Какого размера звезды


Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.


Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.


Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.


Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.


Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.


Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.


Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Источник: myvera.ru

Объекты глубокого космоса > Звезды > Размеры звезд


Какого размера бывают звезды: описание параметров от красных карликов до сверхгигантов, сравнение размеров известных звезд на фото, классификация Солнца.

Хотя Солнце кажется нам огромным, но в общем звездном потоке считается средним. Бывают крупнее экземпляры, а иногда встречаются и совсем крошечные. Давайте же более подробно разберем вопрос о размерах звезд.

Самые маленькие звездные небесные тела – красные карлики. Они достигают половины солнечной массы, хотя встречаются и с показателем в 7.5%. Это минимальная отметка, при которой возможен ядерный синтез в ядре. Если же массы не хватает, то получаем коричневые карлики. На нижней схеме можно детально рассмотреть сравнение размеров планет Солнечной системы с Солнцем и другими крупными звездами (Сириус, Арктур, Альдебаран, Бетельгейзе, Мю Цефея).

Среди красных карликов стоит вспомнить ближайшего к нам – Проксима Центавра, достигающий 12% солнечной массы и 14% его размера (немного крупнее Юпитера).

Сегодняшний диаметр Солнца составляет 1.4 миллиона км. Но в конце существования звезда трансформируется в красного гиганта и увеличится в 300 раз, поглощая ближайшие планеты. Еще более крупной звездой выступает Ригель (голубой сверхгигант), превышающий солнечную массу в 17 раз (производит в 66000 раз больше энергии) и в 62 раза крупнее.


Хотите еще больший размер звезды? Легко! Как насчет красного сверхгиганта Бетельгейзе, который в 20 раз больше солнечной массы и завершает жизненный цикл. Есть предположение, что звезда взорвется как сверхновая в ближайшую тысячу лет.

Самой большой звездой стала VY Большого Пса. Красный сверхгигант в 1800 раз превышает размер Солнца. Если бы она встала на позицию нашей звезды в Солнечной системе, то легко достигла бы Сатурна.

Источник: v-kosmose.com

Во Вселенной бесчисленное множество звезд, причем они кардинально отличаются друг от друга как по размеру так и по массе. в прошлом ролике мы рассказывали о самой маленькой звезде, также почему в телескоп мы не видим реальные размеры звезд. Но благодаря недавним исследованиям ученых в этой области, был сделан прорыв. И сегодня мы узнаем, каковы истинные размеры звезд и какие ошибки допускали ученые раньше при измерении величин этих небесных тел.

Знание о размере звезды позволяет определить ее массу, а масса, в свою очередь, влияет на светимость, и на эволюцию светила. Маленьким звездам, красным карликам, гравитационное сжатие не позволяет нагреваться в достаточной степени, чтобы поддерживать интенсивные термоядерные реакции: такие звезды растягивают свой запас водорода на десятки миллиардов лет. У больших звезд, напротив, осуществляется очень мощное «горение» водорода, и их жизнь сокращается до сотен тысяч лет.


Но измерить диаметр даже проксимы Центавра, ближайшей к нам звезды, сложно: на таком расстоянии даже лучшие телескопы современности дают очень высокую ошибку. Получить фотографию звезды в виде диска и измерить ее напрямую все еще невозможно — Вселенная слишком огромна. Если Солнце уменьшить до размеров вишни, аналогично сжать все габариты и расстояния во вселенной, то ближайшие звезды окажутся в сотнях километров. Поэтому ученые ищут косвенные способы для совершения подобных наблюдений.

В апреле 2019 года в журнале Nature Astronomy вышла статья о том, что астрономы разработали новый способ определения размера звезды. Он основан на наблюдении за звездой в момент затмения ее астероидом из нашей Солнечной системы. И этот метод уже апробировали на двух парах «звезда—астероид», получив рекордные данные по точности измерении.

В результате удалось определить угловые размеры звезд с точностью более 0,1 угловой миллисекунды, что на порядок точнее других подобных измерений.

Свет, в виде электромагнитных волн, рассеивается (дифрагирует) на краях астероида и достигает Земли в искаженном виде. Величина искажений при этом зависит как от параметров астероида, так и от размеров источника света. Используя астероиды, свойства которых известны, астрономы могут по дифракционной картине восстановить габариты звезды.


Говоря более простыми словами, астрономы используют метод дифракции света.

Дифракция возникает, когда объект, например, астероид, проходит перед звездой, создавая тень. В этот момент времени, астрономы могут рассчитать, спустя какое количество времени свет звезды погаснет. Зная, как быстро движется астероид, астрономы могут определить размер звезды. Используя этот метод, астрономы смогли более точно измерить диаметр нескольких отдаленных звезд.

Однако для этого нужен телескоп, который собирает свет с достаточно большой площади.

А существуют ли у нас такие инструменты с помощью которых можно наблюдать за звездой используя этот метод.

Источник: pikabu.ru

Каким образом астрономы знакомятся с этими небесными объектами?

При помощи наблюдений астрономы прежде всего определяют массу, радиус и температуру на поверхности. Хотя недра звезд мы и не видим, но нам известно, что они состоят из плазмы.

Температура измеряется с помощью анализа излучения, исходящего с поверхности этого небесного тела. Из недр звезд не может вырваться ни один фотон, поэтому с “внутренностями” мы никогда непосредственно не знакомимся.

И все же человек способен точно рассчитать температуру в любой точке в глубинах этого космического тела. Так, например, в центре Солнца температура достигает тринадцати миллионов.  Более трех миллиардов  достигает температура в недрах звезд с самой большой массой.

Состав

Звезды на небе – это огромные и в то же время простые системы элементарных частиц.

Космический газовый шар средней величины построен из невероятно большого количества нуклонов (протоны и нейтроны), которое можно выразить цифрой с пятьюдесятью семью нулями.

Количество нуклонов нашего Солнца в триста тысяч раз превышает количество нуклонов, из которого состоит Земля. Количество вещества в этом теле и массу выражает количество нуклонов из которых оно складывается.

Несмотря на то, что Солнце как система по размерам во много раз превышает Землю, все же оно намного проще нашей планеты по составу. Именно такой химический состав Солнца обеспечивает эволюцию человечества.

Земля, как и остальные планетные тела, состоит из пород, порода – из кристаллов, кристаллы – из молекул, молекулы – из атомов, атомы – из ядра и электронов.

Звезды  на небе построены лишь из ядер и электронов. Именно из-за простого состава  простым является  определение температуры, массы, давления и химических элементов в любой точке внутри. Но рассчитать те же самые характеристики Земли мы пока не умеем.

Стоит отметить тот факт, что астрономы знакомы с недрами далеких звезд лучше, чем с недрами планеты, на которой мы живем.

Свойства и поведение плазмы в настоящее время достаточно хорошо изучены: известно, например, что давление в плазме тем выше, чем она горячее и плотнее. В то же время давление в определенной точке внутри  равно весу всех слоев, находящихся над этой точкой.

Если давление плазмы повышается, то звезда расширяется, в противном случае она сжимается.
Даже самые маленькие  обладают массой, примерно в десять тысяч раз превышающей массу Земли.

Самые крупные звезды на небе обладают массой в миллионы раз большей, чем масса Земли.

Размеры

Размеры звезд на небе могут быть самые разные.

Белые карлики по своим размерам равны Земле, в то же время их плотность примерно в миллион раз превышает плотность земли.

Самые маленькие звезды, которые приходилось наблюдать –  нейтронные. По объему они в сто миллионов раз меньше Земли. Чтобы в такой маленький объем могла вместиться громадная  масса, не уступающая массе обычных  нейтронные  должны обладать фантастической плотностью. Вещество этих объектов состоит только из нейтронов. Их наблюдают как пульсирующие источники радиоизлучения и называют пульсарами.

Нейтронные звезды на небе – пульсары имеют массу несколько раз больше массы Солнца.

Эволюция или развитие

Эволюция звезды представляет собой постепенное повышение температуры в ее недрах.

Эволюция начинается с  темно газо-пылевой туманности глобулы, температура которой повышается и со временем может дойти до ядра, состоящего из железа, с температурой три с половиной миллиарда. Далее гравитация начинает сжимать глобулу в протозвезду как завершающий этап формирования.

Масса

Если масса звезды меньше 0,08 MQ (MQ – масса Солнца), температура в ее недрах не достигает уровня, необходимого для сгорания водорода. Так, например, небесный объект с массой 0,06 MQ нагревается при помощи сил гравитации до температуры всего лишь до 2,5 миллионов градусов, что недостаточно для превращения водорода в гелий. Такой газовый шар способен жить лишь за счет сил гравитации. Спектр его излучения – преимущественно инфракрасный. Когда сила гравитации перестанет сжимать звезду (становится полностью вырожденным веществом), она теряет источник энергии. Вследствие этого шар остывает и превращается в черного карлика.

Если масса  находится в пределах от 0,08 MQ до 4,0 MQ, то туманность превращается в легкую звезду. К группе легких звезд желтых карликов принадлежит и наше Солнце. Температура в недрах  может достигать нескольких сотен миллионов градусов. Это означает, что в них не происходят все термоядерные реакции.

Более тяжелые звезды  группы (от 1,4 MQ ДО 4,0 MQ) называются красным гигантом. В продолжении своей жизни и прежде всего в преклонном возрасте они избавляются от большей части своей плазмы, выбрасывая ее в межзвездное пространство. Результатом последнего выброса плазмы является планетарная туманность.
Красный гигант состоит из массивного вырожденного ядра земного диаметра и огромной редкой плазменной оболочки конвективной зоны.

Глобула или газо-пылевая туманность имеющая очерченные границы и высокую плотность, масса которой составляет 4,0 MQ-8,0 MQ, эволюционирует в массивную звезду, ядро которой нагревается до температуры свыше трех миллиардов градусов.

Остаток эволюции – нейтронное космическое тело

Ученые уже посчитали когда и как потухнет Солнце и закончит свою эволюцию.

По состоянию на сейчас термоядерная реакция на Солнце израсходована на 50% в течении 5 млрд лет, следовательно Солнце не потухнет еще 5 млрд лет.

После того как полностью будут исчерпаны ядерные реакции Солнце под влиянием гравитации коллапсирует в шар диаметром примерно 20-30 километров.

В результате этого плотность коллапсировавшего ядра станет огромной: 10 15 — 1017 кг/м3, то есть 1012-1014 г/см3.  При столь большой плотности вещество способно существовать лишь в виде нейтронов, потому что все протоны в ядрах, соединившись с электронами, превратились в нейтроны. Образуется нейтронная звезда на небе.

При гравитационном коллапсе ядро газового шара сосредотачивает в себе магнитные силовые линии. Поскольку их количество не изменилось, а они были всего лишь сжаты на маленькой поверхности нейтронной звезды, интенсивность магнитного поля на поверхности резко возрастает при коллапсе ядра. Нейтронная звезда при коллапсе начинает быстро вращаться. Магнитное поле нейтронной  уносит с собой множество электронов, которые светятся всякий раз, когда двигаются по направлению к нам. Излучение нейтронной звезды (прежде всего в диапазоне радиоволн) напоминает мигающий свет на машине скорой помощи. Излучение нейтронных тел пульсирует, и по этой причине их называют также пульсарами.

Согласно исследованиям, которые провели  астрономы, в нашей Галактике должно находиться свыше миллиона пульсаров.

До сих пор мы говорили только о ядре, которое вследствие коллапса превращается в нейтронный пульсар. Слои оболочки, потерявшие опору, находятся на высоте сто тысяч километров над нейтронной звездой, но это продолжается всего лишь несколько секунд. В мощном гравитационном поле нейтронной звезды слои оболочки красного гиганта падают, подобно гигантскому стремительному водопаду на поверхность. При падении на нейтронный шар богатая водородом плазма оболочки гиганта сильно нагревается, в результате чего в ней в ничтожно короткое время происходят различные термоядерные реакции.

Собственно, речь идет о невероятно большой «водородной бомбе», разбросавшей всю плазму в окружающее межзвездное пространство. Взрыв – его называют сверхновой – столь грандиозен, что разбросанные вокруг нейтронного пульсара слои оболочки можно наблюдать спустя столетия.

Примером может послужить сверхновая в созвездии Тельца. Световое излучение этого процесса достигло Земли и было записано китайскими и арабскими астрономами в 1054 году. Сейчас определено, что  нейтронная звезда пульсирует не только в диапазоне радиоволн, но также в видимом инфракрасном спектре, в диапазоне рентгеновском и дает космическое гамма излучение. Расширяющаяся плазма этой сверхновой – туманность, которая названа Крабовидной.  Сейчас «Крабовидная туманность» в виде продолговатого пятна хорошо видна в бинокль.

Таким образом, звезды на небе представляют небесные светила имеющие различные “внеземные” характеристики и свойства.

Источник: v-nayke.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.