Какой цвет у звезды спектрального класса к


Звезды разных спектральных классов в сравнении

Звезды делятся на спектральные классы в зависимости от их спектра электромагнитного излучения. Из него можно получить такую важную информацию о космическом теле как температура и давление верхних слоев, химический состав, скорость вращения и прочие физические характеристики.

Получение спектров

Спектры излучения разных источников света

В простом случае спектр можно получить следующим образом: свет, излучаемый объектом, пропускается через узкое отверстие, позади которого располагается призма. Последняя преломляет свет, который после направляется на экран или специальную фотопленку. Полученное изображение представляется в виде плавного градиента цветов от фиолетового к красному. Спектр без каких-либо черных линий называется непрерывным. Подобная картина наблюдается при излучении света твердыми или жидкими телами, к примеру – лампой накаливания.

Рассмотрим следующий случай: пусть имеется горелка, в пламя которой поместили некоторую массу соли. В описанном случае в свете пламени будет наблюдаться ярко-желтый цвет. И если посмотреть через спектроскоп на эти испарения, то мы увидим яркую желтую линию. Это означает, что разогретые пары натрия излучают свет с длиной волны желтого цвета. Данное свойство присущее любому веществу в газообразном состоянии, а его спектр называется линейчатым.

При наблюдении за Солнцем немецкий оптик Йозеф Фраунгофер отметил, что в его непрерывном спектре излучения имеются некие тонкие черные линии. Позже Густав Кирхгоф определил, что всякий разреженный газ поглощает лучи света именно тех длин волн, которые испускает сам, находясь в состоянии свечения. Получаемые на непрерывном спектре черные линии были названы как линии поглощения. Применив упомянутые законы к Солнцу, ученые, смогли выявить химический состав атмосферы звезды. Так как газы в атмосфере поглощали излучение с определенными длинами волн.


40 различных спектров Солнца

В дальнейшем в спектроскопии появилось множество методов изучения других свойств звезд, то бишь смещение спектра в определенную сторону, сравнение со спектром абсолютно черного тела, раздвоение линий наложения и прочее.

Сегодня приборы ученых позволяют измерять спектры звезд, в любых диапазонах помимо оптического, при помощи различных фильтров и окуляров, например в рентгеновском или ультрафиолетовом.

Классы Анджело Секки

Впервые классифицировал звездные спектры священник и астроном из Италии — Анджело Секки. В 1866-м году он разделил все небесные светила на три группы, в зависимости от температуры поверхности звезды и соответствующего ей цвета. За последующие 11 лет астроном добавил еще два класса.

  • I – небесные светила голубого и белого цветов. В их спектре имеются широкие линии поглощения водорода. По современной классификации, звезды типа А и частично F, такие как Вега или Альтаир. Сюда же включается подкласс звезд с узкими фраунгоферовскими линиями (начало класса B), к ним относится Ригель и γ Ориона.

Вега из созвездия Лиры
  • II – звезды оранжевого или желтого цвета. Имеют малоразличимые линии поглощения водорода, и отчетливые – металлов. Среди них наше Солнце, или Капелла из созвездия Возничего. В современной классификации – G, K и конец F.
  • III – светила оранжевого и красного цветов (класс М). С четкими линиями поглощения в синем диапазоне, металлов, а также слабые линии водорода, кальция и калия. Звезды типа Антарес и Бетельгейзе.
  • IV – углеродные звезды, имеют красный цвет.
  • V – небесные светила, спектр которых имеет линии поглощения – эмиссионные линии.

Гарвардская спектральная классификация

Разработана в 1890 — 1924 годах учеными обсерватории Гарварда, и постепенно заменившая классификацию Анджело Секки, став основной и использующейся сегодня. Гарвардская классификация строится на относительной интенсивности линий поглощения и фраунгофервских линий, а также на цвете звезд.

Таблица спектральных классов звезд

Каждый из перечисленных классов включает 10 подклассов от 0 до 9, где 0 – это наиболее горячие звезды, а 9 – наиболее холодные. Лишь класс O делится иначе — от 4 до 9,5.

Йеркская классификация с учётом светимости

В 1943 г. в одноименной обсерватории была разработана еще Йеркская классификация, которая учитывает светимость звезд, что отражается в ее названии. Иначе ее называют МКК — по первым буквам фамилий ученых: В.В. Морган, П.К. Кинан и Э. Келлман. Дело в том, что Гарвардская классификация не принимает в расчет такую важную характеристику небесного светила как светимость. Позже Йеркская классификация была отображена Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США) в виде диаграммы с зависимостью спектрального класса от светимости. Таким образом, мы можем визуально наблюдать закономерность в свойствах звезд разного рода.

Ia+ или 0 — сверхгиганты с наивысшей мощностью, массой, яркостью и короткой длительностью жизни;


  • I, Ia, Iab, Ib — одни из наиболее массивных звезд – «сверхгиганты»;
  • II, IIa, IIb — светила, имеющие светимость близкую к светимости сверхгигантов, однако их массы обычно недостаточно, чтобы относить их к сверхгигантам. Называются – «яркие гиганты»;
  • III, IIIa, IIIab, IIIb — тела, обладающие большей светимостью и размером, чем звезды главной последовательности ( см. ниже), но схожей температурой верхних слоев. Зовутся как «гиганты»;
  • IV — звезды, которые некогда являлись объектами главной последовательности, однако после их водородное топливо иссякло – «субгиганты»;
  • V, Va, Vb — карлики (звезды главной последовательности, которых около 90% среди всех светил);
  • VI —класс с аномальной светимостью, промежуточный между карликами главной последовательности и белыми карликами – «субкарлики»;
  • VII — компактные объекты, являющиеся последним этапом существования большинства звезд – «белые карлики».
Звезды разных классов

Данная диаграмма позволяет также определить светимость звезды, при наличии ее спектра. Исходя из вышеописанных классификаций сегодня Солнце относят к классу G2V.

Существует множество дополнительных спектральных классов для более экзотических объектов. Например, Q – для молодых звезд, P – для планетарных туманностей, D – для белых карликов, W для самых горячих светил, температура которых превышает температуру звезд класса O, и может достигать около 100 000 К.

Характеристические особенности в классе

Очевидно, каждая звезда хоть и относится к определенному классу, все же остается индивидуальным и неповторимым объектом, как и человек. Потому существует ряд дополнительных буквенных обозначений, которые указывают на особенности светила. Тип звезды обозначается буквой, которая стоит перед спектральным классом: карлик (d от dwarf), сверхгигант (с), гигант (g), субгигант (sg), субкарлик (sd), белый карлик (w или wd).

Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик

Многие свойства звезды выражаются особенностями его спектра, для них существует множество буквенных обозначений, которые располагаются после спектрального класса, например сильные линии металлов буквой m, а резкие и узкие линии – s.

Используя вышеописанные спектральные классы, астрономы могут кратко изложить основные свойства и особенности космического объекта. Так ярчайшая точка ночного небосвода – Сириус АB представляет собой систему из двух звезд и имеет спектральный класс A1Vm/DA2. Это означает, что видимая звезда (Сириус А) относится к классу А с подклассом температуры 1, является карликом главной последовательности и имеет сильные линии металлов, о чем говорят буквы «V» и «m». Ее компаньон Сириус Б – желтый карлик с подклассом 2, имеющий в атмосфере водород, и не имеющий гелий, линии которых соответственно присутствуют/отсутствуют в спектре, на что указывает буква А.

Полная версия: https://spacegid.com/spektralnyie-klassyi-zvezd.html

Источник: zen.yandex.ru

Коричневые карлики


Какой цвет у звезды спектрального класса к
via

Коричневые карлики это тип звезд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах происходящих во время формирования звезд. Однако в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звезд подобного типа. Их спектральный класс М — T. В теории выделяется ещё один класс — обозначаемый Y.

Спектральный класс M
Спектральный класс L
Спектральный класс T
Спектральный класс Y

Белые карлики

Какой цвет у звезды спектрального класса к
via

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.


Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Красные гиганты

Какой цвет у звезды спектрального класса к
via

Красные гиганты и сверхгиганты — это звёзды с довольно низкой эффективной температурой (3000 — 5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов −3m—0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Переменные звёзды

Какой цвет у звезды спектрального класса к
via

Переменная звезда — это звезда, за всю историю наблюдения которой хоть один раз менялся блеск.
ичин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать, также блеск может измениться если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звезд принято следующее деление:

  1. Эруптивные переменные звёзды — это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
  2. Пульсирующие переменные звёзды — это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
  3. Вращающиеся переменные звёзды — это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
  4. Катаклизмические (взрывные и новоподобные) переменные звёзды. Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
  5. Затменно-двойные системы
  6. Оптические переменные двойные системы с жёстким рентгеновским излучением
  7. Новые типы переменных — типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Типа Вольфа — Райе

Какой цвет у звезды спектрального класса к
via

Звёзды Вольфа — Райе — класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа — Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота в разных степенях ионизации (NIII — NV, CIII — CIV, OIII — OV). Ширина этих полос может достигать 100 Å, а излучение в них может в 10-20 раз превышать излучение в континууме. Звёзды такого типа имеют свой класс — W. Однако подклассы строятся совсем не как у звёзд главной последовательности:

  1. WN — подкласс Вольфа-Райе звезд в спектрах которых есть линии NIII — V и HeI-II.
  2. WO — в их спектрах сильны линии кислорода. Особенно ярки линии OVI λ3811 — 3834
  3. WC — звёзды, богатые углеродом.

Окончательной ясности происхождения звезд типа Вольфа-Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звезд, сбросившие значительную часть массы на каком-то этапе своей эволюции. Типа T Тельц

Звёзды типа T Тельца

Какой цвет у звезды спектрального класса к

Звезда типа T Тельца с околозвёздным диском, via

Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS) — класс переменных звёзд, названный по имени своего прототипа Т Тельца. Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и хромосферной активности.

Они принадлежат к звёздам спектральных классов F, G, K, M и имеют массу меньше двух солнечных. Период вращения от 1 до 12 дней. Температура их поверхности такая же, как и у звёзд главной последовательности той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие.

В спектре звёзд типа T Тельца присутствует литий, который отсутствует в спектрах Солнца и других звёзд главной последовательности, так как он разрушается при температуре выше 2,500,000 K.

Новые

Какой цвет у звезды спектрального класса к
via

Новая звезда — тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2mслабее. Количество таких дней определяет, к какому классу новых относится звезда:

  1. Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
  2. Быстрые — 11<t2<25 дней
  3. Очень медленные: 151<t2<250 дней
  4. Предельно медленные, находящие вблизи максимума годами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведет себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете все ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом болометрическая светимость во время вспышки довольно долго остается неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые

Какой цвет у звезды спектрального класса к
via

Сверхно́вые звёзды — звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет — то I типа.

Гиперновые

Какой цвет у звезды спектрального класса к
via

Гиперновая — коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая. С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов в пользу существования гиперновых, но пока что гиперновые являются гипотетическими объектами. Сегодня термин используется для описания взрывов звёзд с массой от 100 до 150 и более масс Солнца. Гиперновые теоретически могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

Источник. Спасибо

Источник: universal-inf.livejournal.com

Гарвардская спектральная классификация

Данная классификация считается основной, так как она самая популярная. Была разработана ещё в 1890-1924 гг. в Гарвардской обсерватории, США. Представляет собой температурную классификацию, основанную на виде и интенсивности линий поглощения у звезды, а также ещё и испускания их спектров.

Внутри основного класса, звёзды могут делиться на свои подклассы, обозначающиеся арабской цифрой, от 0 – это самые горячие и до 9 – то есть самые холодные.

Наше Солнце, согласно основной классификации имеет класс G и подкласс 2, обозначающее температуру фотосферы в 5780 К.

Посмотреть основную классификацию в таблице

Йоркская классификация (МКК)

С дальнейшим развитием спектроскопии оказалось, что вид спектра звёзд-карликов и звёзд-гигантов зависит от их светимости. Особенно этот факт заметен в светимости некоторых элементов, присутствующих в химическом составе этих же звёзд (стронций Sr, барий Ba, железо Fe и титан Ti). Поэтому была разработана новая, йоркская классификация, уточняющая спектральные классы звёзд-гигантов и карликов.

Согласно этой классификации, звезде нужно приписывать до гарвардского спектрального класса ещё и её же класс светимости:

  • Ia+ или же 0 – значит, что это гипергиганты;
  • I, Ia, Iab, Ib – обозначает, что такие звёзды — сверхгиганты;
  • II, IIa, IIb – гиганты с большой яркостью;
  • III, IIIa, IIIab, IIIb – это гиганты;
  • IV – ветвь субгигантов;
  • V, Va, Vb – звёзды находящиеся на главной последовательности (карлики);
  • VI – субкарлики;
  • VII – белые карлики.

Вышеописанная система определяет положение звёзд на диаграмме Герцшпрунга-Рассела, в то время как гарвардская – только её абсциссу.

Наше Солнце, согласно йоркской классификации, имеет спектральный класс G2V.

спектральные классы звёзд

Классы Анджело Секки

Классификация Анджело Секки – это одна из первых разработанных классификаций, определяющая спектральные классы звёзд. Разработана она в 1860-1870 гг., и позже дополнена и немного изменена.

Согласно этой системе, все звёзды подразделяются на 5 классов:

  • I – голубые и белые звёзды, обладающие широкими линиями поглощения водорода;
  • II – оранжевые и желтые звёзды, с отчётливыми линиями металлов, но слабыми линиями водорода;
  • III – красные и оранжевые звёзды, современный М класс;
  • IV – красные звёзды, характерными сильными линиями углерода, ещё называемые углеродными звёздами;
  • V – звёзды, имеющие эмиссионные линии азота, гелия и углерода и планетарные туманности;
  • подтип Ориона – это те же звёзды I класса, только они имеют узкие линии в спектре, вместо широких.

Выше было приведено не полное описание классов Анджело Секки, так как они уже не используются.

Дополнительная спектральная классификация

Для некоторых видов звёзд также выделяют ещё и дополнительные спектральные классы, такие как:

  • W – для звёзд Вольфа-Райе;
  • L – коричневые карлики или иные звёзды, с температурой от 1500 К до 2000 К, с различными соединениями металлов в звёздной атмосфере;
  • Т – метановые коричневые карлики, с небольшими температурами в 700-1500 К;
  • Y – коричневые карлики (предположительно метано-аммиачные) с низкими температурами, до 700 К;
  • С – углеродные звёзды-гиганты;
  • S – звёзды с повышенным содержанием циркония;
  • D – белые карлики;
  • Q – новые звёзды;
  • Р – планетарные туманности.

Особенности в спектральном классе

В космосе встречаются звёзды, обладающие некоторыми особенностями в своих спектрах, не указанные в стандартных классификациях. Поэтому до обозначения этих светил добавляются свои префиксы и постфиксы.

Но не будем «углубляться в дебри», и закончим разбирать спектральные классы звёзд. Но всё же, если сильно интересно, можете посмотреть эти добавочные индексы ниже.

Источник: astromaniya.at.ua


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.