Расстояние между землей и солнцем в метрах


Расстояния между планетами Солнечной системы сильно варьируются. Причина этого в том, что крупные небесные тела имеют эллиптические орбиты и ни одна из них не является идеальными кругами. Например, расстояние между Меркурием и Землей может составлять от 77 миллионов километров в ближайшей точке до 222 миллионов километров в самой дальней. На расстояниях между планетами существует огромное количество различий в зависимости от их положения на орбитальном пути.

В таблице ниже показаны восемь планет и среднее расстояние между ними.

В таблицах есть и другие параметры, помимо расстояния между планетами солнечной системы в масштабе. Также вы можете ознакомиться со второй таблицей.

Расстояние между Солнцем и планетами Солнечной системы

Восемь планет в нашей системе планид занимают свои орбиты вокруг Солнца. Они вращают звезду в эллипсах. Это означает, что их расстояние до светила меняется в зависимости от того, где они находятся на своих траекториях. Когда они приближаются к Солнцу, это называется перигелием, и когда они находятся от него дальше всего, это называется афелием.


Поэтому говорить о том, какое расстояние между планетами Солнечной системы, бывает довольно трудно — не только потому, что их расстояния постоянно меняются, но также и потому, что пролеты огромны — их порой бывает трудно измерить. По этой причине астрономы часто используют термин, называемый астрономической единицей и представляющий дистанцию от Земли до Солнца.

В приведенной ниже таблице (впервые созданной основателем Universe Today Фрейзером Каином в 2008 году) показаны все планеты и их отдаленность от Солнца.

Пример конкретных небесных тел

Рассмотрим расстояние между планетами Солнечной системы в км, используя конкретные примеры.

  • Меркурий.

Ближайшее расстояние от Солнца: 46 миллионов км/29 миллионов миль (0,307 AU).

Самое дальнее расстояние от Солнца: 70 миллионов км/43 миллиона миль (0,666 AU).

Среднее расстояние: 57 миллионов км/35 миллионов миль (0,387 AU).

Близость к Земле: 77,3 миллиона км/48 миллионов миль.

  • Венера.

Ближайшее расстояние от Солнца: 107 миллионов км/66 миллионов миль (0,718 AU).

Самое дальнее расстояние от Солнца: 109 миллионов км/68 миллионов миль (0,728 AU).

Среднее расстояние: 108 миллионов км/67 миллионов миль (0,722 AU).

Близость к Земле:147 миллионов км/91 миллион миль (0,98 AU).

  • Марс.

Ближайшее расстояние от Солнца: 205 миллионов км/127 миллионов миль (1,38 AU).

Самое дальнее расстояние от Солнца: 249 миллионов км/155 миллионов миль (1,66 AU).

Среднее расстояние: 228 миллионов км/142 миллиона миль (1,52 AU).

Близость к Земле: 55 миллионов км/34 миллиона миль.

  • Юпитер.

Ближайшее расстояние от Солнца: 741 млн. км/460 млн. миль (4,95 AU).

Самое дальнее расстояние от Солнца: 817 миллионов км/508 миллионов миль (5,46 AU).

Среднее расстояние: 779 миллионов км/484 миллиона миль (5,20 AU).

Близость к Земле: 588 миллионов км/346 миллионов миль.

  • Сатурн.

Ближайшее расстояние от Солнца: 1,35 миллиарда км/839 миллионов миль (9,05 AU).

Самое дальнее расстояние от Солнца: 1,51 миллиарда км/938 миллионов миль (10,12 AU)Средняя: 1,43 млрд. км/889 млн. миль (9,58 AU).

Близость к Земле: 1,2 миллиарда км/746 миллионов миль.

  • Уран.

Ближайшее расстояние от Солнца: 2,75 млрд. км/1,71 млрд. миль (18,4 AU).

Самое дальнее расстояние от Солнца: 3,00 млрд. км/1,86 млрд. миль (20,1 AU).

Среднее расстояние: 2,88 млрд. км/1,79 млрд. миль (19,2 AU).

Близость к Земле: 2,57 млрд. км/1,6 млрд. миль.

  • Нептун.

Ближайшее расстояние от Солнца: 4,45 млрд. км/2,7 млрд. миль (29,8 AU).

Самое дальнее расстояние от Солнца: 4,55 миллиарда км/2,83 миллиарда миль (30,4 AU).

Среднее расстояние: 4,50 млрд. км/2,8 млрд. миль (30,1 AU).

Близость к Земле: 4,3 млрд. км/2,7 млрд. миль.

  • Плутон.

Ближайшее расстояние от Солнца: 4,44 миллиарда км/2,76 миллиарда миль (29,7 AU).

Самое дальнее расстояние от Солнца: 7,38 миллиарда км/4,59 миллиарда миль (49,3 AU).

Среднее расстояние: 5,91 млрд. км/3,67 млрд. миль (39,5 AU).

Близость к Земле: 4,28 миллиарда км/2,66 миллиарда миль.

Что из себя представляет наша система?

Это гравитационно связанная система Солнца и объектов, которые прямо или косвенно вращаются вокруг этого светила, включая восемь крупных и пять карликовых планет, как это определено Международным астрономическим союзом (МАС). Из объектов, которые непосредственно вращаются вокруг Солнца, восемь являются планетами, а остальные — меньшими объектами, такими как карлики-планетоиды и малые тела Солнечной системы.

История

Солнечная система образовалась четыре с половиной миллиарда лет назад в результате некоего гравитационного коллапса, природа которого полностью не исследована. Известно лишь, что на месте нашей системы когда-то было огромное облако газа и множество астероидов. Из этих небесных тел в итоге возникли все известные нам планеты, а также малые объекты системы. Газовые планеты, равно как и Солнце, появились из того самого первичного облака пыли и газовых смесей. Расстояние между Солнцем и планетами Солнечной системы менялось с течением времени, пока не достигло нынешних стабильных показателей. Достоверно известно лишь то, что в других системах газовые планеты-гиганты находятся ближе к Солнцу, и это делает нашу систему уникальной.

Малые объекты


Помимо планет, наша система также изобилует разнообразными малыми объектами. К ним относятся Плутон, Церера, различные кометы и большой астероидный пояс. Астероидное кольцо, вращающееся вокруг Сатурна, также можно отнести к малым объектам нашей прекрасной системы. Их орбиты довольно нестабильны и они как бы дрейфуют в космосе, потому их расстояние от планет и друг от друга постоянно меняется в зависимости от различных гравитационных факторов. О закономерности расстояния между планетами Солнечной системы вы сможете узнать из материала ниже.

Другие характеристики

Также наша система примечательна постоянными потоками заряженных частиц, источником которых является Солнце. Эти потоки называются Солнечным ветром. Впрочем, к основной теме статьи они не имеют особого отношения, но этот факт весьма примечателен в контексте понимания того, чем является окружающий космос и где мы с вами живем. Наша система находится в зоне, называемой Рукав Ориона, расположенной на расстоянии в 26000 световых лет от самого центра нашей же галактики Млечного Пути. Можно сказать, что мы с вами обитаем на самой, что ни на есть, периферии Вселенной!

Проблема восприятия

На протяжении большей части истории человечество не признавало и не понимало концепцию Солнечной системы. Большинство людей до позднего Средневековья-Ренессанса считали Землю неподвижной в центре Вселенной, категорически отличающейся от божественных или эфирных объектов, которые двигались по небу. Хотя греческий философ Аристарх из Самоса впервые выдвинул гипотезу о гелиоцентрическом строении космоса, Николай Коперник первым разработал математически прогностическую гелиоцентрическую систему. О закономерности расстояний между планетами Солнечной системы вы узнаете ниже.

Еще немного о расстоянии


Дистанция от Земли до Солнца составляет 1 астрономическую единицу (AU, 150 000 000 км, 93 000 000 миль). Для сравнения, радиус Солнца составляет 0,0047 AU (700 000 км). Таким образом, главная звезда занимает 0,00001% (10-5%) объема сферы с радиусом размером земной орбиты, тогда как объем Земли составляет примерно одну миллионную (10-6) от Солнца. Юпитер — самая большая планета — составляет 5,2 астрономических единиц (780 000 000 км) от Солнца и имеет радиус 71 000 км (0,00047 AU), тогда как самая отдаленная планета Нептун составляет 30 AU (4,5 × 109 км) от светила.

За некоторыми исключениями, чем дальше небесное тело или пояс от Солнца, тем больше расстояние между его орбитой и орбитой ближайшего объекта к нему. Например, Венера примерно на 0,33 AU дальше от Солнца, чем Меркурий, тогда как Сатурн — 4,3 AU от Юпитера, а Нептун — 10,5 AU от Урана.

Были предприняты попытки определить связь между этими орбитальными расстояниями (например, закон Тиция-Боде), но такая теория не была принята. Некоторые изображения в этой статье показывают орбиты различных составляющих Солнечной системы в разных масштабах.

Моделирования расстояния


Существуют такие модели Солнечной системы, которые пытаются передать относительные масштабы, связанные с Солнечной системой и с расстояниями между планетами системы планид. Некоторые из них небольшие по масштабу, тогда как другие распространяются по городам или регионам. Крупнейшая такая масштабная модель — Солнечная система Швеции, использует 110-метровый (361 футовый) глобус Эриксона в Стокгольме в качестве фигуры Солнца, и, следуя шкале, Юпитер — это 7,5-метровая (25-футовая) сфера, тогда как самый дальний текущий объект, Седна, — это 10 см (4 дюйма) сфера в Лулео, в 912 км (567 миль) от смоделированного светила.

Если расстояние от Солнца до Нептуна увеличено до 100 метров, то светило будет иметь диаметр около 3 см (примерно две трети диаметра мяча для гольфа), планеты-гиганты будут меньше, чем около 3 мм, а диаметр Земли наряду с таковыми других наземных планет будет меньше, чем блоха (0,3 мм) в этом масштабе. Для создания столь экстраординарных моделей используются математические формулы и вычисления, учитывающие реальные расстояния между планетами Солнечной системы и золотое сечение.

Источник: FB.ru

Точное расстояние на сегодняшний день

Расстояние между центрами Земли и Солнца принято считать равным 149 597 870 км, но этот показатель условен. Планета совершает движение по эллиптической орбите, поэтому ее удаленность от звезды постоянно меняется.

Понятие астрономической единицы


Расстояние, на которое удалено Солнце от Земли, называют астрономической единицей. С ее помощью принято совершать измерения дистанций между космическими объектами. Русское обозначение единицы — а.е., в международном формате — au.

Решением Международного астрономического союза с 2012 г. астрономическая единица привязана к Международной системе единиц (СИ) и равна 149 597 870 700 м. Данный показатель используется для вычислений, не требующих высокой точности. В ином случае рассчитывается величина для нужного момента времени.

Современные технологии космической отрасли позволяют определять величину астрономической единицы с высокой точностью. Наблюдая за изменениями ее значения, в 2004 г. российские ученые Г. Красинский и В. Брумберг обнаружили, что Земля и Солнце расходятся. Постепенное отклонение объектов незначительно и составляет около 15 см ежегодно. Причина явления пока не установлена, но выдвинуто много интересных гипотез.

Влияние приливов и отливов на дистанцию

По мнению команды японского астрофизика Такахо Миура, расхождение рассматриваемых космических объектов объясняется приливным взаимодействием. Невзирая на малые размеры планеты относительно Солнца, она должна порождать в теле звезды приливы, т. к. более близкие участки светила притягиваются немного сильнее, чем дальние. Подобные приливы передвигаются по поверхности и тормозят вращение объекта. Поскольку полный момент импульса системы Земля-Солнце сохраняется, происходит незначительное расширение гелиоцентрической орбиты.

Афелий и перигелий


Афелий и перигелий характеризуют максимальный и минимальный параметры удаленности Земли от звезды. Это связано с эллиптической формой орбиты Земли.

Афелий, или апогелий — это дальняя точка гелиоцентрической орбиты Земли, которая удалена от Солнца на 152 098 233 км. Термином «афелий» астрофизики называют точку гелиоцентрической орбиты любого космического тела, которая находится максимально далеко от нашей звезды. Земля максимально отдаляется от Солнца в период с 3 по 7 июля.

Соответственно, перигелий — ближайшая точка, которая располагается на расстоянии 147 098 291 км от звезды. Земля ежегодно проходит эту отметку со 2 по 5 января.

Измерения расстояния до Солнца в Древней Греции

Древнегреческие ученые стали первопроходцами в вопросе определения расстояния от Земли до Солнца. В то время они располагали лишь простым инструментарием и геометрическими методами.

Предположения Аристарха Самосского

Основой для его вычислений стало предположение, что шарообразная Луна отражает солнечный свет. Когда она будет располагаться в половине фазы, можно провести прямой угол Земля-Луна-Солнце. При этом сторона Земля-Луна является катетом, а Земля-Солнце — гипотенузой. Согласно идее Аристарха, расстояние до звезды выражается отношением катета к гипотенузе и составляет 1:19. Данный результат отличается от действительных значений в 20 раз, что связано с неточными расчетами. Аристарх брал за основу данные визуальных наблюдений, что всегда чревато большими погрешностями.


Измерения Гиппарха Никейского

Величайшим астрономом античности называли Гиппарха Никейского — древнегреческого математика II в. до н.э. Он привнес в астрономические вычисления более точные методы древневавилонских исследователей.

Фундаментом метода Гиппарха стало понимание причины лунных затмений, заключающейся в том, что спутник оказывается в тени нашей планеты. При этом тень имеет коническую форму с вершиной, расположенной ближе к Луне. Применив простейшие измерительные инструменты, астроном вычислил радиусы исследуемых объектов. Используя правила подобия треугольников, он смог определить удаленность Солнца. Полученное значение составило 382 тыс. км. Результаты Гиппарха были признаны самыми точными за период древней истории.

Расчеты Нового времени

Исследователи Нового времени подошли к расчетам космических расстояний более скрупулезно. Большинство их трудов обладали высокой точностью и признаны научными кругами тех лет.

Метод прямоугольных треугольников Кристиана Гюйгенса

Нидерландский ученый Кристиан Гюйгенс в 1653 г. предпринял попытку произвести собственные расчеты. Его методика оказалась похожа на подход Аристарха Самосского. Гюйгенс также применил метод исследования прямоугольного треугольника, только для системы Земля-Венера-Солнце. Случайно угадав величину Венеры, он произвел вычисления. Научные круги не восприняли измерения астронома всерьез, посчитав их догадкой.


Измерения Кассини и Рише

В 1672 г. Джованни Кассини, находясь в Париже, проводил наблюдения за движением Марса по звездному небу. Аналогичные исследования он поручил своему помощнику Жану Рише, отправив коллегу в Гвиану.

Для измерений Кассини использовал расположение звезд, окружающих Марс, а затем сопоставил данные с наблюдениями Рише. Ученому удалось определить длину отрезка Земля-Марс, на основе которой он смог вычислить дистанцию Земля-Солнце. Астроном использовал научные методы, благодаря чему результаты его работы были признаны.

Метод параллакса

В своих экспериментах Кассини и Рише использовали явление параллактического смещения — видимого изменения положения космического тела относительно фоновых объектов, отдаленных от него на некоторое расстояние. Смещение становится очевидным, когда наблюдатель меняет точку обзора.

Метод стандартных свечей

Посредством тригонометрических параллаксов определяются расстояния до близких космических объектов. Для измерения дистанций тел, удаленных на большое расстояние, применяется метод стандартных свечей. Он учитывает правило, согласно которому освещенность уменьшается обратно пропорционально квадрату расстояния.

В качестве стандартных свечей выступают звезды. Поскольку светила с идентичной температурой и размерами излучают одинаковую энергию, однотипные звезды используются для определения расстояний. Зная удаленность и величину энерговыделения Солнца, можно вычислить расстояние до похожих звезд.

Исследования Новейшего времени

Технологии Новейшего времени произвели революцию в астрономических исследованиях, позволив получить максимально точные данные о расстояниях в космосе.

Метод радиолокации

Измерение расстояния с помощью радиолокации базируется на передаче импульсов к небесному телу. Отправленные волны отражаются от объекта и возвращаются. После этого анализируется их интенсивность и время движения, на основании чего рассчитывается пройденная дистанция.

Сложность использования метода радиолокации состоит в том, что интенсивность волн уменьшается обратно пропорционально четвертой степени расстояния до изучаемого объекта. Для решения задачи приходится создавать мощные передатчики и большие антенны. Но затраты оправдываются высокой точностью полученных данных. Погрешность составляет несколько километров.

Определение дистанции лазером

Принцип лазерной локации идентичен радиоволновому методу. Мощный передатчик направляет к небесному телу световой луч, который отражается от него и возвращается на Землю. Интенсивность и время его прохождения учитываются при расчете расстояния.

Данный метод отличается высокой точностью и позволяет получать данные с погрешностью до нескольких долей сантиметра, но для реализации метода требуется технологически сложное и дорогостоящее оборудование.

Единицы измерения космических расстояний

Для оперирования гигантскими космическими расстояниями земные меры не подходят. В астрономии существуют три главные единицы измерения:

  1. Астрономическая единица — составляет 149,6 млн км.
  2. Световой год — составляет около 9 460 730 472 580 800 м и представляет собой пройденное световой волной за юлианский год расстояние.
  3. Парсек — примерно равен 3,26 светового года и определяется как дистанция, с которой радиус орбиты Земли виден под углом в 1 секунду дуги. Данная мера применяется профессиональными астрономами вместо светового года.

Астрономическая единица используется для вычисления дистанций в пределах Солнечной системы, а световой год и парсек — для оценки межзвездных космических расстояний.

Источник: o-kosmose.ru

Международный астрономический союз (IAU) впервые установил точное значение астрономической единицы. Эта самая важная в астрономии величина, равная среднему расстоянию от Земли до Солнца, до сих пор представляла собой череду запутанных расчётов. Отныне она составляет ровно 149 597 870 700 метров.

Никаких глобальных последствий этого нововведения не предвидится. Единственными людьми, кто почувствует изменение, будут сами астрономы. Теперь их расчёты будут точнее. К тому же им не придётся тратить уйму времени, чтобы донести представление об астрономической единице до своих студентов.

По официальной версии, впервые расстояние от Земли до Солнца было измерено в 1672 году знаменитым астрономом Джованни Кассини. Он наблюдал за Марсом, находясь в Париже, в то время как его коллега Жан Рише делал то же самое из Французской Гвианы в Южной Америке.

Расстояние от Франции до Французской Гвианы послужило базой параллактического треугольника, из которого они определили расстояние до Марса, а затем по уравнениям небесной механики вычислили расстояние до Солнца, получив значение 140 миллионов километров.

Однако измерения проводились и ранее. В труде под названием Praeparatio evangelica римский историк Евсевий Кесарийский утверждает, что греческий математик Эратосфен ещё в третьем веке до нашей эры измерил это расстояние в 804 миллиона стадий, что примерно равно 149 миллионам километров. (Стоит отметить, что своеобразный язык автора допускает другой вариант перевода, где эта цифра во много раз меньше.)

До второй половины XX века метод параллакса, использованный Кассини, оставался единственным надёжным способом вычисления расстояний в Солнечной системе. Поэтому астрономическая единица оставалась комбинацией констант, которые преобразовывали угловые измерения в расстояния. В результате на десятой ассамблее IAU, прошедшей в 1958 году в Москве, эта величина была сформулирована как "Радиус круговой орбиты пробного тела в изотропных координатах, угловая скорость обращения по которой при пренебрежении всеми телами Солнечной системы кроме Солнца была бы точно равна 0,017 202 098 95 радиан в эфемеридные сутки".

Помимо сложной формулировки старое определение астрономической единицы доставляло астрономам ряд других сложностей. Например, на значение а.е. влияла общая теория относительности Энштейна. В зависимости от того, где находится наблюдатель – на Земле или на Юпитере, величина изменялась на тысячу и более метров. Также термин был привязан к массе Солнца, которая, как известно, снижается. А значит, и значение астрономической единицы с течением времени меняется.

Пересмотренное определение позволяет забыть об этих проблемах. Фиксированное расстояние не привязано к массе Солнца, а метр представляет собой расстояние, которое свет проходит в вакууме за 1/299792458 долю секунды. Поскольку скорость света постоянна и на Земле и на Юпитере, расположение наблюдателя в Солнечной системе больше не имеет значения.

Некоторые астрономы высказывали опасения, что принятые изменения приведут к сбою в их программах. Но после нескольких лет споров решение о переходе к новому расчёту астрономической единицы было принято единогласно.

Источник: www.vesti.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.