Магнитное поле земли в теслах


физические характеристики магнитного поля

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

 

Магнит
Магнит

 

Магнит — тело, обладающее собственным магнитным полем.


У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).

Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.

 

Картина магнитного поля
Картина магнитного поля

 

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ.

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.


Магнитное поле земли в теслах

Здесь q — заряд, v — его скорость в магнитном поле, B — индукция, F — сила Лоренца, с которой поле действует на заряд.

Магнитный поток Ф –  физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток — скалярная характеристика магнитного поля.

Магнитный поток формула

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).

 

Магнитный поток
Магнитный поток

 

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Магнитное поле Земли


Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете — Курская и Бразильская магнитные аномалии.

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли.  Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.

 

Магнитное поле земли
Магнитное поле земли

 

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов — в среднем скорость растет на 3 километра в год.


Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

 

Магнитное поле Земли
Магнитное поле Земли

 

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! Курсовая работа международное и национальное право и другие типы работ вы можете заказать по ссылке.


Источник: Zaochnik-com.ru

Таблица 1 Современные виды постоянных магнитов и их приблизительные характеристики
(значения индукции на их полюсной поверхности, максимальные рабочие температуры и т.д.):

• Магниты с полимерным наполнителем, применяемые в медицине эластичные магнитофоры (магнитопласты, магнитоэласты).
Br = до 0.05 Тесл (50 миллитесл = 500 Гаусс).

Магнитопласты на основе наполнителя (например, порошка анизотропного NdFeB). Поддаются механической обработке, благодаря пластичности (как резина) и возможности изготовления сложных форм методом литья под давлением (в том числе, с монтажными отверстиями и средствами крепления). Не нагреваются при работе в переменных электромагнитных полях (нечувствительны к воздействию вихревых токов). Максимальная рабочая температура – до 120-220 градусов Цельсия, в зависимости от теплостойкости связующего материала.
Br = 0.5 – 0.6 Тл (5000 – 6000 Гаусс) (Nd-Fe-B).


Ферриты (прессованные керамические ферритобариевые и ферритостронциевые, недорогие ферромагниты чёрного цвета). В отличие от "железных" магнитов, имеют очень высокое электрическое сопротивление (поэтому феррит бария используют в цепях, подвергающихся действию высокочастотных полей), хорошую механическую прочность, коррозионную стойкость, меньший вес, по сравнению с железными – в 1.5-2 раза. Есть возможность осуществлять у них многополюсное намагничивание на цельном изделии. Имеют неплохую устойчивость к воздействию внешних магнитных полей. По стоимости – на порядок дешевле ЮНДК, имея, при этом, более высокие показатели коэрцитивной силы. Широко применяются в двигателях постоянного тока, в генераторах, в профессиональных и домашних аудио-системах (повышенную индукцию – набирают склейкой двух колец). Недостатки ферромагнитов – хрупкость и твёрдость (обрабатывать можно только шлифованием и при помощи алмазной резки) и уменьшение коэрцетивной силы при охлаждении ниже -20°С (что снижает, на морозе, стойкость к размагничиванию маг.полем; зимой, при -60 градусах – магнитные свойства необратимо теряются и не восстанавливаются при возврате к нормальным термическим условиям) или при нагреве (особенно чувствительны бариевые). Если температура изменяется быстрее 5-10°C/мин – на феррите образуются трещины, что ухудшает его физические свойства.
Максимальное энергетическое произведение – в несколько раз хуже, чем у SmCo.


r /> Температурный коэффициент остаточной магнитной индукции – раз в десять хуже, т.е. больше, чем у литых магнитов.
Br = 0.1 – 0.4 Тл (1000 – 4000 Гаусс). Современные – от 0.2 до 0.43Тл
Tc of Br ~ -0.20% на °C  (Температурный коэффициент)
Tmax/Tcur = 250-300 / 450 °С  (Максимальная рабочая температура / Точка Кюри)
Hcb = 2-4 кЭ  (Коэрцитивная сила по индукции, килоэрстед)
Диапазон максимальной энергии (энергетическое произведение) – от 1,1 до 4,5 МГЭ
На сайте http://www.ferrite.ru/products/magnets/hardferrite – подробные сравнительные таблицы с продукцией зарубежных фирм (Япония, Франция, Германия), с указанием полных наименований и расшифровкой кода на корпусе.

• Термостабильные литые или спечённые магниты "Альнико" (AlNiCo, российское название – ЮНДК) на основе сплавов железо-аллюминий-никель-медь-кобальт. Они легче редкоземельных самарийкобальтовых, при примерно одинаковых параметрах индукции, и заметно дешевле их. Имеют высокую коррозионную и радиационную стойкость. Используются в акустических системах и динамических студийных микрофонах (ставят Alnico V), в гитарных звукоснимателях, в электродвигателях и электрогенераторах, в приборостроении (сенсоры, реле и т.д.) Типовые формы: пластины, призмы, кольца и трубки, диски и стержни. Недостаток – AlNiCo хрупкие (обрабатываются полированием, шлифованием, резкой абразивным кругом) и легко размагничиваются (низкая коэрцитивная сила) под воздействием внешнего магнитного поля, что делает неверными показания стрелочных приборов, в которых они установлены.
Br = 0.7 – 1.3 Тл.
Tc of Br ~ -0.02% на °C (это очень хороший показатель)
Tmax/Tcur = 250-550/800-850 °С
Hc = 0.6 – 1.9 кЭ
Диапазон максимальной энергии – от 1,4 до 7,5 МГсЭ


• Термоустойчивые деформируемые магниты типа ХК (железо-хром-кобальт, Fe-Cr-Co). Прочность и пластичность современных типов этого сплава – на порядок превосходит аналогичные показатели ЮНДК24 (Алнико 5) при сопоставимых магнитных свойствах. Могут быть получены в виде холоднокатаного листа, горячекатаного и кованого прутка для последующей механической и термомагнитной обработки. В последние годы, осваиваются новые, перспективные наноструктурные, магнитотвёрдые FeCrCo-сплавы с улучшенными характеристиками. Максимальные рабочие температуры достигают 450 °С
Br = 1.1 – 1.5 Тл.
Tc of Br = от -0,015 до -0,028 % на °C  (ГОСТ 24897-81)
Нсb – больше 0.5 кЭ

• Спечённые редкоземельные магниты на основе сплавов самарий-кобальт(SmCo, долговечная металлокерамика). Имеют лучшую коррозионную стойкость (то есть, не ржавеют, поэтому и не нуждаются в защитном покрытии) по сравнению с остальными редкоземельными материалами и большие значения максимальной рабочей температуры (термостабильные до 350°С) и коэрцитивной силы (то есть, магнитотвёрдые – устойчивые к размагничиванию).
По сравнению с ЮНДК – на порядок большая коэрцетивная сила по намагниченности. Недостатки – хрупкость и высокая цена. Применяются в космических аппаратах и мобильных телефонах, в мотоциклах и газонокосилках, в авиационной и компьютерной технике, в медицинском оборудовании, в миниатюрных электромеханических приборах и устройствах (наручных часах, наушниках и т.д.) Используются в современном приборостроении.
Br = 0.8 – 1.1 Тл.
Tc of Br ~ -0.035% на °C
Tmax/Tcur = от -60 до 250-500 / >700-800 °С
Hcb = 8-10 кЭ
Диапазон максимальной энергии – от 18 до 32 МГс.Э

Неодимовые – редкоземельные супермагниты на основе сплавов неодим-железо-бор (Nd-Fe-B, NdFeB). Диапазон рабочих температур – от -60 до +150-220°C Они хрупкие и чувствительные к температуре (предел допустимого нагрева – зависит от марки магнита). После сильного перегрева – необратимо и полностью теряется намагниченность (восстановить можно перемагничиванием на специальной установке). Имеют невысокую коррозионную стойкость – легко окисляются (ржавеют), если повреждёно антикоррозионноее покрытие (краска, лак, тонкая металлическая плёнка из никеля, меди или цинка). В виде порошка – могут воспламениться, с выделением ядовитого дыма. Лучше поддаются механической обработке – гибкие Nd-магнитопласты (NdFeB). Спечённые неодимовые магниты имеют преимущество – наибольшую, по сравнению с остальными видами, силу остаточной магнитной индукции и очень высокое энергетическое произведение.
Максимальная рабочая температура будет выше – при добавлении кобальта вместо железа, но это ведёт к удорожанию материала. Широко применяются в компьютерной технике (двигатели электроприводов дисков, устройства считывания и записи информации), в моторах и датчиках.
Br = 1.0 – 1.4 Тл (10000 – 14000 Гаусс).
Tc of Br = от -0.07 до -0.13% на °C
Tmax/Tcur = 80(Nxx)-120(NxxH)-150(NxxS/U)-200(xxEH)-220 / 310-330
Hc = 12 кЭ
Диапазон макс. энергии – от 1 до 50 МГЭ

Сверхпроводящие магниты, относящиеся к категории сверхмощных, могут иметь максимальные значения индукц. Br > 5 Тесл

Источник: www.kakras.ru

Гаусс (русское обозначение Гс, международное — G) — единица измерения магнитной индукции в системе СГС. Названа в честь немецкого физика и математика Карла Фридриха Гаусса.

Может быть выражена через основные единицы измерения системы СГС следующим образом: 1 Гс = 1 г1/2•см−1/2•с−1.

Источник: учебники физики по магнетизму, берклиевский курс.

Тема: магнитные поля в веществе.

Цель: выяснить, как различные вещества реагируют на магнитное поле.

Представим себе некоторые опыты с очень сильным полем. Предположим, что мы сделали соленоид с внутренним диаметром 10 см и длиной 40 см.

1. Конструкция катушки, создающей сильное магнитное поле. Показано поперечное сечение обмотки, по которой течет охлаждающая вода. 2.Кривая величины поля В2 на оси катушки.

Его внешний диаметр равен 40 см и большая часть пространства заполнена медной обмоткой. Такая катушка обеспечит постоянное поле в 30 000 гс в центре, если к ней подвести 400 квт электрической мощности и снабжать водой около 120 л в минуту для отвода тепла.

Эти конкретные данные приводятся с целью показать, что хотя прибор и не представляет собой ничего необыкновенного, он является все же довольно почтенным лабораторным магнитом.

!Величина поля в центре магнита приблизительно в 105 раз больше магнитного поля Земли и, вероятно, в 5 или 10 раз сильнее поля вблизи любого магнитного железного стержня или подковообразного магнита!

Вблизи центра соленоида поле довольно однородно и уменьшается приблизительно вдвое на оси вблизи концов катушки.

Итак, как показывают опыты, у подобных магнитов величина поля (то есть индукция или напряженность) как внутри магнита, так и снаружи чуть ли не на пять порядков превышает величину поля Земли.

Также, всего в два раза — не «в разы!» — она меньше снаружи магнита.

И в то же время в 5-10 раз больше силы обычного постоянного магнита.

Средняя напряженность поля земли на поверхности составляет около 0,5Э (5•10–5 Тл)

Тем не менее, уже в нескольких сотнях метров (если не десятков) от такого магнита магнитная стрелка компаса не реагирует ни на включение, ни на выключение тока.

При этом она хорошо реагирует на поле земли или его аномалии при малейшем изменении положения. О чем это говорит?

Прежде всего, о явно заниженной цифре индукции магнитного поля земли — то есть не саму индукцию, а то, как мы ее измеряем.

Мы измеряем реакцию рамки с током, угол ее поворота в магнитном поле земли.

Любой магнитометр построен на принципе измерения не напрямую, а косвенно:

— только на поверхности земли, возле нее в атмосфере и в ближнем космосе.

Источника поля с конкретным максимумом мы не знаем. Мы измеряем всего лишь разницу величины поля в различных точках, причем градиент напряженности не слишком сильно изменяется с высотой. Никакие математические выкладки с определением максимума при использовании классического подхода здесь не работают.

Влияние магнитного поля — эксперименты

Известно, что даже сильные магнитные поля не имеют практически никакого влияния на химические и биохимические процессы. Вы можете поместить руку (без ручных часов!) в соленоид с полем в 30 кгс без каких-либо заметных последствий. Трудно сказать, к какому классу веществ относится ваша рука – к парамагнетикам или диамагнетикам, но сила, действующая на нее, будет составлять, в любом случае, не больше нескольких граммов. Целые поколения мышей выводились и выращивались в сильных магнитных полях, которые не оказывали на них заметного влияния. Другие биологические эксперименты также не обнаружили достойных внимания магнитных воздействий на биологические процессы.

Будет не верно считать, что слабые эффекты всегда проходят без последствий. Подобные рассуждения могли бы привести к выводу, что тяжесть не имеет энергетического значения в молекулярном масштабе, но, тем не менее, деревья на склоне холма растут вертикально. Объяснение, по-видимому, заключается в суммарной силе, действующей на биологический объект, размеры которого много больше размеров молекулы. Действительно, аналогичное явление («тропизм») было экспериментально продемонстрировано в случае сеянцев, произрастающих в присутствии очень неоднородного магнитного поля.

Между прочим, если вы поместите голову в сильное магнитное поле и покачаете ею, то вы почувствуете «вкус» электролитического тока во рту, что является доказательством присутствия индуцированной электродвижущей силы.

При взаимодействии с веществом роли магнитного и электрического полей различны. Поскольку атомы и молекулы состоят из медленно движущихся электрических зарядов, электрические силы при молекулярных процессах доминируют над магнитными.

Воздействие магнитного поля такого магнита на биологические объекты не более чем укус комара. Любое живое существо или растение постоянно находятся под воздействием земного магнетизма куда более сильного.

1 гаусс=1 10-4 тесла.

Единицей напряженности геомагнитного поля (Т) в системе Си является ампер на метр (А/м). В магниторазведке применялась и другая единица Эрстед (Э) или гамма (Г), равная 10-5 Э. Однако практически измеряемым параметром магнитного поля является магнитная индукция (или плотность магнитного потока). Единицей магнитной индукции в системе Си является тесла (Тл). В магниторазведке используется более мелкая единица нанотесла (нТл), равная 10-9 Тл. Так как для большинства сред, в которых изучается магнитное поле (воздух, вода, абсолютное большинство немагнитных осадочных пород), то количественно магнитное поле Земли можно измерять либо в единицах магнитной индукции (в нТл), либо в соответствующей ей напряженности поля – гамма.

На рисунке представлена полная напряженность магнитного поля Земли для эпохи 1980 г. Изолинии Т проведены через 4 мкТл (из книги П.Шарма "Геофизические методы в региональной геологии").

На полюсах вертикальные составляющие магнитной индукции примерно равны 60 мкТл, а горизонтальные — нулю. На экваторе горизонтальная составляющая приблизительно равна 30 мкТл, а вертикальная — нулю.

Именно таким образом современная наука о геомагнетизме давно отказалась от основного принципа магнетизма, два магнита, расположенные плашмя друг к другу, стремятся соединиться разноименными полюсами.

То есть, судя по последней фразе на экваторе силы (вертикальной составляющей), притягивающей магнит к земле нет! Как и отталкивающей!

Такие два магнита не притягиваются? То есть, нет силы притяжения, а есть сила растяжения? Нонсенс!

Зато на полюсах при таком расположении магнита она есть, но горизонтальная сила пропадает.

Попросту берем два магнита и убеждаемся, что при подобном положении магнит сначала разворачивает, а затем притягивает. Южный ПОЛЮС к северному ПОЛЮСУ!

Источник: www.UrbiTerm.by


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.