Способы изучения ядра земли



Большинство частных наук о Земле составляют науки о ее поверхности, включая атмосферу. Пока человек не проник в глубь Земли далее 12 – 15 км (Кольская сверхглубокая скважина). С глубин примерно до 200 км разными путями выносится наружу вещество недр и оказывается доступным для исследования. Сведения о более глубоких слоях добываются косвенными методами:

Регистрацией характера прохождения сейсмических волн разных типов через земные недра, изучением метеоритов как реликтовых остатков прошлого, отражающих состав и структуру вещества протопланетного облака в зоне формирования планет земной группы. На этой основе делаются выводы о совпадении вещества метеоритов определенного типа с веществом тех или других слоев земных глубин. Выводы о составе земных недр, опирающиеся на данные о химико-минералогическом составе выпадающих на землю метеоритов не считаются надежными, так как нет общепризнанной модели образования и развития Солнечной системы.

Строение Земли

Зондирование недр земли сейсмическими волнами позволило установить их оболочечное строение и дифференцированность химического состава.

Различают 3 главные концентрически расположенные области: ядро, мантия, кора. Ядро и мантия в свою очередь подразделяются на дополнительные оболочки, различающиеся физико-химическими свойствами (рис.51).


Способы изучения ядра земли

 

Рис.51 Строение Земли

 

Ядро занимает центральную область земного геоида и разделяется на 2 части. Внутреннее ядронаходится в твердом состоянии, оно окружено внешним ядром,пребывающим в жидкой фазе. Между внутренним и внешним ядрами нет четкой границы, их различает переходная зона.Считается, что состав ядра идентичен составу железных метеоритов. Внутреннее ядро состоит из железа (80 %) и никеля (20%). Соответствующий сплав при давлении земных недр имеет температуру плавления порядка 45000 С. Внешнее ядро содержит железо (52 %) и эвтектику (жидкая смесь твердых веществ), образуемую железом и серой (48 %). Не исключается небольшая примесь никеля. Температура плавления такой смеси оценивается 32000С. Чтобы внутренне ядро оставалось твердым, а внешнее жидким, температура в центре Земли не должна превышать 45000С, но и не быть ниже 32000С. С жидким состоянием внешнего ядра связывают представления о природе земного магнетизма.


Палеомагнитные исследования характера магнитного поля планеты в далеком прошлом, основанные на измерениях остаточной намагниченности земных пород, показали, что на протяжении 80 млн. лет имело место не только наличие напряженности магнитного поля, но и многократное систематическое перемагничивание, в результате которого северный и южный магнитные полюса Земли менялись местами. В периоды смены полярности наступали моменты полного исчезновения магнитного поля. Следовательно, земной магнетизм не может создаваться постоянным магнитом за счет стационарной намагниченности ядра или какой – то его части. Предполагают, что магнитное поле создается процессом, названным эффектом динамомашины с самовозбуждением. Роль ротора (подвижного элемента) динамо может играть масса жидкого ядра, перемещающаяся при вращении Земли вокруг своей оси, а система возбуждения образуется токами, создающими замкнутые петли внутри сферы ядра.

Плотность и химический состав мантии, по данным сейсмических волн, резко отличаются от соответствующих характеристик ядра. Мантию образуют различные силикаты (соединения, в основе которых кремний). Предполагается, что состав нижней мантии подобен составу каменных метеоритов (хондритов).

Верхняя мантия непосредственно связана с самым внешним слоем – корой. Она считается «кухней», где приготовляются многие слагающие кору породы или их полуфабрикаты. Полагают, что верхняя мантия состоит из оливина (60%), пироксена (30 %) и полевого шпата (10 %).
определенных зонах этого слоя происходит частичное плавление минералов и образуются щелочные базальты – основа океанической коры. Через рифтовые разломы среднеокеанических хребтов базальты поступают из мантии на поверхность Земли. Но этим не ограничивается взаимодействие коры и мантии. Хрупкая кора, обладающая высокой степенью жесткости, вместе с частью подстилающей мантии образует особый слой толщиной порядка 100 км, называемой литосферой. Этот слой опирается на верхнюю мантию, плотность которой заметно выше. Верхняя мантия обладает особенностью, определяющей характер ее взаимодействия с литосферой: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный. Литосфера создает постоянную нагрузку на верхнюю мантию и под ее давлением подстилающий слой, называемой астеносферой, проявляет пластичные свойства. Литосфера «плавает» в нем. Такой эффект называют изостазией.

Астеносфера в свою очередь опирается на более глубокие слои мантии, плотность и вязкость которых возрастает с глубиной. Причина этого – сдавливание пород, вызывающее структурную перестройку некоторых химических соединений. Например, кристаллический кремний в обычном состоянии имеет плотность 2,53 г/см3, под действием возросших давлений и температур он переходит в одну из своих модификаций, названную стишовитом, плотность, которой достигает 4,25 г/см3. Силикаты, слагаемые такой модификацией кремния, имеют очень компактную структуру. В целом же литосфера, астеносфера и остальная мантия могут рассматриваться в качестве трехслойной системы, каждая из частей которой подвижна относительно других компонентов. Особой подвижностью отличается легкая литосфера, опирающаяся на не слишком вязкую и пластичную астеносферу.


Земная кора, образующая верхнюю часть литосферы, в основном слагается из восьми химических элементов: кислород, кремний, алюминий, железо, кальций, магний, натрий и калий. Половина всей массы коры приходится на кислород, который содержится в ней в связанных состояниях, в основном в виде окислов металлов. Геологические особенности коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы – этих трех внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется. Благодаря выветриванию и сносу вещество континентальной поверхности полностью обновляется за 80 – 100 млн. лет. Убыль веществ континентов восполняется вековыми поднятиями их коры. Жизнедеятельность бактерий, растений и животных сопровождается полной сменой содержащейся в атмосфере углекислоты за 6-7 лет, кислорода – за 4 000 лет. Вся масса гидросферы (1,4 · 1018 т) целиком обновляется за 10 млн. лет. Еще более фундаментальный круговорот вещества поверхности планеты протекает в процессах, связывающих все внутренние оболочки в единую систему.


Существуют стационарные вертикальные потоки, называемые мантийными струями, они поднимаются из нижней мантии в верхнюю и доставляют туда горючее вещество. К явлениям той же природы относят внутриплитовые «горячие поля», с которыми, в частности, связывают наиболее крупные аномалии в форме земного геоида. Таким образом образ жизни земных недр чрезвычайно сложен. Отклонения от мобилистских положений не подрывают идею тектонических плит и их горизонтальных движений. Но не исключено, что в недалеком будущем появится более общая теория планеты, учитывающая горизонтальные движения плит и незамкнутые вертикальные переносы горючего вещества в мантии.

Самые верхние оболочки Земли – гидросфера и атмосфера – заметно отличаются от других оболочек, образующих твердое тело планеты. По массе это совсем незначительная часть земного шара, не более 0,025 % всей его массы. Но значение этих оболочек в жизни планеты огромно. Гидросфера и атмосфера возникли на ранней стадии формирования планеты, а может быть, и одновременно с ее формированием. Нет сомнений, что океан и атмосфера существовали 3,8 млрд. лет назад.

Образование земли шло в русле единого процесса, вызвавшего химическую дифференциацию недр и возникновение предшественников современных атмосферы и гидросферы. Вначале из зерен тяжелых нелетучих веществ оформилось протоядро Земли, затем оно очень быстро присоединило вещество, ставшее впоследствии мантией. А когда Земля достигла примерно размеров Марса, начался период ее бомбардировки планетозималиями. Удары сопровождались сильным локальным разогревом и плавлением земных пород и планетозималий. При этом выделялись газы и пары воды, содержащиеся в породах.
так как средняя температура поверхности планеты оставалась низкой, пары воды конденсировались, образуя растущую гидросферу. В этих столкновениях Земля теряла водород и гелий, но сохраняла более тяжелые газы. Содержание изотопов инертных газов в современной атмосфере позволяет судить об источнике, их породившем. Этот изотопный состав согласуется с гипотезой об ударном происхождении газов и воды, но противоречит гипотезе о процессе постепенной дегазации земных недр как источнике образования атмосферы и гидросферы. Океан и атмосфера безусловно существовали не только на протяжении всей истории Земли как сформировавшейся планеты, но и в течение основной фазы аккреции, когда протоземля имела размеры Марса.

Идея ударной дегазации, рассматриваемой как основной механизм образования гидросферы и атмосферы, получает все большее признание. Лабораторными экспериментами подтверждалась способность ударных процессов выделять из земных пород заметные количества газов, в том числе и молекулярного кислорода. А это означает, что некоторое количество кислорода присутствовало в атмосфере земли еще до того, как возникла на ней биосфера. Идеи абиогенного происхождения некоторой части атмосферного кислорода выдвигались и другими учеными.

Обе внешние оболочки – атмосфера и гидросфера – плотно взаимодействуют друг с другом и с остальными оболочками Земли, особенно с литосферой.


них оказывают прямое воздействие Солнце и Космос. Каждая из этих оболочек представляет собой открытую систему, обдающую определенной автономией и своими внутренними законами развития. Все, кто изучает воздушный и водный океаны, убеждены. Что объекты исследования обнаруживают удивительную тонкость организации, способность к саморегуляции. Но при этом ни одна из земных систем не выпадает из общего ансамбля, и их совместное существование демонстрирует не просто сумму частей, а новое качество.

Среди сообщества оболочек Земли особое место занимает биосфера. Она захватывает верхний слой литосферы, почти всю гидросферу и нижние слои атмосферы. Термин «биосфера» ввел в науку в 1875 г. австрийский геолог Э. Зюсс (1831 – 1914). Под биосферой понималась совокупность заселяющей поверхность планеты живой материи вместе со средой обитания. Новый смысл этому понятию придал В.И. Вернадский, рассматривавший биосферу как системное образование. Значимость этой системы выходит за пределы чисто земного мира, который представляет собой звено космического масштаба.

Возраст Земли

В 1896 году было открыто явление радиоактивности, это привело к развитию методов радиометрической датировки. Суть его заключается в следующем. Атомы некоторых элементов (урана, радия, тория и других) не остаются постоянными. Исходный, называемый материнский элемент спонтанно распадается, превращаясь в стабильный дочерний. Например, уран – 238, распадаясь, превращается в свинец – 206, а калий – 40 – в аргон – 40. Измеряя количество материнских и дочерних элементов в минерале, можно вычислить время, прошедшее с момента его образования: чем больше процент дочерних элементов, тем старше минерал.


Согласно радиометрической датировке, самым старым на Земле минералам 3,96 миллиарда лет, а самым старым монокристаллам – 4,3 миллиарда. Ученые считают, что сама Земля старше, потому что радиометрический отсчет ведется от момента кристаллизации минералов, а планета существовала в расплавленном состоянии. Эти данные вкупе с результатами исследований изотопов свинца в метеоритах позволяют сделать вывод о том, что вся Солнечная система сформировалась приблизительно 4,55 миллиарда лет тому назад.

5.5. Происхождение материков. Эволюция земной коры: тектоника литосферных плит

В 1915 году немецкий геофизик А. Вегенер (1880 — 1930) предположил, исходя из очертания континентов, что в геологический период существовал единый массив суши, названный им Пангеей (от греч. «вся земля»). Пангея раскололась на Лавразию и Гондвану. 135 млн. лет назад Африка отделилась от Южной Америки, а 85 млн. лет назад Северная Америка – от Европы; 40 млн. лет назад Индийский материк столкнулся с Азией и появились Тибет и Гималаи.

Решающим аргументом в пользу принятия данной концепции стало эмпирическое обнаружение в 50 – х гг.XX столетия расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит.
настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепризнанна в геологии.

Также в пользу этой теории говорит то, что береговая линия восточной части Южной Америки поразительно совпадает с береговой линией западной части Африки, а береговая линия восточной части Северной Америки – с береговой линией западной части Европы.

Одна из современных теорий, объясняющих динамику процессов в земной коре, называется теорией неомобилизма. Ее зарождение относится к концу 60 – х годов XX века и вызвано сенсационным открытием на дне океана цепи горных хребтов, оплетающих земной шар. Ничего подобного на суше нет. Альпы, Кавказ, Памир, Гималаи, даже вместе взятые, несравнимы с обнаруженной полосой срединных хребтов Мирового океана. Ее длина превышает 72 тыс. км.

Человечество как бы открыло неведомую прежде планету. Наличие узких впадин и больших котловин, глубоких ущелий, тянущихся почти непрерывно вдоль оси срединных хребтов, тысячи гор, подводных землетрясений, действующих вулканов, сильных магнитных, гравитационных и тепловых аномалий, горячих глубоководных источников, коллосальных скоплений железомарганцевых конкреций – все это обнаружено за короткий промежуток времени на дне океана.


Как выяснилось, океанической коре свойственно постоянное обновление. Она зарождается на дне рифта, секущего срединные хребты по оси. Сами хребты – из той же купели и тоже молоды. Океаническая кора «умирает» в местах расколов – там, где она подвигается под соседние плиты. Опускаясь в глубь планеты, в мантию и оплавляясь, она успевает отдать часть себя вместе с накопившимися на ней осадочными отложениями на строительство материковой коры. Расслоение недр Земли по плотности рождает своего рода течения в мантии. Эти течения обеспечивают поставку материала для разрастания океанического дна. Они же заставляют дрейфовать глобальные плиты с выступающими из Мирового океана континентами. Дрейф крупных плит литосферы с возвышающейся на них сушей и называется неомобилизмом.

Перемещение материков подтверждено в настоящее время наблюдениями с космических аппаратов. Нарождение океанской коры исследователи увидели своими глазами, приблизившись ко дну Атлантики, Тихого и Индийского океанов, Красного моря. Используя современную технику глубоководного погружения, акванавты обнаружили образование трещин в растягиваемом дне и молодые вулканчики, поднимающиеся из таких «щелей».

Источник: helpiks.org

Люди заполнили Землю. Мы завоевывали земли, летали по воздуху, ныряли в глубины океана. Мы даже побывали на Луне. Но мы никогда не были в ядре планеты. Мы даже и близко к нему не подобрались. Центральная точка Земли находится в 6000 километрах внизу, и даже самая дальняя часть ядра находится в 3000 километрах под нашими ногами. Самая глубокая дыра, которую мы сделали на поверхности — это Кольская сверхглубокая скважина в России, да и то она уходит вглубь земли на жалкие 12,3 километра.

Земля

Все известные события на Земле происходят близко к поверхности. Лава, которая извергается из вулканов, сначала плавится на глубине нескольких сотен километров. Даже бриллианты, которым необходимо чрезвычайное тепло и давление для образования, рождаются в породах на глубине не более 500 километров.

Все, что ниже, окутано тайной. Кажется недостижимым. И все же мы знаем довольно много интересного о нашем ядре. У нас даже есть некоторое представление о том, как оно сформировалось миллиарды лет назад — и все без единого физического образца. Как же нам удалось узнать так много о ядре Земли?

Для начала нужно хорошо подумать о массе Земли, говорит Саймон Редферн из Кембриджского университета в Великобритании. Мы можем оценить массу Земли, наблюдая за эффектом гравитации планеты, который она оказывает на объекты на поверхности. Выяснилось, что масса Земли составляет 5,9 секстиллиона тонн: это 59 с двадцатью нулями.

Но на поверхности нет признаков такой массы.

«Плотность материала на поверхности Земли намного ниже, чем средняя плотность всей Земли, что говорит нам о том, что есть что-то более плотное, — говорит Редферн. — Это первое».

По существу, большая часть земной массы должна быть расположена по направлению к центру планеты. Следующим шагом будет выяснить, из каких тяжелых материалов состоит ядро. И оно состоит почти полностью из железа. 80% ядра — это железо, однако точную цифру еще придется выяснить.

Главным доказательством этого является огромное количество железа во Вселенной вокруг нас. Это один из десяти самых распространенных элементов в нашей галактике, который также часто встречается в метеоритах. При всем этом на поверхности Земли намного меньше железа, чем можно было бы ожидать. Согласно теории, когда Земли образовалась 4,5 миллиарда лет назад, много железа утекло вниз к ядру.

Там сосредоточена большая часть массы, а значит, и железо должно там быть. Железо также относительно плотный элемент при нормальных условиях, а под сильным давлением в ядре Земли оно будет еще плотнее. Железное ядро могло бы объяснить всю недостающую массу.

Но погодите. Как железо вообще там оказалось? Железо должно было каким-то образом притянуться — в буквальном смысле — к центру Земли. Но сейчас этого не происходит.

Большая часть остальной Земли состоит из горных пород — силикатов — и расплавленное железо с трудом через них проходит. Подобно тому, как вода на жирной поверхности образует капли, железо собирается в небольших резервуарах, отказываясь растекаться и разливаться.

Возможное решение было обнаружено в 2013 году Венди Мао из Стэнфордского университета и ее коллегами. Они задались вопросом, что происходит, когда железо и силикат подвергаются сильному давлению глубоко в земле.

Плотно сжимая оба вещества при помощи алмазов, ученым удалось протолкнуть расплавленное железо через силикат. «Это давление существенно изменяет свойства взаимодействия железа с силикатами, — говорит Мао. — При высоком давлении образуется «сеть плавления».

Это может говорить о том, что железо постепенно проскальзывало через породы Земли в течение миллионов лет, пока не достигло ядра.

В этот момент вы можете спросить: откуда мы, собственно, знаем размер ядра? Почему ученые считают, что оно начинается в 3000 километрах? Ответ один: сейсмология.

Когда происходит землетрясение, оно посылает ударные волны по всей планете. Сейсмологи записывают эти колебания. Будто бы мы бьем по одной стороне планеты гигантским молотом и прислушиваемся к шуму на другой стороне.

«В 1960-х годах произошло землетрясение в Чили, которое дало нам огромное количество данных, — говорит Редферн. — Все сейсмические станции по всей Земле записывали толчки этого землетрясения».

В зависимости от маршрута этих колебаний, они проходят через разные участки Земли, и это влияет на то, какой «звук» они издают на другом конце.

В начале истории сейсмологии стало очевидно, что некоторые колебания пропали без вести. Эти «S-волны» ожидали увидеть на другом конце Земли после происхождения на одном, но не увидели. Причина этому простая. S-волны реверберируют через твердый материал и не могут проходить через жидкость.

Должно быть, они столкнулись с чем-то расплавленным в центре Земли. Составив карту путей S-волн, ученые пришли к выводу, что на глубине примерно 3000 километров породы становятся жидкими. Это также говорит о том, что все ядро расплавленное. Но у сейсмологов был и другой сюрприз в этой истории.

В 1930-х годах датский сейсмолог Инге Леман обнаружила, что другой тип волн, P-волны, неожиданно прошли через ядро и были обнаружены на другом конце планеты. Сразу последовало предположение, что ядро разделено на два слоя. «Внутреннее» ядро, которое начинается в 5000 километрах внизу, были твердым. Расплавлено только «внешнее» ядро.

Идея Леман была подтверждена в 1970 году, когда более чувствительные сейсмографы показали, что P-волны действительно проходят через ядро и, в некоторых случаях, отражаются от него под некоторыми углами. Неудивительно, что в конце концов они оказываются на другой стороне планеты.

Ударные волны через Землю отправляют не только землетрясения. На самом деле, сейсмологи многим обязаны развитию ядерного оружия.

Ядерный взрыв тоже создает волны на земле, поэтому государства обращаются за помощью к сейсмологам во время испытания ядерного оружия. Во время холодной войны это было чрезвычайно важно, поэтому сейсмологи вроде Леман получили большую поддержку.

Конкурирующие страны узнавали о ядерном потенциале друг друга и параллельно с этим мы узнавали все больше и больше о ядре Земли. Сейсмология до сих пор используется для обнаружения ядерных взрывов сегодня.

Теперь мы можем нарисовать примерную картину строения Земли. Есть расплавленное внешнее ядро, которое начинается примерно на полпути к центру планеты, а внутри него расположено твердое внутреннее ядро с диаметром примерно 1220 километров.

Вопросов от этого не становится меньше, особенно на тему внутреннего ядра. К примеру, насколько оно горячее? Выяснить это оказалось не так-то просто, и ученые долгое время ломали голову, говорит Лидунка Вокадло из Университетского колледжа Лондона в Великобритании. Мы не можем засунуть туда термометр, поэтому единственный возможный вариант — это создать нужное давление в лабораторных условиях.

При обычных условиях железо плавится при температуре 1538 градусов

В 2013 году группа французских ученых произвели лучшую оценку на сегодняшний день. Они подвергли чистое железо давлению в половину того, что имеется в ядре, и отталкивались уже от этого. Температура плавления чистого железа в ядре составляет примерно 6230 градусов. Присутствие других материалов может немного снизить точку плавления, до 6000 градусов. Но это все равно горячее, чем на поверхности Солнца.

Будучи своего рода поджаренной картошкой в мундире, ядро Земли остается горячим, благодаря теплу, оставшемуся от образования планеты. Оно также извлекает тепло из трения, возникающего по мере движения плотных материалов, а также распада радиоактивных элементов. Остывает оно примерно на 100 градусов по Цельсию каждый миллиард лет.

Знать эту температуру полезно, поскольку она влияет на скорость прохождения колебаний через ядро. И это удобно, потому что в этих вибрациях есть что-то странное. P-волны проходят неожиданно медленно через внутреннее ядро — медленнее, чем если бы оно состояло из чистого железа.

«Скорости волн, которые сейсмологи измерили в землетрясениях, значительно ниже, чем показывает эксперимент или компьютерный расчет, — говорит Вокадло. — Никто пока не знает, почему так».

Очевидно, к железу примешивается другой материал. Возможно, никель. Но ученые посчитали, как сейсмические волны должны проходить через железо-никелевый сплав, и не смогли подогнать расчеты под наблюдения.

Вокадло и ее коллеги в настоящее время рассматривают возможность присутствия в ядре других элементов, например, серы и кремния. Пока никто не смог придумать теорию состава внутреннего ядра, которая удовлетворила бы всех. Проблема Золушки: туфелька никому не подходит. Вокадло пытается экспериментировать с материалами внутреннего ядра на компьютере. Она надеется найти комбинацию материалов, температур и давления, которые будут замедлять сейсмические волны на правильную величину.

Она говорит, что секрет может скрываться в том факте, что внутреннее ядро находится почти в точке плавления. В результате этого точные свойства материала могут отличаться от тех, что принадлежали бы совершенно твердому веществу. Также это могло бы объяснить, почему сейсмические волны проходят медленнее, чем ожидалось.

«Если этот эффект реален, мы могли бы примирить результаты минеральной физики с результатами сейсмологии, — говорит Вокадло. — Люди пока не могут этого сделать».

Существует еще много загадок, связаных с ядром Земли, которые еще предстоит решить. Но не имея возможности погрузиться на эти невообразимые глубины, ученые совершают подвиг, выясняя, что находится в тысячах километров под нами. Скрытые процессы недр Земли чрезвычайно важно изучать. У Земли есть мощное магнитное поле, которое генерируется благодаря частично расплавленному ядру. Постоянное движение расплавленного ядра порождает электрический ток внутри планеты, и он, в свою очередь, генерирует магнитное поле, которое уходит далеко в космос.

Это магнитное поле защищает нас от вредного солнечного излучения. Не будь ядро Земли таким, каким оно является, не было бы магнитного поля, а мы бы серьезно от этого страдали. Вряд ли кто-нибудь из нас сможет увидеть ядро своими глазами, но хорошо просто знать, что оно там есть.

Источник: Hi-News.ru

МЕТОДЫ ИЗУЧЕНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ЗЕМЛИ.

Объектами, которые изучаетгеология, являются земная кора и литосфера. Задачи геологии:

— изучение вещественного состава внутренних оболочек Земли;

— изучение внутреннего строения Земли;

— изучение закономерностей развития литосферы и земной коры;

— изучение истории развития жизни на Земле и др.

Методы науки включают как собственно геологические, так и методы сопряженных наук (почвоведения, археологии, гляциологии, геоморфологии и проч.). В числе главных методов можно назвать следующие.

1. Методы полевой геологической съемки — изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов.

2. Геофизические методы — используются для изучения глубинного строения Земли и литосферы. Сейсмические методы, основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы, изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и,следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности — Матуяма.

3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы.

5. Метод актуализма — протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом.

6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли).

Нутреннее строение Земли

Чтобы понять каким образом геологи создали модель строения Земли, надо знать основные свойства и их параметры, характеризующие все части Земли. К таким свойствам (или характеристикам) относятся:

1. Физические — плотность, упругие магнитные свойства, , давление и температура.

2. Химические — химический состав и химические соединения, распределение химических элементов в Земле.

Исходя из этого, определяется выбор методов исследования состава и строения Земли. Кратко рассмотрим их.

Прежде всего, отметим, что все методы разделяются на:

· прямые — опираются на непосредственное изучение минералов и горных пород и их размещении в толщах Земли;

· косвенные — основаны на изучении физических и химических параметров минералов, пород и толщ с помощью приборов.

Прямыми методами мы можем изучить лишь верхнюю часть Земли, т.к. самая глубокая скважина (Кольская) достигла~12 км. О более глубоких частях можно судить по вулканическим извержениям.

Глубинное внутреннее строение Земли изучается косвенными методами, в основном комплексом геофизических методов. Рассмотрим основные из них.

1.Сейсмический метод (греч. сейсмос — трясение) — опирается на явление возникновения и распространения упругих колебаний (или сейсмических волн) в различных средах. Упругие колебания возникают в Земле при землетрясениях, падениях метеоритов или взрывах и начинают распространяться с разной скоростью от очага их возникновения (очага землетрясения) до поверхности Земли. Выделяют два типа сейсмических волн:

1-продольные P-волны (самые быстрые), проходят через все среды — твердые и жидкие;

2-поперечные S-волны, более медленные и проходят только через твердые среды.

Сейсмические волны при землетрясениях возникают на глубинах от 10 км до 700 км. Скорость сейсмических волн зависит от упругих свойств и плотности горных пород, которые они пересекают. Достигая поверхности Земли, они как бы просвечивают ее и дают представление о той среде, которую пересекли. Изменение скоростей дает представление о неоднородности и расслоенности Земли. Кроме изменения скоростей, сейсмические волны испытывают преломление, проходя через неоднородные слои или отражение от поверхности, разделяющей слои.

2.Гравиметрический метод основан на изучении ускорения силы тяжести Dg, которое зависит не только от географической широты, но и от плотности вещества Земли. На основании изучения этого параметра установлена неоднородность в распределении плотности в разных частях Земли.

3.Магнитометрический метод — основан на изучении магнитных свойств вещества Земли. Многочисленные измерения показали, что различные горные породы отличаются друг от друга по магнитным свойствам. Это приводит к образованию участков с неоднородными магнитными свойствами, которые позволяют судить о строении Земли.

Сопоставляя все характеристики, ученые создали модель строения Земли, в которой выделяют три главные области (или геосферы):

1-Земная кора, 2-Мантия Земли, 3-Ядро Земли.

Каждая из них в свою очередь разделяется на зоны или слои. Рассмотрим их и основные параметры суммируем в таблице.

1. Земная кора (слой А)- это верхняя оболочка Земли, ее мощность колеблется от 6-7км до 75км.

2.Мантия Земли подразделяется на верхнюю (со слоями: В и С) и нижнюю (слой D).

Параметры   Геосферы Глубина поверхностираздела, км Название границы Скорость распространения сейсмических волн

Vp Vs

 

Плотность г/см3 Химический состав
Земная кора слой А Мохоровичича 5.5-7.4 3.2-4.3 2.8 O, Si, Al
  Мантия верхняя   нижняя слой В слой С слой D _ _ _ Гуттенберга 7.9-9.0 9.0-11.4 11.4-13.6 13.6 4.5-5.0 5.0-6.4 6.4-7.3 7.3 3.7 4.6 5.5-5.7 перидотиты дуниты Si, Mg, Fe оксиды пиролит
внешнее слой Е Ядро переходная слой F внутреннее слой G _ Лемана _ 8.1-10.4 10.4-9.5 11.2-11.3 _ _ _ 9.7-10.0 11.5 12.5-13 Fe+Ni+FeO FeS-троилит Fe+Ni
                 

3. Ядро — подразделяется на внешнее (слой Е) и внутреннее (слой G), между которыми располагается переходная зона — слой F.

Границей между земной корой и мантией является раздел Мохоровичича, между мантией и ядром также резкая граница- раздел Гуттенберга.

Из таблицы видно, что скорость продольных и поперечных волн возрастает от поверхности к более глубоким сферам Земли.

Особенностью верхней мантии является наличие зоны, в которой резко падает скорость поперечных волн до 0.2-0.3 км/сек. Это объясняется тем, что наряду с твердым состоянием, мантия частично представлена расплавом. Этот слой пониженных скоростей называют астеносферой. Его мощность 200-300 км, глубина 100-200 км.

На границе мантии и ядра происходит резкое снижение скорости продольных волн и затухание скорости поперечных волн. На основании этого сделано предположение, что внешнее ядро находится в состоянии расплава.

Средние значения плотности по геосферам показывают ее возрастание к ядру.

О химическом составе Земли и ее геосфер дают представление:

1- химический состав земной коры,

2 — химический состав метеоритов.

Химический состав земной коры изучен достаточно детально — известен ее валовый химический состав и роль химических элементов в минерало- и породообразовании. Труднее обстоит дело с изучением химического состава мантии и ядра. Прямыми методами мы этого пока сделать не можем. Поэтому применяют сравнительный подход. Исходным положением является предположение о протопланетном сходстве между составом метеоритов, упавших на землю, и внутренних геосфер Земли.

Все метеориты, попавшие на Землю, по составу делятся на типы:

1-железные, состоят из Ni и 90% Fe;

2-железокаменные (сидеролиты) состоят из Fe и силикатов,

3-каменные, состоящие из Fe-Mg силикатов и включений никелистого железа.

На основании анализа метеоритов, экспериментальных исследований и теоретических расчетов ученые предполагают (по таблице), что химический состав ядра — это никелистое железо. Правда, в последние годы высказывается точка зрения, что кроме Fe-Ni в ядре могут быть примеси S, Si или О. Для мантии химический спектр определяется Fe-Mg силикатами, т.е. своеобразный оливино-пироксеновый пиролит слагает нижнюю мантию, а верхнюю — породы ультраосновного состава.

Химический состав земной коры включает максимальный спектр химических элементов, который выявляется в многообразии минеральных видов, известных к настоящему времени. Количественное соотношение между химическими элементами достаточно велико. Сравнение наиболее распространенных элементов в земной коре и мантии показывает, что ведущую роль играют Si, Al и О2.

Таким образом, рассмотрев основные физические и химические характеристики Земли, мы видим, что их значения неодинаковы, распределяются зонально. Тем самым, давая представление о неоднородном строении Земли.

Строение Земной коры

Рассмотренные нами ранее типы горных пород — магматические, осадочные и метаморфические участвуют в строении земной коры. По своим физико-химическим параметрам все породы земной коры группируются в три крупных слоя. Снизу вверх это: 1-базальтовый, 2-гранито-гнейсовый, 3-осадочный. Эти слои в земной коре размещены неравномерно. Прежде всего, это выражается в колебаниях мощности каждого слоя. Кроме того, не во всех частях наблюдается полный набор слоев. Поэтому более детальное изучение позволило по составу, строению и мощности выделить четыре типа земной коры: 1-континентальный, 2-океанский, 3-субконтинентальный, 4-субокеанский.

1. Континентальный тип— имеет мощность 35-40 км до 55-75 км в горных сооружениях, содержит в своем составе все три слоя. Базальтовый слой состоит из пород типа габбро и метаморфических пород амфиболитовой и гранулитовой фаций. Называется он так потому, что по физическим параметрам он близок базальтам. Гранитный слой по составу — это гнейсы и гранито-гнейсы.

2.Океанский тип — резко отличается от континентального мощностью (5-20 км, средняя 6-7 км) и отсутствием гранито-гнейсового слоя. В его строении участвуют два слоя: первый слой осадочный, маломощный (до 1 км), второй слой — базальтовый. Некоторые ученые выделяют третий слой, который является продолжением второго, т.е. имеет базальтовый состав, но сложен ультраосновными породами мантии, подвергшихся серпентинизации.

3.Субконтинентальный тип — включает все три слоя и этим близок к континентальному. Но отличается меньшей мощностью и составом гранитного слоя (меньше гнейсов и больше вулканических пород кислого состава). Этот тип встречается на границе континентов и океанов с интенсивным проявлением вулканизма.

4. Субокеанский тип — располагается в глубоких прогибах земной коры (внутриконтинентальные моря типа Черного и Средиземного). От океанского типа отличается большей мощностью осадочного слоя до 20-25 км.

Проблема формирования земной коры.

По Виноградову- процесс формирования земной коры происходил по принципу зонной плавки. Суть процесса: вещество Протоземли, близкое к метеоритному, в результате радиоактивного прогрева расплавлялось и более легкая силикатная часть поднималась к поверхности, а Fe-Ni концентрировалась в ядре. Таким образом, происходило формирование геосфер.

Следует отметить, что земная кора и твердая часть верхней мантии объединяются в литосферу, ниже которой располагается астеносфера.

Тектоносфера — это литосфера и часть верхней мантии до глубин 700км (т.е. до глубины самых глубоких очагов землетрясений). Названа так потому, что здесь происходят основные тектонические процессы, определяющие перестройку этой геосферы.

 

Земная кора.

Земная кора в масштабе всей Земли представляет тончайшую пленку и по сравнению с радиусом Земли ничтожна. Она достигает максимальной толщины 75км под горными массивами Памира, Тибета, Гималаев . несмотря на маленькую мощность, земная кора имеет сложное строение.

Верхние ее горизонты довольно хорошо изучены при помощи бурения скважин.

Строение и состав земной коры под океанами и на континентах очень сильно различаются. Поэтому и принято выделять два основных типа земной коры – океаническую и континентальную.

Земная кора океанов занимает примерно56% поверхности планеты, и главной ее чертой является небольшая толщина – в среднем около 5-7 км. Но даже такая тонкая земная кора подразделяется на два слоя.

Первый слой – осадочный, представлен глинами, известковыми илами. Второй слой сложен базальтами – продуктами извержений вулканов. Мощность базальтового слоя на дне океанов не превышает 2 км.

Континентальная (материковая) земная кора занимает площадь меньше, чем океаническая, около 44% поверхности планеты. Континентальная кора толще океанической, ее средняя мощность 35-40км, а в области гор достигает 70-75 км. Она состоит из трех слоев.

Верхний слой слагают разнообразные осадки, их мощность в некоторых впадинах, например, в Прикаспийской низменности, составляет 20-22 км. Преобладают отложения мелководий – известняки, глины, пески, соли и гипс. Возраст пород 1,7 млрд.лет.

Второй слой – гранитный – он хорошо изучен геологами, т.к. имеются выходы его на поверхность, а также предпринимались попытки пробурить его, хотя попытки пробурить весь слой гранита оказались неудачными.

Состав третьего слоя не очень ясен. Предполагают, что он должен быть сложен породами типа базальтов. Мощность его составляет 20-25 км. В основании третьего слоя прослеживается поверхность Мохоровичича.

Повехность Мохо.

В 1909г. на Балканском полуострове, около г.Загреба, произошло сильное землетрясение. Хорватсякий геофизик Андрия Мохоровичич,изучая сейсмограмму, записанную в момент этого события, заметил, что на глубине примерно 30 км скорость волн существенно увеличивается. Данное наблюдение подтвердили и другие сейсмологи. Значит, существует некий раздел, ограничивающий снизу земную кору. Для его обозначения ввели особый термин – поверхность Мохоровичича (или раздел Мохо).

Мантия

Под корой на глубинах от 30-50 до 2900 км расположена мантия Земли. Из чего же она состоит? Главным образом из горных пород, богатых магнием и железом.

Мантия занимает до 82% объема планеты и подразделяется на верхнюю и нижнюю. Первая залегает ниже поверхности Мохо до глубины 670 км. Быстрое падение давления в верхней части мантии и высокая температура приводят к плавлению ее вещества.

На глубине от 400 км под материками и 10-150 км под океанами, т.е. в верхней мантии, был обнаружен слой, где сейсмические волны распространяются сравнительно медленно. Этот слой назвали астеносферой ( от греч. “астенес” — слабый). Здесь доля расплава составляет 1-3%, более пластичная. Чем остальная мантия, астеносфера служит “смазкой”, по которой перемещаются жесткие литосферные плиты.

По сравнению с породами, слагающими земную кору, породы мантии отличаются большой плотностью и скорость распространения сейсмических волн в них заметно выше.

В самом “подвале” нижней мантии – на глубине 1000км и до поверхности ядра – плотность постепенно увеличивается. Из чего состоит нижняя мантия, пока остается загадкой.

Ядро.

Предполагают, что поверхность ядра состоит из вещества, обладающего свойствами жидкости. Граница ядра находится на глубине 2900км.

А вот внутренняя область, начинающаяся с глубины 5100км, ведет себя как твердое тело. Это обусловлено очень высоким давлением. Даже на верхней границе ядра теоретически рассчитанное давление составляет около 1,3 млн.атм. а в центре достигает 3 млн.атм. Температура здесь может превышать 10000 Способы изучения ядра земли С. Каждый куб. см вещества земного ядра весит 12 -14 г.

Очевидно, вещество внешнего ядра Земли гладкое, почти как пушечное ядро. Но оказалось, что перепады “границы” достигают 260км.

Лист-конспект урока “Оболочки Земли. Литосфера. Земная кора.”

Тема урока. Строение Земли и свойства земной коры.

1. Внешние оболочки Земли:

Атмосфера — _______________________________________________________________

Гидросфера -_______________________________________________________________

Литосфера — ________________________________________________________________

Биосфера — _________________________________________________________________

2. Литосфера-____________________________________________________________

3. Строение Земли:

 

 

МЕТОДЫ ИЗУЧЕНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ЗЕМЛИ.

Объектами, которые изучаетгеология, являются земная кора и литосфера. Задачи геологии:

— изучение вещественного состава внутренних оболочек Земли;

— изучение внутреннего строения Земли;

— изучение закономерностей развития литосферы и земной коры;

— изучение истории развития жизни на Земле и др.

Методы науки включают как собственно геологические, так и методы сопряженных наук (почвоведения, археологии, гляциологии, геоморфологии и проч.). В числе главных методов можно назвать следующие.

1. Методы полевой геологической съемки — изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов.

2. Геофизические методы — используются для изучения глубинного строения Земли и литосферы. Сейсмические методы, основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы, изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и,следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности — Матуяма.

3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы.

5. Метод актуализма — протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом.

6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли).

Источник: cyberpedia.su

При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.

Обнажение горных пород  – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Породы в обнажении обычно скрыты тонким слоем осыпи, поэтому прежде всего его очищают от лишнего материала. При изучении обнажения обращают внимание на то, какими породами оно сложено, каковы состав и мощность этих пород, порядок их залегания (рис. 17). Обнажение тщательно описывают, зарисовывают или фотографируют. Из каждого пласта берут пробы для дальнейшего изучения в лаборатории. Лабораторный анализ проб необходим для того, чтобы определить химический состав пород, их происхождение и возраст.

Способы изучения ядра земли

Рис. 17.  Схема обнажения горизонтально залегающих горных пород, прорезанных вулканической жилой

Бурение скважин  позволяет глубже проникнуть в толщу Земли. При бурении извлекают образцы пород – керн. А затем на основании изучения керна определяют состав, строение, залегание пород и строят чертеж пробуренной толщи – геологический разрез  местности. Сопоставление многих разрезов дает возможность установить, как залегают породы, и составить геологическую карту территории.

При изучении внутреннего строения Земли особенно велико значение глубоких и сверхглубоких скважин. Самая глубокая скважина находится на Кольском полуострове, где бур достиг отметки более 12 км.

Недостаток и наблюдения обнажений и буровых работ состоят в том, что они позволяют изучить только тонкую пленку земной поверхности. Так, глубина даже Кольской сверхглубокой скважины составляет менее 0,25 % радиуса Земли.

Сейсмический метод  дает возможность «проникнуть» на большие глубины.

В основе этого метода лежит представление о том, что сейсмические волны  (от греческого сейсмос –  волна, колебание) в средах разной плотности распространяются с неодинаковой скоростью: чем плотнее среда, тем больше скорость. На границе двух сред часть волн отражается и подобно кругам на воде идет обратно, а другая – распространяется дальше.

Искусственно возбуждая волны на поверхности Земли путем взрывов, сейсмологи фиксируют время, за которое отраженные волны вернулись назад. Для этих целей применяется прибор-самописец – сейсмограф.

Различают два вида сейсмических волн – продольные и поперечные. Продольные распространяются во всех средах – твердых, жидких и газообразных, а поперечные – только в твердой среде.

Зная, с какой скоростью распространяются волны в песках, глинах, гранитах, базальтах и других породах, по времени их прохождения «туда и обратно» можно определить глубину залегания пород, различающихся по плотности.

Источник: ours-nature.ru

Внутреннее строение Земли

Планета Земля состоит из трех основных слоев: земной коры, мантии и ядра. Можно сравнить земной шар с яйцом. Тогда яичная скорлупа будет представлять собой земную кору, яичный белок — мантию, а желток — ядро.

Внутреннее строение Земли. Источник: Климанова О.А. География 5-6 классы

Способы изучения ядра земли

Верхняя часть Земли носит название литосфера (в переводе с греческого «каменный шар»). Это твердая оболочка земного шара, в состав которой входит земная кора и верхняя часть мантии.

Земная кора

Земная кора — это каменная оболочка, которая покрывает всю поверхность нашей планеты. Под океанами ее толщина не превышает 15-ти километров, а на материках — 75-ти. Если вернуться к аналогии с яйцом, то земная кора по отношению ко всей планете тоньше, чем яичная скорлупа. На долю этого слоя Земли приходится всего 5% объема и менее 1% массы всей планеты.

В составе земной коры ученые обнаружили оксиды кремния, щелочных металлов, алюминия и железа. Кора под океанами состоит из осадочного и базальтового слоев, она тяжелее континентальной (материковой). В то время как оболочка, покрывающая континентальную часть планеты, имеет более сложное строение.

Выделяют три слоя континентальной земной коры:

  • осадочный (10-15 км в основном осадочных пород);

  • гранитный (5-15 км метаморфических пород, по свойствам схожих с гранитом);

  • базальтовый (10-35 км магматических пород).

Разрез земной коры. Источник: Климанова О.А. География 5-6 классы

Способы изучения ядра земли

Мантия

Под земной корой располагается мантия («покрывало, плащ»). Этот слой имеет толщину до 2900 км. На него приходится 83% от общего объема планеты и почти 70% массы. Состоит мантия из тяжелых минералов, богатых железом и магнием. Этот слой имеет температуру свыше 2000°C. Тем не менее большая часть вещества мантии сохраняет твердое кристаллическое состояние из-за огромного давления. На глубине от 50 до 200 км располагается подвижный верхний слой мантии. Он называется астеносфера («бессильная сфера»). Астеносфера очень пластична, именно из-за нее происходит извержение вулканов и формирование залежей полезных ископаемых. В толщину астеносфера достигает от 100 до 250 км. Вещество, которое проникает из астеносферы в земную кору и изливается иногда на поверхность, называется магмой («месиво, густая мазь»). Когда магма застывает на поверхности Земли, она превращается в лаву.

Ядро

Под мантией, словно под покрывалом, располагается земное ядро. Оно находится в 2900 км от поверхности планеты. Ядро имеет форму шара радиусом около 3500 км. Поскольку людям еще не удалось добраться до ядра Земли, о его составе ученые строят догадки. Предположительно, ядро состоит из железа с примесью других элементов. Это самая плотная и тяжелая часть планеты. На нее приходится всего 15% объема Земли и аж 35% массы.

Считается, что ядро состоит из двух слоев — твердого внутреннего ядра (радиусом около 1300 км) и жидкого внешнего (около 2200 км). Внутреннее ядро словно бы плавает во внешнем жидком слое. Из-за этого плавного движения вокруг Земли образуется ее магнитное поле (именно оно защищает планету от опасных космических излучений, и на него реагирует стрелка компаса). Ядро — самая горячая часть нашей планеты. Долгое время считалось, что температура его достигает, предположительно, 4000-5000°C. Однако в 2013 году ученые провели лабораторный эксперимент, в ходе которого определили температуру плавления железа, которое, вероятно, входит в состав внутреннего земного ядра. Так выяснилось, что температура между внутренним твердым и внешним жидким ядром равна температуре поверхности Солнца, то есть около 6000 °C.

Строение нашей планеты — одна из множества неразгаданных человечеством тайн. Большая часть информации о нем получена косвенными методами, еще ни одному ученому не удалось добыть образцы земного ядра. Изучение строения и состава Земли по-прежнему сопряжено с непреодолимыми трудностями, но исследователи не сдаются и ищут новые способы добыть достоверные сведения о планете Земля.

Методические рекомендации

При изучении темы «Внутреннее строение Земли» у учащихся могут возникать трудности с запоминанием названий и очередности слоев земного шара. Латинские наименования будет намного легче запомнить, если дети создадут собственную модель Земли. Можно предложить ученикам выполнить модель земного шара из пластилина или рассказать о его устройстве на примере фруктов (кожура — земная кора, мякоть — мантия, косточка — ядро) и предметов, имеющих схожую структуру. Поможет в проведении урока учебник География. 5-6 классы О.А.Климановой, где вы найдете красочные иллюстрации и подробные сведения по теме.


#ADVERTISING_INSERT#

Источник: rosuchebnik.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.