Как появляются звезды на небе


Человечеству стали доступны снимки отдаленных галактик и газовых скоплений, благодаря телескопам Хаббл и Кеплер, которые были разработаны под руководством НАСА. В современных обсерваториях, расположенных высоко в горах, можно наблюдать более ста тысяч звезд в видимом спектре. Все, что доступно человеческому глазу, при помощи современной космологической техники – это видимая Вселенная.

Что такое звезды?

Звезда – это особый космический объект, который может излучать свой собственный свет и тепло. Звезды проходят цикл зарождения, развития и угасания вплоть до своей гибели. Одни из них становятся гигантскими звездами на исходе своего существования такими, как Бетельгейзе, которая является красным гигантом. Другие превращаются в нейтронные звезды или пульсары, а третьи взрываются, становясь новым плацдармом для получения галактики.

Телескоп

В месте появления новой звезды сначала образуется облако газа, в котором соединяющиеся космические частицы, уже обладающие неким гравитационным полем. Через определенное время под воздействием таких физических процессов как сжатие энергия трансформируется в тепло. При достижении температуры, равной несколько миллионам градусов в области скопления частиц и газа появляются определенные термоядерные реакции, в частности водород превращается в гелий.


Такое зарождение будущей звезды может занять не один миллион лет.

Силы тяготения уплотняют газ и космическую пыль, что позволяет появится протозвезде. При достижении температуры в 12 миллионов градусов по Цельсию в протозвезде начинается излучение энергии и процесс сжатия останавливается.

Солнце

Все звезды, как было сказано выше, проходят определенный жизненный путь. В среднем, такая звезда как Солнце, живет около десяти миллиардов лет, и нашему светилу уже пять миллиардов лет. Чем больше звезда вырабатывает энергии, тем меньше срок ее жизни. Есть одиночные звезды, а есть группы звезд, которые носят название Плеяд. Стоит сказать то, что появляются из сверхмассивных образований, состоящих из космических элементов и газа.

Как зародилась Луна? Основные теории о появлении небесного тела

Луна — это привычный спутник Земли, который ярко светит в ночном небе, и она еще с давних времен вызывала массу вопросов у человечества. Каждая планета нашей солнечной системы обладает собственными лунами, больше всего их у Сатурна, обладающего колоссальной силой гравитации.


Поверхность луны

Если говорить об исторической теории появления Луны, то она приковывала внимание астрономов еще в Древней Греции. Еще в далеком 1609 году Галилео Галилей обнаружил на этом спутнике кратеры и горы, а первую научную теорию появления Луны выдвинул Джордж Дарвин, который считал, что это небесное тело отделилось от Земли в результате действия центробежных сил, и оно представляло собой магматический сгусток, который затвердел в открытом космосе и стал спутником планеты благодаря гравитационному притяжению.

Источник: poznavaemoe.ru

Сколько звезд во Вселенной?

В 2004 ученые из Австралии попытались определить примерное количество звезд. Для расчетов они выбрали случайный квадрат неба и измерили его яркость. Полученный результат разделили на среднюю яркость одной звезды и узнали количество звезд в этом квадрате. Затем этот результат распространили на всю небесную сферу, и у них получилось, что во Вселенной находится 70 000 000 000 000 000 000 000 звезд! Это намного больше, чем общее количество песчинок на нашей планете.

Рождение и жизнь звезды


Звезды, как и живые существа, рождаются, живут и умирают. Продолжительность их жизни настолько велика (до десятков миллиардов лет), что астрономы не могут проследить жизнь хотя бы одной из них от начала до конца. Зато ученых есть возможность наблюдать за звездами, находящимися на разных стадиях развития.

Образуются звезды из газопылевых облаков. Они сжимаются, потому что частицы притягиваются друг к другу. При этом температура и плотность вещества сильно возрастает. На данной стадии это уже не облако, но еще и не звезда. Поэтому его называют протозвездой (от греч. «протос» — «первый»). Постепенно ее температура достигает нескольких миллионов градусов, и тогда начинаются термоядерные реакции. Протозвезда становится звездой и многие миллиарды лет излучает энергию.

Звезда светит до тех пор, пока ее внешние слои не начинают остывать. Постепенно истощаются запасы водорода, что приводит к затуханию термоядерных реакций в недрах звезды. Остывающие внешние слои начинают светиться красным, и звезда превращается в красного гиганта. Красный гигант продолжает терять яркость до тех пор, пока не гаснет. В зависимости от размера красные гиганты могут, например, превратиться в красного карлика, или взорваться, превратившись в белого карлика, который впоследствии либо угаснет, либо превратится в нейтронную звезду, или сжаться в черную дыру.

Какие бывают звезды?


Звезды различаются по температуре, возрасту, массе, размерам, плотности, светимости и химическому составу.

По температуре различают красные, желтые, белые, голубые. Среди них самые холодные красные: температура на поверхности такой звезды составляет не более 3000°С. Желтые звезды — к ним относится и наше Солнце — имеют температуру около 6000°С; белые «разогреты» от 10 000 до 20 000°С; голубоватые же звезды — самые горячие — раскалены более чем до 30 000°С (иногда до 100 000°С). Но это температура поверхности звезд. Внутри этих светил еще жарче — до 20 млн °С.

В зависимости от размеров звезды величают гигантами (самые большие) и карликами (наименьшие). Диаметр так называемых белых карликов может быть в 100 с лишним раз меньше диаметра Солнца, при этом масса таких звезд примерно равна солнечной. По численности такие карлики составляют от 3 до 10% звездного «населения» нашей галактики.

Чем больше звезды, тем реже они встречаются в пространстве. Особенно редки гиганты. Самыми крупными являются красные гиганты. К примеру, диаметр красной звезды Бетельгейзе из созвездия Ориона более чем в 300 раз превосходит диаметр Солнца. А красный Антарес в созвездии Скорпиона по диаметру в 450 раз больше нашего светила и даже превышает орбиту Марса.

Одной из самых больших ныне известных звезд является красный сверхгигант Мю Цефея. Внутри этой звезды могли бы уместиться орбиты планет Солнечной системы вплоть до Юпитера. Мю Цефея, также известная как «гранатовая звезда Гершеля», является красным сверхгигантом и находится в созвездии Цефея.


Около половины звезд являются одиночными (как Солнце), остальные образуют двойные (например, Сириус), тройные и более сложные системы. Чем больше звезд в системе, тем реже она встречается. Известны звездные системы из семи членов, но более сложные пока не обнаружены.

Самые яркие

  • Самая яркая звезда во Вселенной — голубая звезда UW СМа.
  • Самая яркая звезда на видимом небосклоне—Денеб.
  • Самая яркая из ближайших звезд — Сириус.
  • Самая яркая звезда в Северном полушарии — Арктур.
  • Самая яркая звезда на нашем северном небе — Вега.

Межзвездные расстояния

Выражать расстояния между космическими телами в километрах неудобно. Это слишком мелкая единица измерения. Например, между Солнцем и ближайшей к нему звездой Проксима Центавра — 40 700 000 000 000 км.

Внутри Солнечной системы для измерения расстояний часто используют астрономическую единицу (а. е.). Одна астрономическая единица равна длине большой полуоси орбиты Земли. Это около 150 000 000 км. Расстояние до ближайшей звезды тогда можно записать как 270 000 а. е.

Но астрономическая единица тоже неудобна, поскольку расстояния между звездами обычно гораздо больше, чем между Солнцем и звездой Проксима Центавра. Для таких масштабов используют другие единицы: световой год и парсек. Световой год — это не время, а расстояние, проходимое светом за один земной год. В этом случае 270 000 а. е. записываются как 4,3 светового года.


Путь короче не стал, но звезда кажется как-то поближе. Большинство звезд, хорошо заметных невооруженным глазом, удалено на десятки и сотни световых лет.

Еще меньше это расстояние выглядит в парсеках (пк) — 1,32 пк (1 пк=3,26 светового года).

Что такое звездное скопление?

Звезды обычно объединяют в группы, которые называют скоплениями. Существуют шаровые и рассеянные скопления. Шаровое скопление состоит из большого количества звезд. В рассеянном их меньше, а само скопление имеет неправильную форму.

Источник: SiteKid.ru

Условия образования[править | править код]

Межзвёздные облака[править | править код]

В спиральных галактиках, таких, как Млечный Путь имеются звёзды, компактные звёзды, а также заполняющая пространство межзвёздная среда (МЗС), состоящая из газов и пыли. Плотность пыли может составлять от 10−4 до 106 частиц на кубический сантиметр и состоит как правило на 70 % (масс.) из водорода, остальную часть может составлять в основном гелий, также среда содержит в себе относительно небольшую долю тяжёлых элементов, в частности металла, оставшихся после смерти звёзд.
ста особенно высокого скопления звёздной пыли называется туманностью[1], где, как правило, и происходит образование новой звезды[2]. В эллиптических галактиках, в отличие от спиральных, происходит процесс потери холодных компонентов межзвёздной среды в течение примерно миллиарда лет, из-за чего в таких галактиках гораздо реже образуются туманности и лишь посредством столкновения с другой галактикой[3].

В туманностях, где образуются звёзды, водород находится в форме двух соединённых молекул H2, в таких случаях туманность называется молекулярным облаком. Наблюдения свидетельствуют, что в холодных облаках, как правило появляются звёзды с небольшой массой, которые сначала видны в инфракрасном спектре внутри облака, и когда облако рассеивается, то и в видимом спектре. В огромных и более тёплых молекулярных облаках могут образовываться звёзды любых масс[4]. Средняя плотность частиц в огромных облаках составляет 100 частиц на сантиметр кубический во всём облаке, чей диаметр может составлять 100 световых лет, или 9,5×1014 километров, масса звёздной пыли может достигать 6 миллионов солнечных масс (

M {displaystyle M_{odot }}


)[5]. Около половины массы материи галактик приходится на молекулярные облака[6]. В Млечном Пути находится 6000 туманностей со средней массой 100,000 M[7], ближайшая известная туманность к солнечной системе — Туманность Ориона, находящаяся на расстоянии 1300 световых лет[8], однако позже на расстоянии 420 световых лет было обнаружена другая тёмная туманность Ро Змееносца[9].

Помимо основных туманностей, существуют так называемые глобулы, отличающиеся очень высокой плотностью материи[10], хотя сами по себе глобулы не велики, они могут включать в себя до нескольких солнечных масс[11]. Их можно наблюдать в виде тёмных облаков на фоне светлых туманностей или звёзд. Примерно половина глобул образовались в процессе звёздообразования[12].


Первая наблюдаемая новорождённая звезда, чей возраст составлял 10 миллионов лет, была найдена на расстоянии в 10,4 миллиарда световых лет, когда возраст Вселенной составлял 3,3 миллиарда лет. Также исследования показывают, что звёзды сначала представляют собой турбулентный сгусток газо-богатых веществ, живущий около 500 миллионов лет, который в течение этого времени может мигрировать в центр галактики[13].

Гравитационный коллапс[править | править код]

Межзвёздное облако газа остаётся в гидростатическом равновесии до тех пор, пока кинетическая энергия давления газа находится в равновесии с потенциальной энергией внутренних гравитационных сил. Математически это выражается с помощью теоремы вириала, гласящей, что для поддержания равновесия гравитационная потенциальная энергия должна быть равна удвоенной внутренней тепловой энергии[14]. Если облако настолько массивно, что не сможет поддерживаться лишь давлением газа, то подвергается гравитационному коллапсу. Качественно гравитационная неустойчивость вызывается силами тяготения газового облака, которое противодействует давлению газа, что называется неустойчивостью Джинса и также зависит от температуры и плотности облака, которое обычно содержит в себе от тысячи до десятков тысяч солнечных масс. Это совпадает с типичной массой рассеянных звёздных скоплений, которые появились в результате гравитационного коллапса туманных скоплений[15].


Помимо огромной молекулярной массы облака, есть и ряд других причин, способных спровоцировать его сжатие, а именно столкновение двух или более облаков или взрыв сверхновой звезды, чья сила удара от взрыва может вызывать сильные возмущения в материи близ находящихся скоплений[2]. Кроме того, массовые соединения газовых облаков, приводящих к звездообразованию, могут быть спровоцированными столкновением двух или более галактик[16]. Помимо этого подобное столкновение может стать причиной формирования глобулярных кластеров[17].

Сверхмассивная чёрная дыра в ядре галактики может замедлять темп звездообразования у центра галактики. Чёрная дыра, будучи аккрецирующей материей, может начать выделять большое количество энергии, испуская сильный ветер через релятивистские струи, что и приводит к ограничению дальнейшего звездообразования, так как массивные чёрные дыры выкидывают радиочастотные излучающие частицы с околосветовой скоростью, мешающие образованию новых звёзд в стареющих галактиках[18], однако, радиоизлучения вокруг струи могут также и вызвать звездообразование. Кроме того, ослабление струи может инициировать звездообразование при столкновении с облаком[19].

При начале коллапса молекулярное облако распадается на меньшие скопления по порядочному поведению, пока осколки не образуют новую звёздную массу. В каждом из этих скоплений разрушается материя газа, что приводит к излучению энергии за счёт освобождения гравитационной потенциальной энергии. Так как плотность продолжает увеличиваться, массы становятся непрозрачными и постепенно излучают всё меньше высвобожденной энергии. Это повышает температуру массы и препятствует её дальнейшему дроблению. Частицы конденсируются во вращающиеся сферы газа, являющиеся звёздными эмбрионами[20].

Вместе с процессом разрушения облака происходят такие явления, как турбулентности, макроскопические потоки, вращения, возникновение магнитного поля и изменения геометрии облака[21][22]. Как вращение, так и магнитные поля могут препятствовать распаду облака. Турбулентность играет важную роль в возникновении фрагментации облака, а в малых масштабах она способствует развалу[23].

Протозвезда[править | править код]

Молекулярное облако во время гравитационного коллапса продолжает сжиматься до тех пор, пока не исчезнет гравитационная энергия. Избыточная энергия в основном теряется через излучение. Тем не менее, сжимающееся облако со временем становится непрозрачным для собственного излучения, что приводит к сильному повышению температуры — до 60-100 К. Частицы пыли излучают в длинноволновом инфракрасном спектре в области, где облако прозрачно. Таким образом, пыль способствует дальнейшему распаду облака[24].

Во время сжатия плотность облака увеличивается ближе к центру, и оно становится оптически непрозрачным при достижении около 10−13 граммов на кубический сантиметр. Место наибольшего скопления массы называется первым гидростатическим ядром, где начинается процесс повышения температуры, определяемой теоремой о вириале. Газ падает в сторону непрозрачной области сталкивается с ней и создаёт ударные волны, дополнительно нагревающие ядро.

Когда температура ядра достигает примерно 2000 К, начинается процесс разделения водорода, соединённого в молекулы[25]. Этот процесс сопровождается ионизацией атомов водорода и гелия. Процессы поглощения энергии сжатия продолжительны[26]. Когда плотность падающей материи составляет порядка 10−8 граммов на см³, достигается достаточная прозрачность, чтобы высвобождать излучаемую протозвездой энергию. Сочетание конвекции внутри протозвезды и излучения её внешней части способствует дальнейшему процессу сжатия звёздной материи. Это продолжается до тех пор, пока газ сохраняет достаточно высокую температуру для поддержания внутреннего давления и таким образом препятствует дальнейшему гравитационному коллапсу. Данное явление называется гидростатическим равновесием. Когда небесное тело находится на завершающем этапе образования, оно уже называется протозвездой[2].

Рождение протозвезды также сопровождается и образованием околозвёздного диска, который служит своеобразным резервуаром для дальнейшего формирования звезды. В частности, когда масса и температура звезды достигают достаточных отметок, сила гравитации вызывает процесс слияния звезды и диска. Материя диска «дождём» обрушивается на поверхность звезды. В этой стадии формируются биполярные струи, так называемые Объекты Хербига — Аро — небольшие участки туманности, являющиеся результатом скопления избыточной энергии в звезде и последующего выталкивания части массы материи звезды.

Когда процесс роста звезды за счёт окружающих газа и пыли прекращается, она ещё не является собственно звездой, и называется «звёздой до главной последовательности» или просто «звездой-PMS». Основным источником энергии данных объектов является процесс гравитационного сжатия, в отличие от сжигания водорода в «зрелых звёздах». Процесс сжатия продолжается в соответствии с вертикальным эволюционным треком Хаяши в диаграмме Герцшпрунга — Рассела[27] , пока не достигнет своей точки предела, с последующей фазой сжатия в соответствии с механизмом Кельвина — Гельмгольца. Во второй фазе температура звезды больше не меняется. Если масса звезды выше 0,5

M {displaystyle M_{odot }}

, то она продолжает сжиматься в соответствии с треком Хеньи и нагреваться до тех пор, пока в её недрах не запустится термоядерная реакция превращения водорода в гелий.[28]

С момента, когда в ядре звезды начинает гореть водород, она уже считается полноценной звездой. В научной среде этап протозвезды в звездообразовании составлен исходя из массы, равной

M {displaystyle M_{odot }}

, таким образом процесс образование более массивной звезды может занимать меньший промежуток времени и сопровождаться иными процессами.

В частности, если речь идёт о массивной протозвезде, (с массой выше 8

M {displaystyle M_{odot }}

), то сильное радиационное излучение препятствует падающей материи[29]. Ранее считалось, что за счёт этого излучение может останавливать процесс дальнейшего сжатия массивных протозвёзд и предотвращать формирование звёзд с массами больше, чем несколько десятков солнечных масс. Однако недавние исследования показали, что радиационная энергия может высвобождаться в виде мощных струй, способствуя очищению поверхности протозвезды и позволяя ей продолжать соединяться с материей околозвёздного диска[30][31].

Дальнейшая эволюция звезды изучается в астрофизике, как звёздная эволюция.

Протозвезда
PIA18928-Protostar-HOPS383-20150323.jpg
Образование протозвезды — HOPS 383 (2015).

См. также[править | править код]

  • Звездообразование

Источник: ru.wikipedia.org


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.