Возраст солнца и земли


В начале был водород — плюс несколько меньше гелия. Лишь эти два элемента (с примесью лития) наполняли молодую Вселенную после Большого взрыва, и звезды первого поколения состояли только из них. Однако, начав светить, они изменили все: термоядерные и ядерные реакции в недрах звезд создали весь ряд элементов вплоть до железа, а катастрофическая гибель самых больших из них во взрывах сверхновых — и более тяжелые ядра, включая уран. До сих пор на водород и гелий приходится не менее 98% всей обычной материи космоса, но звезды, которые образовались из пыли предыдущих поколений, содержат примеси других элементов, которые астрономы с некоторым пренебрежением совокупно называют металлами.

Каждое новое поколение звезд отличается все большей «металличностью», и Солнце не исключение. Его состав однозначно показывает, что звезда сформировалась из вещества, прошедшего «ядерную переработку» в недрах других звезд.


nbsp;хотя многие детали этой истории еще ждут объяснения, в целом клубок событий, который привел к появлению Солнечной системы, кажется вполне распутанным. Копий вокруг него было сломано немало, однако современная небулярная гипотеза стала развитием идеи, появившейся даже раньше открытия законов гравитации. Еще в 1572 году Тихо Браге объяснял появление на небе новой звезды «сгущением эфирного вещества».

Солнце

Звездная колыбель

Понятно, что никакого «эфирного вещества» не существует, а звезды образуются из тех же элементов, что и мы сами, — точнее, наоборот, это мы сложены из атомов, созданных ядерным синтезом звезд. На них приходится львиная доля массы вещества Галактики — остается не более нескольких процентов свободного диффузного газа для рождения новых светил. Но это межзвездное вещество распределяется неравномерно, местами образуя сравнительно плотные облака.


Несмотря на довольно низкую температуру (лишь несколько десятков и даже единиц градусов выше абсолютного нуля), здесь происходят химические реакции. И хотя почти всю массу таких облаков по‑прежнему составляют водород и гелий, в них появляются десятки соединений, от углекислого газа и цианида до уксусной кислоты и даже многоатомных органических молекул. В сравнении с довольно примитивным по устройству веществом звезд такие молекулярные облака — это следующая ступенька в эволюции сложности материи. Недооценивать их не стоит: они занимают не больше процента объема диска Галактики, но зато на них приходится около половины массы межзвездного вещества.

Отдельные молекулярные облака могут иметь массу от нескольких солнц до нескольких миллионов. Со временем их строение усложняется, они фрагментируются, образуя довольно сложные по структуре объекты с внешней «шубой» из сравнительно теплого (100 К) водорода и холодными локальными компактными уплотнениями — ядрами — ближе к центру облака. Такие облака живут недолго, вряд ли больше десятка миллионов лет, зато здесь происходят таинства космических масштабов. Мощные, быстрые потоки вещества перемешиваются, закручиваются и собираются все плотнее под действием гравитации, становясь непрозрачными для теплового излучения и нагреваясь. Нестабильной среде такой протозвездной туманности достаточно толчка, чтобы перейти на следующий уровень.«Если гипотеза о сверхновой верна, то она произвела лишь начальный толчок к образованию Солнечной системы и более никакого участия в ее рождении и эволюции не принимала. В этом отношении она не праматерь, а скорее праотец». Дмитрий Вибе

Праматерь


Если масса «звездной колыбели» гигантского молекулярного облака составляла сотни тысяч масс будущего Солнца, то сгустившаяся в нем холодная и плотная протосолнечная туманность была лишь в несколько раз тяжелее него. Существуют разные гипотезы о том, что вызвало ее коллапс. На одну из самых авторитетных версий указывает, например, исследование современных метеоритов, хондритов, вещество которых образовалось еще в ранней Солнечной системе и более 4 млрд лет спустя оказалось в руках земных ученых. В составе метеоритов обнаруживаются и магний-26 — продукт распада алюминия-26, и никель-60 — результат превращений ядер железа-60. Эти короткоживущие радиоактивные изотопы образуются только во взрывах сверхновых. Такая звезда, погибшая недалеко от протосолнечного облака, могла стать «праматерью» нашей системы. Этот механизм можно назвать классическим: ударная волна сотрясает все молекулярное облако, сжимая его и заставляя разделяться на фрагменты.


Однако роль сверхновой в появлении Солнца часто подвергается сомнению, и не все данные подтверждают эту гипотезу. По другим версиям, протосолнечное облако могло сколлапсировать, например, под давлением потоков вещества от близкой звезды Вольфа — Райе, отличающейся особенно большой яркостью и температурой, а также высоким содержанием кислорода, углерода, азота и других тяжелых элементов, потоки которых наполняют окружающее пространство. Впрочем, и эти «гиперактивные» звезды существуют совсем недолго и заканчивают жизнь взрывами сверхновых.

С того знаменательного события прошло больше 4,5 млрд лет — весьма приличное время, даже по меркам Вселенной. Солнечная система совершила десятки оборотов вокруг центра Галактики. Звезды кружились, рождались и умирали, появлялись и распадались молекулярные облака — и так же, как нет никакой возможности выяснить форму, которую еще час назад имело обычное облако в небе, мы не можем сказать, каким был тогда Млечный Путь и где именно на его просторах затерялись останки звезды, ставшей «праматерью» Солнечной системы. Зато мы более или менее уверенно можем сказать, что при рождении у Солнца были тысячи родственников.

Источник: www.PopMech.ru

Интересные факты о Солнце

Давайте изучим самые интересные факты о Солнца — единственной звезде Солнечной системы.

Внутри поместится миллион Земель


  • Если мы заполняем нашу звезду Солнце, то внутри поместится 960000 Земель. Но если их сжать и лишить свободного пространства, то количество увеличится до 1300000. Поверхностная площадь Солнца в 11990 раз больше земной.

Вмещает 99.86% массы системы

  • По массе превосходит земную в 330000 раз. Примерно ¾ отведено на водород, а остальное – гелий.

Почти идеальная сфера

  • Разница между экваториальным и полярным диаметрами Солнца составляет всего 10 км. А значит, перед нами одно из наиболее приближенных к сфере небесных тел.

Температура в центре поднимается до 15 млн. °C

  • В ядре Солнца такая температура возможна благодаря синтезу, где водород трансформируется в гелий. Обычно горячие объекты поддаются расширению, поэтому наша звезда могла бы взорваться, но удерживается мощной гравитацией. При этом температура поверхности Солнца равна «всего» 5780 °C.

Однажды Солнце поглотит Землю

  • Когда Солнце израсходует весь водородный запас (130 млн. лет), то перейдет к гелию. Это заставит ее увеличиваться в размерах и поглощать первые три планеты. Это этап красного гиганта.

Однажды достигнет земного размера

  • После красного гиганта оно рухнет и оставит сжатую массу в шарике земного размера. Это стадия белого карлика.

Солнечный луч добирается к нам за 8 минут

  • Земля отдалена от Солнца на 150 млн. км. Скорость света – 300000 км/с, поэтому лучу требуется 8 минут и 20 секунд. Но важно также понимать, что ушли миллионы лет, прежде чем фотоны света перешли с солнечного ядра на поверхность.

Скорость движения Солнца – 220 км/с

  • Солнце отдалено от галактического центра на 24000-26000 световых лет. Поэтому на орбитальный путь тратит 225-250 млн. лет.

Дистанция Земля-Солнце меняется в течение года

  • Земля движется по эллиптическому орбитальному пути, поэтому удаленность составляет 147-152 млн. км (астрономическая единица).

Это звезда со средним возрастом

  • Возраст Солнца – 4.5 млрд. лет, а значит оно уже сожгло примерно половину водородного запаса. Но процесс будет продолжаться еще 5 млрд. лет.

Наблюдается мощное магнитное поле

  • Солнечные вспышки выделяются в период магнитных бурь. Мы видим это в качестве формирования солнечных пятен, где скручиваются магнитные линии и вращаются словно земные торнадо.

Звезда формирует солнечный ветер

  • Солнечный ветер представляет собою поток заряженных частичек, проходящих сквозь всю Солнечную систему на ускорении в 450 км/с. Ветер появляется там, где распространяется магнитное поле Солнца.

Наименование Солнца

  • Само слово произошло от древнеаглийского, обозначающего «юг». Есть также готические и германские корни. До 700 года н.э. воскресенье называли «солнечный день». Свою роль сыграл и перевод. Изначальное греческое «heméra helíou» перешло в латинское «dies solis».

Характеристики Солнца

Солнце — звезда главной последовательности G-типа с абсолютной величиной 4.83, что ярче примерно 85% других звезд в галактике, многие из которых выступают красными карликами. При диаметре 696342 км и массе – 1.988 х 1030 кг Солнце в 109 раз крупнее Земли и в 333000 раз массивнее.


Это звезда, поэтому плотность меняется в зависимости от слоя. Средний показатель достигает 1.408 г/см3. Но ближе к ядру увеличивается до 162.2 г/см3, что в 12.4 раз превосходит земную.

В небе кажется желтым, но истинный цвет – белый. Видимость создается атмосферой. Температура возрастает с приближенностью к центру. Ядро нагревается до 15.7 млн. К, корона – 5 млн. К, а видимая поверхность – 5778 К.

Солнце выполнено из плазмы, поэтому наделено высоким магнетизмом. Есть северный и южный магнитные полюса, а линии формируют активность, наблюдаемую на поверхностном слое. Темные пятна отмечают прохладные точки и поддаются цикличности.

Выброс корональной массы и вспышки происходят, когда линии магнитного поля перенастраиваются. Цикл занимает 11 лет, во время которого активность возрастает и утихает. Наибольшее количество солнечных пятен возникает в максимуме активности.

Кажущаяся величина достигает -26.74, что в 13 млрд. раз ярче Сириуса (-1.46). Земля отдалена от Солнца на 150 млн. км = 1 а.е. Для преодоления этой дистанции световому лучу нужно 8 минут и 19 секунд.

Состав и структура Солнца


Звезда наполнена водородом (74.9%) и гелием (23.8%). Среди более тяжелых элементов присутствуют кислород (1%), углерод (0.3%), неон (0.2%) и железо (0.2%). Внутренняя часть делится на слои: ядро, радиационная и конвективная зоны, фотосфера и атмосфера. Наибольшей плотностью (150 г/см3) наделено ядро и занимает 20-25% всего объема.

На оборот оси звезда тратит месяц, но это приблизительная оценка, потому что перед нами плазменный шар. Анализ показывает, что ядро вращается быстрее внешних слоев. Пока экваториальная линия тратит 25.4 дней на оборот, то у полюсов уходит 36 дней.

В ядре небесного тела формируется солнечная энергия из-за ядерного синтеза, трансформирующего водород в гелий. В нем создается почти 99% тепловой энергии.

Между радиационной и конвективной зонами расположен переходный слой – тахолин. В нем заметно резкая перемена равномерного вращения радиационной зоны и дифференциальное вращение конвекционной, что вызывает серьезный сдвиг. Конвективная зона находится на 200000 км ниже поверхности, где температура и плотность также ниже.

Видимая поверхность именуется фотосферой. Над этим шаром свет может свободно распространяться в пространство, высвобождая солнечную энергию. В толщину охватывает сотни километров.


Верхняя часть фотосферы уступает по нагреву нижней. Температура поднимается к 5700 К, а плотность – 0.2 г/см3.

Атмосфера Солнца представлена тремя слоями: хромосфера, переходная часть и корона. Первая простирается на 2000 км. Переходная занимает 200 км и прогревается до 20000-100000 К. Четких границ у слоя нет, но заметен нимб с постоянным хаотичным движением. Корона прогревается до 8-20 млн. К, на что влияет солнечное магнитное поле.

Гелиосфера – магнитная сфера, простирающаяся за черту гелиопаузы (на 50 а.е. от звезды). Ее также называют солнечным ветром.

Эволюция и будущее Солнца

Ученые убеждены, что Солнце появилось 4.57 млрд. лет назад из-за крушения части молекулярного облака, представленного водородом и гелием. При этом оно запустило вращение (из-за углового момента) и начало нагреваться с ростом давления.

Большая часть массы сконцентрировалась в центре, а остальное превратилось в диск, который позже сформирует известные нам планеты. Гравитация и давление привели к росту тепла и ядерному синтезу. Произошел взрыв и появилось Солнце. На рисунке можно проследить этапы эволюции звезд.

Возраст солнца и земли

Сейчас звезда пребывает в фазе главной последовательности. Внутри ядра трансформируется больше 4 млн. тон вещества в энергию. Температура постоянно растет. Анализ показывает, что за последние 4.5 млрд. лет Солнце стало ярче на 30% с увеличением в 1% на каждые 100 млн. лет.

Полагают, что в итоге оно начнет расширяться и превратится в красного гиганта. Из-за увеличения размера погибнет Меркурий, Венера и, возможно, Земля. В фазе гиганта пробудет примерно 120 млн. лет.

Жизненный цикл Солнца

Потом начнется процесс уменьшения размера и температуры. Оно продолжит сжигать остатки гелия в ядре, пока не закончатся запасы. Через 20 млн. лет оно потеряет стабильность. Земля уничтожится или же раскалится. Через 500000 лет останется лишь половина солнечной массы, а внешняя оболочка создаст туманность. В итоге, мы получим белый карлик, который проживет триллионы лет и лишь потом станет черным.

Расположение Солнца в галактике

Солнце находится ближе к внутреннему краю рукава Ориона в Млечном Пути. Удаленность от галактического центра составляет 7.5-8.5 тысяч парсеков. Находится внутри локального пузыря – полость в межзвездной среде с раскаленным газом.

Солнечная система проживает в галактической жилой зоне. Эта территория наделена особыми характеристиками, способными поддерживать жизнь. Солнечное движение направлено к Веге на территории Лиры и под углом в 60 градусов от галактического центра. Среди ближайших 50 систем наше Солнце стоит на 40-м месте по массивности.

Полагают, что орбитальный путь эллиптический с присутствием возмущения от галактических спиральных рукавов. Тратит 225-250 млн. лет на один орбитальный пролет. Поэтому на сегодняшний момент выполнило лишь 20-25 орбит. Ниже можно рассмотреть карту поверхности Солнца. При желании воспользуйтесь нашими телескопами онлайн в режиме реального времени, чтобы полюбоваться звездой системы. Не забывайте отслеживать космическую погоду с указанием магнитных бурь и солнечных вспышек.

Солнечные нейтрино

Физик Евгений Литвинович о частицах нейтрино, летящих от Солнца, стандартной солнечной модели и проблеме металличности:

Карта поверхности Солнце


Ссылки

Источник: v-kosmose.com

http://www.solarsystemscope.com/

 Планета Земля — одна из девяти планет Солнечной системы. Наша планета расположена достаточно близко к Солнцу, но не является ближайшей планетой. Среднее расстояние от Солнца до самой далекой планеты, Плутона, в 40 раз превышает расстояние до Земли. Условные размеры Солнечной системы составляют примерно 50—100 астрономических единиц (Астрономическая единица — среднее расстояние от солнца до Земли, равное 149600 тыс. км). В масштабах нашей планеты это огромная величина, примерно в миллион раз больше, чем диаметр Земли.
       Наглядно представить относительные масштабы Солнечной системы можно следующим образом. Допустим Солнце изображается бильярдным шаром, диаметр которого 7 см.. Тогда Меркурий, ближайшая к Солнцу планета, находится а этом масштабе на расстоянии 280 см от него. Земля — на расстоянии 760 см, планета-гигант Юпитер расположена на расстоянии около 40 м, а самая удаленная планета — на расстоянии примерно 300 м. В таком масштабе размеры земного шара немногим больше 0,5 мм, диаметр Луны — немногим больше 0,1 мм, а диаметр орбиты Луны составляет около 3 см.

 СОЛНЕЧНАЯ СИСТЕМА

рис. Сравнительные размеры Солнечной системы

  Даже самая близкая к Солнцу звезда — Проксима Центавра удалена от него на такое огромное расстояние, что по сравнению с ним расстояния между планетами в пределах Солнечной системы кажутся ничтожными. Обычно в литературе, для оценки межгалактических и межзвездных расстояний применяют такую единицу измерения, как «световой год». Это расстояние, которое частицы света, двигаясь со скоростью 300 тыс. км/с, проходят за год. Отсюда следует, что световой год составляет 9,46 • 1012 км, или около 10000 миллиардов километров. В научной литературе обычно применяется особая единица измерения межгалактических и межзвездных и расстояний — «парсек»; 1 парсек (пк) – это 3,26 светового года. Парсек можно определить как такое расстояние, с которого радиус орбиты Земли виден под углом в 1 секунду дуги. Это достаточно маленький угол. Можно сказать, что под таким углом монетка в 1 копейку видна с расстояния в 3 километра.
       Ни одна из звезд, близко расположенных к Солнечной системе, не находится к нам ближе, чем на парсек. Например, уже упомянутая Проксима Центавра находится на расстояние около 1,3 пк от нас. В том масштабе, в котором была изображена Солнечная система, это соответствует 2 тыс. км. Все это наглядно иллюстрирует большую изолированность Солнечной системы от окружающих ее звездных систем; которые, возможно, имеют с ней некоторые сходства.
       Но звезды, окружающие Солнце, как и само Солнце составляют всего лишь ничтожную часть гигантского скопления звезд и туманностей под названием «Галактика». Это скопление звезд можно увидеть в ясные безлунные ночи как полосу Млечного Пути, пересекающую небосвод. Галактика имеет достаточно сложную структуру. В грубом приближении можно считать, что составляющие ее звезды и туманности заполняют объем, форма которого напоминает сильно сжатый эллипсоид вращения. Часто в научно-популярной литературе форму нашей Галактики сравнивают с двояковыпуклой линзой. Но на самом деле все значительно сложнее, и такая картина является довольно грубой. На самом деле оказывается, что разные типы звезд абсолютно по-разному концентрируются вокруг центра Галактики и около ее «экваториальной плоскости». Например, газовые туманности, и массивные горячие звезды сильно концентрируются к плоскости экватора Галактики (этой плоскости соответствует большой круг на небе, который проходит через центральные части Млечного Пути). Кроме того, не наблюдается значительной концентрации к галактическому центру. С другой стороны, некоторые виды звезд и звездных скоплений (так называемые «шаровые скопления) не обнаруживают почти никакой концентрации к экваториальной плоскости, но при этом характеризуются значительной концентрацией по направлению к ее центру Галактики. Между двумя такими крайними типами пространственного распределения (которые в астрономии принято называть «плоское» и «сферическое») находятся все промежуточные случаи. Тем не менее оказывается, что основная часть звезд в Галактике находится в огромном диске, диаметр которого примерно 100 тыс. световых лет, а толщина составляет около 1500 световых лет. В этом диске находится немногим более 150 млрд. различных типов звезд. Наше Солнце — одна из таких звезд, находящаяся на периферии Галактики около ее экваториальной плоскости (вернее, «всего лишь» на расстоянии примерно 30 световых лет — величина небольшая по сравнению с толщиной звездного диска).
СОЛНЕЧНАЯ СИСТЕМА

 Расстояние от Солнца до центра Галактики составляет около 30 тыс. световых лет. Звездная плотность в Галактике достаточно неравномерна. Самая высокая — в районе галактического ядра, где достигает 2 тыс. звезд на кубический парсек, это почти в 20 тыс. раз больше средней звездной плотности в окрестностях Солнца. В самом центре ядра Галактики в области с поперечным сечением 1 пк находится, по-видимому, около нескольких миллионов звезд. Также, звезды имеют тенденцию к образованию отдельных скоплений. Неплохим примером такого скопления являются Плеяды, которые можно наблюдать на нашем зимнем небе.
       В Галактике имеются и структуры гораздо больших масштабов. Исследованиями последних лет доказано, что туманности, а также горячие массивные звезды распределяются вдоль ветвей спирали. Особенно хорошо спиральная структура различима у других звездных систем — галактик (с маленькой буквы). Установить спиральную структуру Галактики, в которой мы сами находимся, оказалось крайне трудно.
       Звезды и туманности в пределах Галактики двигаются по довольно сложным траекториям. Прежде всего, они участвуют во вращении Галактики вокруг своей оси, которая перпендикулярна к плоскости ее экватора. Это вращение отлично от вращения твердого тела: различным участкам Галактики соответствуют различные периоды вращения. Так, Солнце и окружающие его звезды совершают полный оборот примерно за 200 млн. лет. Так как Солнце вместе с планетами существует около 5 млрд. лет, то за время своей эволюции оно совершило около 25 оборотов вокруг оси Галактики, то есть, возраст Солнца — всего лишь 25 «галактических лет».
       Скорость движения Солнца и окружающих звезд по их галактическим орбитам достигает около 250 км/с. На это регулярное движение вокруг галактического ядра накладываются хаотические, беспорядочные движения звезд. Их скорости гораздо меньше — порядка 10—50 км/с, причем у разных типов объектов они различны. Самые маленькие скорости у горячих массивных звезд (6—8 км/с), у звезд солнечного типа они примерно 20 км/с. Чем эти скорости меньше, тем более «плоским» является распределение этого типа звезд.
       В том масштабе, которым мы пользовались для наглядного представления Солнечной системы, размеры Галактики составляют 60 млн. км — величина, уже достаточно близкая к расстоянию от Солнца до Земли. Можно сделать вывод, что по мере проникновения во все более отдаленные области Вселенной этот масштаб уже не подходит, так как теряется его наглядность. Поэтому мы изменим масштаб. Мысленно уменьшаем орбиту Земли до размеров самой внутренней орбиты атома водород. Радиус этой орбиты равен 0,53 • 10 -8см. Тогда ближайшая звезда будет располагаться на расстоянии около 0,014 мм, галактический центр — на расстоянии около 10 см, а размеры нашей звездной системы будут примерно 35 см. Диаметр Солнца в таком ракурсе будет иметь микроскопические размеры: 0,0046 Å (ангстрем — единица длины, равная 10 -8см).
       Мы уже знаем, что звезды удалены на огромные расстояния друг от друга, и поэтому практически изолированы. В определенной мере, это означает, что звезды практически никогда не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами в Галактике. Если мы будем рассматривать Галактику как некоторую область, наполненную газом, причем роль газовых молекул и атомов играют звезды, то мы должны считать этот газ крайне разреженным. В окрестностях Солнца среднее расстояние между звездами примерно в 10 млн. раз больше, чем средний диаметр звезд. Между тем при нормальных условиях в обычном воздухе среднее расстояние между молекулами всего лишь в несколько десятков раз больше размеров последних. Заметим, однако, что в центральной области Галактики, где звездная плотность относительно высока, столкновения между звездами время от времени будут происходить. Здесь следует ожидать приблизительно одно столкновение каждый миллион лет, в то время как в «нормальных» областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд. лет, столкновений между звездами практически не было.
       Уже несколько десятилетий астрономы настойчиво изучают другие звездные системы, в той или иной степени сходные с нашей. Эта область исследований получила название «внегалактической астрономии». Она сейчас играет едва ли не ведущую роль в астрономии. В течение последних трех десятилетий внегалактическая астрономия добилась поразительных успехов. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица.
       Мы можем определить Метагалактику как совокупность звездных систем — галактик, движущихся в огромных пространствах наблюдаемой нами части Вселенной. Ближайшие к нашей звездной системе галактики — знаменитые Магеллановы Облака, хорошо видные на небе южного полушария как два больших пятна примерно такой же поверхностной яркости, как и Млечный Путь. Расстояние до Магеллановых Облаков «всего лишь» около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью нашей Галактики. Другая «близкая» к нам галактика — это туманность в созвездии Андромеды. Она видна невооруженным глазом как слабое световое пятнышко 5-й звездной величины. (Поток излучения от звезд измеряется так называемыми «звездными величинами». По определению, поток от звезды (m+1)-й величины в 2,512 раза меньше, чем от звезды m-й величины. Звезды слабее 6-й величины невооруженным глазом не видны. Самые яркие звезды имеют отрицательную звездную величину (например, у Сириуса она равна -1,5.) На самом деле это огромный звездный мир, по количеству звезд и полной массе раза в три превышающей нашу Галактику, которая в свою очередь является гигантом среди галактик. Расстояние до туманности Андромеды, или, как ее называют астрономы, М31 (это означает, что в известном каталоге туманностей Мессье она занесена под № 31), около 1800 тыс. световых лет, что примерно в 20 раз превышает размеры Галактики. Туманность М31 имеет явно выраженную спиральную структуру и по многим своим характеристикам весьма напоминает нашу Галактику. Рядом с ней находятся ее небольшие спутники эллипсоидальной формы. Наряду со спиральными системами встречаются сфероидальные и эллипсоидальные, лишенные всяких следов спиральной структуры, а также «неправильные» галактики, хорошим примером которых могут служить Магеллановы Облака.
СОЛНЕЧНАЯ СИСТЕМА
рис. Объект M31 — туманность Андромеды

В большие телескопы наблюдается огромное количество галактик. Если галактик ярче видимой 12-й величины насчитывается около 250, то ярче 16-й — уже около 50 тыс. Самые слабые объекты, которые на пределе может сфотографировать телескоп-рефлектор с диаметром зеркала 5 м, имеют 24, 5-ю величину. Оказывается, что среди миллиардов таких слабейших объектов большинство составляют галактики. Многие из них удалены от нас на расстояния, которые свет проходит за миллиарды лет. Это означает, что свет, вызвавший почернение пластинки, был излучен такой удаленной галактикой еще задолго до архейского периода геологической истории Земли!
       Иногда среди галактик попадаются удивительные объекты, например «радиогалактики». Это такие звездные системы, которые излучают огромное количество энергии в радиодиапазоне. У некоторых радиогалактик поток радиоизлучения в несколько раз превышает поток оптического излучения, хотя в оптическом диапазоне их светимость очень велика — в несколько раз превосходит полную светимость нашей Галактики. Классический пример такой радиогалактики — знаменитый объект Лебедь А. В оптическом диапазоне это два ничтожных световых пятнышка 17-й звездной величины. На самом деле их светимость очень велика, примерно в 10 раз больше, чем у нашей Галактики. Слабой эта система кажется потому, что она удалена от нас на огромное расстояние — 600 млн. световых лет. Однако поток радиоизлучения от Лебедя А на метровых волнах настолько велик, что превышает даже поток радиоизлучения от Солнца (в периоды, когда на Солнце нет пятен). Но ведь Солнце очень близко — расстояние до него «всего лишь» 8 световых минут; 600 млн. лет — и 8 мин! А ведь потоки излучения, как известно, обратно пропорциональны квадратам расстояний!
       Внимательное изучение спектров галактик много лет назад позволило сделать одно открытие фундаментальной важности. Дело в том, что по характеру смещения длины волны какой-либо спектральной линии по отношению к лабораторному стандарту можно определить скорость движения излучающего источника по лучу зрения. Иными словами, можно установить, с какой скоростью источник приближается или удаляется.
       Если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется — в сторону более длинных. Это явление называется «эффектом Доплера». Оказалось, что у галактик спектральные линии всегда смещены в длинноволновую часть спектра («красное смещение» линий), причем величина этого смещения тем больше, чем более удалена от нас галактика.
       Это означает, что все галактики удаляются от нас, причем скорость «разлета» по мере удаления галактик растет. Она достигает огромных значений. Так, например, найденная по красному смещению скорость удаления радиогалактики Лебедь А близка к 17 тыс. км/с. Рекорд принадлежит очень слабой (в оптических лучах 20-й величины) радиогалактике 3С 295. Оказалось, что известная ультрафиолетовая спектральная линия, принадлежащая ионизованному кислороду, смещена в оранжевую область спектра! Отсюда легко найти, что скорость удаления этой удивительной звездной системы составляет 138 тыс. км/с, или почти половину скорости света! Радиогалактика 3С 295 удалена от нас на расстояние, которое свет проходит за 5 млрд. лет. Таким образом, астрономы исследовали свет, который был излучен тогда, когда образовывались Солнце и планеты, а может быть, даже «немного» раньше… С тех пор открыты еще более удаленные объекты.
СОЛНЕЧНАЯ СИСТЕМА

 

 Как же выглядит Метагалактика в нашей модели, где земная орбита уменьшена до размеров первой орбиты атома Бора? В этом масштабе расстояние до туманности Андромеды будет несколько больше 6 м, расстояние до центральной части скопления галактик в Деве, куда входит и наша местная система галактик, будет порядка 120 м, причем такого же порядка будет размер самого скопления. Радиогалактика Лебедь А будет теперь удалена уже на вполне «приличное» расстояние — 2,5 км, а расстояние до радиогалактики 3С 295 достигнет 25 км…
       Мы познакомились в самом общем виде с основными структурными особенностями и с масштабами Вселенной. Это как бы застывший кадр ее развития. Не всегда она была такой, какой мы теперь ее наблюдаем. Все во Вселенной меняется: появляются, развиваются и «умирают» звезды и туманности, развивается закономерным образом Галактика, меняются сама структура и масштабы Метагалактики (хотя бы по причине красного смещения). Поэтому нарисованную статическую картину Вселенной необходимо дополнить динамической картиной эволюции отдельных космических объектов, из которых она образована, и всей Вселенной как целого.
       Открытие в 1965 г. «реликтового» излучения со всей наглядностью показало, что на самых ранних этапах эволюции Вселенная качественно отличалась от своего современного состояния. Главное — это то, что тогда не было ни звезд, ни галактик, ни тяжелых элементов. И, конечно, не было жизни. Мы наблюдаем грандиозный процесс эволюции Вселенной от простого к сложному.

 

 

Источник: galaktika.mirtesen.ru

Что такое Солнечная система?

Солнечная система состоит из Солнца и объектов, которые движутся вокруг него, удерживаясь гравитационной силой. Объекты, которые окружают Солнце, включают в себя 8 больших планет, карликовые планеты, спутники и другие тела Солнечной системы. Другие тела, составляющие Солнечную систему, включают 472 естественных спутника, 707 664 малых планет и 3 406 комет. Солнечная система расположена в локальном межзвездном облаке.

Какой возраст Солнечной системы?

Солнечная система появилась 4,568 миллиарда лет. Ученые определили ее возраст, используя радиоактивный распад изотопов, обнаруженных в метеоритах и породах. Изотопы калия и урана формировались одновременно с Солнечной системой, поэтому ее возраст сопоставим с возрастом комет и пород. Однако из-за того, что большинство пород были разрушены с течением времени, возраст Солнечной системы в настоящее время чаще измеряют с помощью метеоритов. Анализ проводится с использованием методов радиоактивного датирования для определения того, сколько из изотопов в метеоритах распалось. Таким образом, самые старые метеориты имеют возраст 4,568 миллиарда лет. Этот показатель может меняться в будущем, так как ученые говорят, что трудно обнаружить остатки метеоритов, которые не были изменены тектоническими плитами Земли.

Происхождение Солнечной системы

Считается, что Солнечная система сформировалась из-за нарушения в облаке газа и пыли сверхновой звезды, которое вызвало взрыв и волны, сжимающие пыль и облака. Затем облако начало разрушаться, в то время как газ и пыль удерживались вместе гравитационной силой, образуя Солнечную туманность. Впоследствии облако начало вращаться настолько быстро, что его центр стал более плотным и горячим. Кроме того, вокруг облака образовался диск пыли и газа. Центр диска был очень горячим, а его края прохладными. Диск становился все тоньше и тоньше, а частицы склеивались и образовывали скопления. Эти скопления формировали планеты и спутники, которые мы знаем сегодня. Со временем облако стало очень жарким и сформировало Солнце, а также появилась Солнечная система.

Будущее Солнечной системы

Поскольку Солнечная система полагается на Солнце в качестве основного источника энергии, ее будущее также связано с ним. Будучи звездой среднего возраста, ожидается, что Солнце будет гореть в течение следующих 5 миллиардов лет. Однако в конце этого периода солнце будет использовать весь водород, расположенный в его ядре. Ядро начнет сжиматься под действием силы тяжести и в результате столкновения атомов гелия и кислорода. Это приведет к выработке большего количества энергии, чем в настоящее время. Затем Солнце увеличится в 100 раз от его нынешнего размера. Оно поглотит Меркурий и Венеру и изменит цвет от желтого до красного. Что касается Земли, если она не будет поглощена Солнцем, то высокие температуры от звезды выжгут атмосферу. Кроме того, все океаны будут кипеть, и Земля больше не сможет поддерживать какую-либо жизнь.

Источник: NatWorld.info

Солнце является молодой звездой третьего поколения (популяции I) с высоким содержанием металлов, то есть оно образовалось из останков звёзд первого и второго поколений (соответственно популяций III и II). Текущий возраст Солнца (точнее время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,5 млрд лет.
Жизненный цикл солнцаСчитается, что Солнце сформировалось примерно 4,5 млрд лет назад, когда быстрое сжатие под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа звёздного населения типа T Тельца. Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 млрд лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 млн тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино. По мере того, как Солнце постепенно расходует запасы своего водородного горючего, оно становится всё горячее, а его светимость медленно, но неуклонно увеличивается.

К возрасту 5,6 млрд лет, через 1,1 млрд лет от настоящего времени, наше дневное светило будет ярче на 11 %, чем сейчас. Уже в этот период, ещё до стадии красного гиганта, возможно исчезновение жизни из-за повышения температуры поверхности Земли, вызванного увеличением яркости Солнца и парникового эффекта, индуцированного парами воды. К этому моменту Солнце достигнет максимальной поверхностной температуры (5800 К) за всё своё время эволюции в прошлом и будущем вплоть до фазы белого карлика; на следующих стадиях температура фотосферы будет меньше. Несмотря на прекращение жизни в её современном понимании, жизнь может остаться в океанах.

К возрасту 8 млрд лет (через 3,5 млрд лет от настоящего времени) яркость Солнца возрастёт на 40 %. К тому времени условия на Земле будут подобны условиям на Венере сегодня: вода с поверхности планеты исчезнет полностью и улетучится в космос. Эта катастрофа приведёт к окончательному уничтожению всех форм жизни на Земле. По мере того как водородное топливо в солнечном ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться.

К возрасту 10,9 млрд лет (6,4 млрд лет от настоящего времени), водород в ядре кончится, а образовавшийся из него гелий, ещё неспособный в этих условиях к термоядерному горению, станет сжиматься и уплотняться ввиду прекращения ранее поддерживавшего его «на весу» потока энергии из центра. Горение водорода будет продолжаться в тонком внешнем слое ядра. На этой стадии радиус Солнца увеличится в 1,59 раз, а светимость будет в 2,21 раза больше современной. В течение следующих 0,7 млрд лет Солнце будет относительно быстро расширяться (до 2,3 раз), сохраняя почти постоянную светимость, а его температура упадёт с 5500 K до 4900 K. В конце этой фазы, достигнув возраста 11,6 млрд лет (через 7 млрд лет от настоящего времени) Солнце станет субгигантом.

К возрасту 12,2 млрд лет, приблизительно через 7,6-7,8 миллиардов лет ядро Солнца разогреется настолько, что запустит процесс горения водорода в окружающей его оболочке. Это повлечёт за собой бурное расширение внешних оболочек светила, и таким образом Солнце покинет главную последовательность, на которой оно находилось почти с момента своего рождения, и станет красным гигантом. В этой фазе радиус Солнца увеличится в 256 раз по сравнению с современным. Расширение звезды приведёт к сильному увеличению её светимости (в 2700 раз) и охлаждению поверхности до 2650 К. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента из-за усиления солнечного ветра вследствие многократного увеличения площади поверхности Солнце потеряет более 28 % своей массы, что приведёт к тому, что Земля перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы. Хотя Земля, скорее всего, всё-таки будет поглощена Солнцем вследствие замедления вращения Солнца и последующих приливных взаимодействий с его внешней оболочкой, которые приведут к приближению орбиты Земли обратно к Солнцу. Даже если наша планета избежит поглощения Солнцем, вся вода на ней перейдёт в газообразное состояние, а её атмосфера будет сорвана сильнейшим солнечным ветром.

Данная фаза существования Солнца продлится лишь около десяти миллионов лет. Когда температура в ядре достигнет 100 млн К, произойдёт гелиевая вспышка, и начнётся термоядерная реакция синтеза углерода и кислорода из гелия. Солнце, получившее новый источник энергии, уменьшится в размере до 9,5 современных размеров солнца. Спустя 100—110 млн лет, когда запасы гелия иссякнут, повторится бурное расширение внешних оболочек звезды, и она снова станет красным гигантом. Этот период существования Солнца будет сопровождаться мощными вспышками, временами его светимость будет превышать современный уровень в 5200 раз. Это будет происходить от того, что в термоядерную реакцию будут вступать ранее не затронутые остатки гелия. В таком состоянии Солнце просуществует около 20 млн лет.

Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. После того как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана, и из неё образуется планетарная туманность. В центре этой туманности останется сформированный из ядра Солнца белый карлик, очень горячий и плотный объект, но размером только с Землю. Изначально этот белый карлик будет иметь температуру поверхности 120 000 К и светимость 3500 солнечных, но в течение многих миллионов и миллиардов лет будет остывать и угасать. Данный жизненный цикл считается типичным для звёзд малой и средней массы.

Автор статьи: astroson.com 2017-04-20 logo

Источник: astroson.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.