить из-за того, что его плотность в 75 тысяч раз больше, чем у Сириуса А, а следовательно, размер и светимость ≈ в 10 тысяч раз меньше. Это связано с тем, что атомы Сириуса Bнаходятся в полностью ионизированном состоянии, а свет, как известно, излучается только при переходе электрона с орбиты на орбиту. [3]


· Важнейшие из этих данных следующие. Массы 90% звезд заключены в пределах от 0,4 до 2,0 массы Солнца. Массы звезд не могут быть ни слишком большие (например, больше массы Солнца в 100 раз), ни слишком малые (например, 1/100 солнечной).

· Компоненты двойных звезд чаще бывают представлены звездами одной светимости и одного спектрального класса, но бывают и сильные различия. Есть веские основания считать, что компоненты двойной звезды сформировались одновременно и в дальнейшем эволюционировали параллельно, оставаясь в системе.

· Масса звезды в момент ее формирования является важнейшим параметром, определяющим ее последующую эволюцию.

Данные выводы, сформулированные на основе большого опыта изучений двойных звезд, могут рассматриваться как данные наблюдений и служить материалом для обобщений и развития теорий. Особенно ценны эти данные для создания теорий внутреннего строения звезд и теорий эволюции звезд. В этом и состоит главное значение наблюдений двойных звезд в астрономии.

Литература:

2.http://www.Galactis.freenet.uz


3.http://www.referat.2000.bizforum.ru

4.Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. – М.: Наука, 1983. — 560с.

5.Гуревин Л.Э., Чернин А.Д. Происхождение Галактик и звезд. – М.: Наука, 1983. — 192с.

6.Гурштейн А.А. Известные тайны неба: книга для учащихся. – М.: Просвещение, 1984. – 272с.

7.Дагаев М.М., Демин В.Г., Климин И.А., Чаругин В.М. Астрономия: учебное пособие для студентов физмата. – М.: Просвещение. 1983. – 384с.

8.Каплан С.А. Физика звезд. М.: Наука. 1977. – 208с.

9.Куто П. Наблюдение визуально-двойных звезд; Пер. с фр. А.М.Черепащука. – М.:Мир, 1981. – 238с.

10.Сурдин В.Г. Рождение звезд: Учебно-научная монография. М.: УРСС. 1997. – 208с.

11.Шакура Н.И., Постнов К.А. Ультратестные двойные звезды // Земля и Вселенная. 1987. — №3. — С. 24-30.

12.Энциклопедия для детей. Астрономия. М.: Аванта 2003. Т.8.

 

 

 

Источник: zinref.ru

Открытие двойных звезд

Открытие двойных звезд стало одним из первых достижений, сделанных с помощью астрономического бинокля. Первой системой данного типа была пара Мицар в созвездии Большой Медведицы, которая была открыта астрономом из Италии Ричолли. Поскольку во Вселенной находится невероятное количество звезд, ученые решили, что Мицар не может быть единственной двойной системой. И их предположение оказалось полностью оправданным будущими наблюдениями.


В 1804 году Вильям Гершель, знаменитый астроном, который вел научные наблюдения в течение 24 лет, издал каталог с подробным описанием 700 двойных звезд. Но и тогда не было сведений о том, есть ли физическая связь между звездами в такой системе.

Маленький компонент «высасывает» газ из большой звезды

Некоторые ученые придерживались точки зрения о том, что двойные звезды зависят от общей звездной ассоциации. Их аргументом был неоднородный блеск составляющих пары. Поэтому складывалось впечатление, что их разделяет значительно расстояние. Для подтверждения или опровержения этой гипотезы потребовалось измерения параллактического смещения звезд. Эту миссию взял на себя Гершель и к своему удивлению выяснил следующее: траектория каждой звезды имеет сложную эллипсоидную форму, а не вид симметричных колебаний с периодом в полгода. На видео можно наблюдать эволюцию двойных звезд.

В данном видеоматериале представлена эволюция тесной двойной пары звезд:


Вы можете поменять субтитры, нажав на кнопку «cc».

Согласно физическим законам небесной механики два связанных гравитацией тела передвигаются по орбите эллиптической формы. Результаты исследования Гершеля стали доказательством предположения о том, что в двойных системах есть связь силы тяготения.

Классификация двойных звезд

Двойные звезды принято группировать на следующие виды: спектрально-двойственные, двойные фотометричные, визуально-двойные. Данная классификация позволяет составить представление о звездной классификации, однако не отражает внутреннюю структуру.

С помощью телескопа можно с легкостью определить двойственность визуально-двойных звезд. Сегодня существуют данные о 70 000 визуально-двойных звезд. При этом только 1% из них точно обладают собственной орбитой. Один орбитальный период может иметь продолжительность от нескольких десятилетий до нескольких веков. В свою очередь, выстраивание орбитального пути требует немалых усилий, терпения, точнейших расчетов и длительных наблюдений в условиях обсерватории.

Зачастую научное сообщество обладает информацией лишь о некоторых фрагментах передвижения по орбите, а недостающие участки пути они реконструируют дедуктивным методом. Не стоит забывать, что плоскость орбиты, возможно, наклонена относительно луча зрения. В данном случае видимая орбита серьезно отличается от реальной. Конечно, при высокой точности расчетов можно рассчитать и истинную орбиту двойных систем. Для этого применяются первый и второй законы Кеплера.


Как только определяется истинная орбита, ученые могут вычислить угловое расстояние между двойными звездами, массу и их период вращения. Нередко для этого используется третий закон Кеплера, который помогает найти и сумму масс компонентов пары. Но для этого нужно знать расстояние между Землей и двойной звездой.

Двойные фотометрические звезды

О двойственной природе таких звезд можно узнать только по периодическим колебаниям из блеска. Во время своего движения звезды такого типа по очереди загораживают друг друга, поэтому их нередко называют затменно-двойными. Орбитальные плоскости данных звезд приближены к направлению луча зрения. Чем меньше площадь затмения, тем ниже блеск звезды. Изучив кривую блеска, исследователь может рассчитать угол наклона плоскости орбиты. При фиксации двух затмений на кривой блеска будут два минимума (снижения). Период, когда отмечаются 3 последовательных минимума на кривой блеска, называют орбитальным периодом.

Период двойных звезд продолжается от пары часов до нескольких суток, что делает его более коротким по отношению к периоду визуально-двойных звезд (оптические двойные звезды).

Спектрально-двойственные звезды


Через метод спектроскопии исследователи фиксируют процесс расщепления спектральных линий, которое происходит в результате эффекта Доплера. Если один компонент является слабой звездой, то в небе можно наблюдать лишь периодическое колебание позиций одиночных линий. Данный метод применяет только тогда, когда компоненты двойной системы находятся на минимальном расстоянии и их идентификация с помощью телескопа осложнена.

Двойные звезды, которые можно исследовать через эффект Доплера и спектроскоп, именуют спектрально-двойственными. Однако далеко не каждая двойная звезда носит спектральный характер. Оба компонента системы могут сближаться и отдаляться друг от друга в радиальном направлении.

Согласно результатам астрономических исследований, большая часть двойных звезд располагаются в галактике Млечный Путь. Соотношение одинарных и двойных звезд в процентах рассчитать крайне сложно. Действуя через вычитание, можно вычесть количество известных двойных звезд из общего числа звездного населения. В этом случае становится очевидным, что двойные звезды составляют меньшинство. Однако данный метод нельзя назвать очень точным. Астрономам известен термин «эффект отбора». Чтобы зафиксировать двойственность звезд, следует определить их главные характеристики.


этом пригодится специальное оборудование. В ряде случаев, зафиксировать двойные звезды крайне сложно. Так, визуально двойные звезды нередко не визуализируются при значительном расстоянии от астронома. Иногда невозможно определить угловое расстояние между звездами в паре. Для фиксации спектрально-двойственных или фотометрических звезд требуется тщательно измерить длины волн в спектральных линиях и собрать модуляции световых потоков. В этом случае блеск звезд должен быть достаточно сильным.

Всё это резко уменьшает количество звезд, пригодных для изучения.

Согласно теоретическим разработкам, доля двойных звезд в звездном населении варьируется от 30% до 70%.

Источник: v-kosmose.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.