Как появилась атмосфера на земле


Состав атмосферы не всегда был таким, как сейчас. Предполагают, что первичная атмосфера состояла из водорода и гелия, которые были самыми распространенными газами в Космосе и входили в состав протопланетного газово-пылевого облака.

Результаты исследований М.И. Будыко с количественными оценками изменения массы кислорода и углекислого газа на протяжении жизни Земли дают основание считать, что историю вторичной атмосферы можно разделить на два этапа: бескислородной атмосферы и кислородной атмосферы – на рубеже примерно 2 млрд. лет тому назад.

Первый этап начался после завершения образования планеты, когда началось разделение первичного земного вещества на тяжелые (преимущественно железо) и относительно легкие (в основном кремний) элементы. Первые образовали земное ядро, вторые – мантию. Эта реакция сопровождалась выделением тепла, в результате чего стала происходить дегазация мантии – из нее стали выделяться различные газы. Сила тяготения Земли оказалась способной удержать их возле планеты, где они стали скапливаться и образовали атмосферу Земли. Состав этой начальной атмосферы существенно отличался от современного состава воздуха (табл. 1)

Таблица 1

Состав воздуха при образовании атмосферы Земли в сравнении с современным составом атмосферы (по в.А. Вронскому г.В. Войткевичу)



Газ

Его состав

Состав атмосферы Земли

при образовании

современный

Азот

N2

1,5

78

Кислород

O2

0

21

Озон

O3

10-5

Углекислый газ

CO2

98

0,03

Оксид углерода

CO

10-4

Водяной пар

H2O

0,4

0,1

Аргон

Ar

0,19

0,93

Кроме этих газов в атмосфере присутствовали метан, аммиак, водород и др.

Характерной чертой этого этапа было убывание углекислого газа и накопление азота, который к концу эпохи бескислородной атмосферы стал основным компонентом воздуха. Согласно исследованиям В.И. Бгатова тогда же появился в качестве примеси и эндогенный кислород, возникший при дегазации базальтовых лав. Кислород возникал и в результате диссоциации молекул воды в верхних слоях атмосферы под действием ультрафиолетовых лучей. Однако весь кислород уходил на окисление минералов земной коры, и его не хватало на накопление в атмосфере.


Более 2 млрд. лет назад появились фотосинтезирующие сине-зеленые водоросли, которые для синтеза органического вещества стали использовать световую энергию Солнца. В реакции фотосинтеза использовался углекислый газ, а выделяется свободный кислород. Вначале он расходовался на окисление железосодержащих элементов литосферы, но около 2 млрд. лет назад этот процесс завершился, и свободный кислород начал накапливаться в атмосфере. Начался второй этап развития атмосферы – кислородный.

Сначала рост содержания кислорода в атмосфере был медленным: около 1 млрд. лет назад оно достигло 1% от современного (точка Пастера), но этого оказалось достаточным для появления вторичных гетеротрофных организмов (животных), потребляющих кислород для дыхания. С появлением растительного покрова на континентах во второй половине палеозоя прирост кислорода в атмосфере составляло около 10 % от современного, а уже в карбоне кислорода было столько же, сколько и сейчас. Фотосинтетический кислород вызвал большие изменения и в атмосфере, и в живых организмах планеты. Содержание углекислого газа в процессе эволюции атмосферы существенно снизилось, так как значительная его часть вошла в состав углей и карбонатов.

На водород и гелий, широко распространенный во Вселенной, в атмосфере Земли приходится соответственно 0,00005 и 0,0005%.


мная атмосфера, т.о., является геохимической аномалией в космосе. Ее исключительный состав формировался параллельно с развитием Земли в специфических, присущих только ей космических условиях: гравитационное поле, удерживающее большую массу воздуха, магнитное поле, предохраняющее ее от солнечного ветра, и вращение планеты, обеспечивающее благоприятный тепловой режим. Формирование атмосферы шло параллельно с формированием гидросферы и рассмотрено выше.

Первичная гелиево-водородная атмосфера была утеряна при разогреве планеты. В начале геологической истории Земли, когда происходили интенсивные вулканические и горообразовательные процессы, атмосфера была насыщена аммиаком, водяными парами и углекислым газом. Эта оболочка имела температуру около 100С. При понижении температуры произошло разделение на гидросферу и атмосферу. В этой вторичной углекислой атмосфере зародилась жизнь. С прогрессивным развитием живого вещества развивалась и атмосфера. Когда биосфера достигла стадии зеленых растений, и они вышли из воды на сушу, начался процесс фотосинтеза, что привело к формированию современной кислородной атмосферы.

12.4 Взаимодействие атмосферы с другими оболочками. Атмосфера развивается со всей природой земной поверхности – с ГО. Растения и животные используют атмосферу для фотосинтеза и дыхания. Магнитосфера, ионосфера и озоновый экран изолируют биосферу от космоса. Верхняя граница ГО – биосферы лежит на высотах в 20-25 км. Атмосферные газы вверху покидают Землю, а недра Земли пополняют воздушную оболочку, поставляя до 1 млн. т. газов в год. Атмосфера задерживает инфракрасное излучение Земли, создавая благоприятный тепловой режим. В атмосфере переносится влага, образуются облака и осадки – формируются погодно-климатические условия. Она предохраняет Землю от падающих на нее метеоритов.


12.5 Солнечная энергия, солнечная радиация – лучистая энергия Солнца. Солнце излучает электромагнитные волны и корпускулярный поток. Электромагнитное излучение — особый вид материи, отличный от вещества, распространяется со скоростью 300 000 км/сек. (скорость света). Корпускулярное излучение (солнечный ветер) – поток заряженных частиц: протонов, электронов и др., распространяется со скоростями 400-2000 км/сек. Корпускулярный поток, достигая З., возмущает ее магнитное поле, вызывая ряд явлений в атмосфере (полярные сияния, магнитные бури и др.).

Электромагнитное излучение представляет собой тепловую (инфракрасную, 47%), световую (46%) и ультрафиолетовую (7%) радиацию, в зависимости от длины волн. Все три вида энергии играют большую роль в ГО. Ультрафиолетовое излучение в основном задерживается озоновым экраном и это хорошо, т.к. жесткое ультрафиолетовое излучение губительно действует на живые организмы, но то небольшое количество его, достигающее поверхности Земли, оказывает дезинфицирующее влияние. Под ультрафиолетовыми лучами загорает кожа человека.


Влияние света общеизвестно. Не только потому, что свет позволяет нам видеть окружающий мир, но при солнечном освещении происходят процессы фотосинтеза, о чем мы еще будем говорить позже. Наконец, тепловой поток определяет температурные условия ГО.

Единицей измерения солнечной энергии является солнечная постоянная(I0)2 кал/см2 /мин. (столько тепла получает 1 кв. см абсолютно черной поверхности за минуту при перпендикулярном падении лучей). При перпендикулярном падении лучей земная поверхность получает максимум солнечной энергии, а чем меньше угол падения, тем меньше поступает ее на подстилающую поверхность. Количество приходящей энергии на ту или иную широту рассчитывается по формуле: I1=I0хSin ho, где hoвысота Солнца над горизонтом. Атмосфера ослабляет и перераспределяет солнечный поток при различиях в усвоении его земной поверхностью.

Если к верхней границе атмосфере приходит 1,36 х 1024 кал/год, то до земной поверхности доходит на 25% меньше, вследствие того, что при прохождении через атмосферу происходит ослабление потока солнечной энергии. Эта энергия во взаимодействии с силой тяжести обуславливает циркуляцию атмосферы и гидросферы. Приводя в действие разнообразные процессы, протекающие в ГО, солнечная радиация почти полностью превращается в тепло и в виде теплового потока возвращается в Космос.


Изменение солнечной радиации в атмосфере. При прохождении лучистой энергии через атмосферу происходит ее ослабление, вызванное поглощением и рассеиванием энергии. В области видимой части спектра преобладает рассеяние, а в ультрафиолетовой и инфракрасной областях атмосфера является в основном средой поглощения.

Благодаря рассеиванию получается тот дневной свет, который освещает предметы, если на них не попадают непосредственно солнечные лучи. Рассеивание обуславливает и голубой цвет неба. В больших городах, в пустынных областях, где высока запыленность воздуха, рассевание ослабляет силу радиации на 30-45%.

Основные газы, входящие в состав воздуха, поглощают лучистую энергию мало, зато большой поглотительной способностью отличаются: водяной пар (инфракрасные лучи), озон (ультрафиолетовые лучи), углекислый газ и пыль (инфракрасные лучи).

Величина ослабления солнечной радиации зависит от коэффициента прозрачности (к.п.), который показывает, какая доля радиации доходит до земной поверхности.

Если бы атмосфера состояла из газов, то к.п. =0,9, т.е. она пропускала бы 90% идущей к Земле радиации. Но атмосфера содержит примеси, в т.ч. облака и фактор мутности снижает прозрачность до 0,7-0,8 (зависит от погоды). В целом атмосфера поглощает и рассеивает около 25% идущей к земной поверхности лучистой энергии, причем ослабление потока радиации для различных широт Земли неодинаково. Различия эти зависят от угла падения лучей. При зенитальном положении Солнца лучи пересекают атмосферу кратчайшим путем, с уменьшением угла падения путь лучей удлиняется, и ослабление солнечной радиации становится более значительным.


Если угол падения лучей равен:

а) 90, степень ослабления 25%;

б) 30, степень ослабления 44%;

в) 10, степень ослабления 80%;

г) 0, степень ослабления 100%.

Значительная часть солнечной радиации, достигающая земной поверхности в виде параллельного пучка лучей, идущих от Солнца, называется прямой солнечной радиацией.

Радиация, приходящая к земной поверхности в виде миллионов лучиков от всех точек небесного свода вследствие рассеяния, — рассеянная солнечная радиация.

Рассеянная радиация летом в средних широтах составляет 40%, а зимой – 70% общего ее поступления, в тропических широтах она составляет около 30%, а в полярных – 70% общего потока лучистой энергии.

Прямая солнечная радиация и рассеянная в сумме дают так называемую суммарную радиацию. Для практических целей чаще всего требуются данные о полной сумме энергии, приходящей к земной поверхности, т.е. сумме суммарной радиации за какой-либо промежуток времени (сутки, месяц, год) на единицу площади, поэтому карты сумм суммарной радиации широко используются.


Максимум суммарной радиации приходится на тропические широты (180-200 ккал/см2 в год), что связанно с малой облачностью, обуславливающей большую долю прямой радиации. Экваториальные широты получают меньше солнечной энергии, около 100-140 ккал/см2 в год, в силу высокой облачности, несмотря на более высокий угол высоты Солнца над горизонтом; умеренные широты (55-65 с.ш.) получает 80 ккал/см2 за год, а на широтах 70-80 с.ш. – получает 60 ккал/см2/год.

Приходящая к земной поверхности солнечная радиация частично поглощается (поглощенная радиация), частично отражается (отраженная радиация) в атмосферу и в межпланетное пространство. Отношение величины солнечной радиации, отраженной данной поверхностью, к величине потока лучистой энергии, падающей на эту поверхность, называется альбедо.

Альбедо выражается в процентах и характеризует отражательную способность данного участка поверхности. Отражательная способность зависит от характера поверхности (цвета, шероховатости) и от величины угла падения лучей. Абсолютно черное тело усваивает всю радиацию, а зеркальная поверхность отражает 100% лучей и не нагревается. Свежевыпавший снег отражает 80-90% радиации, чернозем – 5-18%, светлый песок 35-40%, лес – 10-20%, верхняя поверхность облаков – 50-60%.


С уменьшением высоты Солнца альбедо увеличивается, следовательно, в его суточном ходе наименьшее значение наблюдается в околополуденные часы. Годовой ход альбедо определяется изменением характера подстилающей поверхности по сезонам года. В умеренных и северных широтах обычно отмечается увеличение альбедо от теплой половины года к холодной.

Высокое альбедо снегов в Арктике и Антарктике обуславливает низкие летние температуры, несмотря на значительную величину солнечной инсоляции в летние месяцы при круглосуточно незаходящем Солнце. В основном солнечная радиация отражается облаками.

Альбедо влияет на температуры переходных периодов в умеренных широтах: в сентябре и марте Солнце находится на одной высоте, но мартовские лучи отражаются (и идут на таяние снега), поэтому март холоднее сентября.

Планетарное альбедо 35-%.

Поглощенная радиация затрачивается на испарение воды и нагревание подстилающей поверхности.

Земля, получая солнечную энергию, сама становится источником излучения тепла в мировое пространство. Энергия, излучаемая земной поверхностью называется земной радиацией.

Изучение земной поверхности происходит днем и ночью. Интенсивность излучения тем больше, чем выше температура излучаемого тепла в соответствии с законом Стефана-Больцмана: всякое тело теряет лучеиспусканием количество тепла пропорциональное 4ой степени абсолютной температуры: (Ет=Т4кал/см2мин), где – постоянная Стефана-Больцмана.

Земное излучение выражается в тех же единицах, что и солнечное.

Каждый объем воздуха, как и атмосфера в целом, имея температуру, отличную от температуры абсолютного нуля, также излучает тепловую радиацию, это – атмосферная радиация, которая направлена в разные стороны. Часть ее, направленная к земной поверхности – встречное излучение.

Разность собственного излучения подстилающей поверхности и встречного излучения называют эффективным излучением земной поверхности (Е25-Еа).

Эффективное излучение зависит от температуры излучающей поверхности и воздуха, от влажности и стратификации приземного слоя атмосферы.

В общем, земная поверхность в средних широтах теряет эффективным излучением примерно половину того количества тепла, которое она получает от поглощенной радиации.

Эффективное излучение – фактические потери тепла излучением. Особенно велики эти потери в ясные ночи — ночное выхолаживание. Водные пары задерживают тепло. В горах эффективное излучение больше, чем на равнинах, его снижает растительный покров. Пустыни, арктические широты – окна потерь тепла излучением.

Поглощая земное излучение и посылая встречное к земной поверхности, атмосфера тем самым уменьшает охлаждение последней в ночное время. Днем же она мало препятствует нагреванию земной поверхности земной радиацией. Это влияние на тепловой режим земной поверхности носит название тепличного (оранжерейного) эффекта, и земная поверхность имеет среднюю температуру +17,3С вместо – 22С.

Длинноволновое излучение земной поверхности и атмосферы, уходящее в космос, называют уходящей радиацией (65%, из них земная поверхность теряет 10%, атмосфера 55%). Вместе с отраженной (35%) эта уходящая радиация компенсирует приток солнечной радиации к Земле.

Таким образом, Земля вместе с атмосферой теряет столько же радиации, сколько получает, т.е. находится в состоянии лучистого (радиационного) равновесия.

В результате перераспределения тепла и холода преимущественно воздушными и водными течениями получаем значительное смягчение контрастов температур между экватором и полюсами: без влияния атмосферы и гидросферы на экваторе была бы среднегодовая температура +390С (фактически +25,4), на полюсах -440С (фактически на северном полюсе -230, на южном -330).

12.6 Радиационный баланс (остаточная радиация) земной поверхности – это разность между приходом (суммарная радиация и встречное излучение) и расходом (альбедо и земное излучение) тепла.

R=Q (прямая) +D (рассеянная) +E (встречная) =C (отраженная)-U (земная)

Радиационный баланс (R) может быть положительным и отрицательным. Ночью везде отрицателен, переходит от ночных отрицательных значений к дневным положительным после восхода Солнца (когда угол падения лучей не превышает 10-15), от положительных к отрицательным – перед заходом Солнца при такой же высоте над горизонтом.

Днем R растет с увеличением высоты Солнца и убывает с уменьшением ее. В ночные часы, когда суммарная радиация отсутствует, R равен эффективному излучению и потому мало меняется в течение ночи, если облачность не меняется.

Распределение R зонально, т.к. зональна суммарная радиация. Эффективное излучение распределяется более равномерно.

R земной поверхности за год положителен для всех мест Земли, кроме ледяных плато Гренландии и Антарктиды, т.е. годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не означает, что земная поверхность год от года становится теплее. Дело в том, что превышение поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух и почвогрунт путем теплопроводности и при фазовых превращениях воды (при испарении — конденсации).

Т.о., хотя для земной поверхности не существует равновесия в получении и отдаче радиации, но существует тепловое равновесие, что выражается формулой теплового баланса: P=P+B+LE, где P — турбулентный поток тепла между земной поверхностью и атмосферой, B – теплообмен между Землей и нижележащими слоями почвы и воды, L – удельная теплота парообразования, E – количество испарившейся влаги за год. Приток тепла к земной поверхности радиационным путем уравновешивается его отдаче другими способами.

R на широтах 60северной и южной широты составляет 20-30 ккал/см2, откуда к более высоким широтам уменьшается до –5,-10 ккал/см2 на материке Антарктиды. К низким широтам возрастает: между 40северной широты 40южной широты годовые величины р.б. 60 ккал/см2, а между 20северной и южной широтами 100 ккал/см2. На океанах R больше, чем на суше в тех же широтах, т.к. океаны аккумулируют много тепла, а при большой теплоемкости вода нагревается до меньших значений, чем суша.

12.7 Температура воздуха. Воздух нагревается и охлаждается от поверхности суши и водоемов. Будучи плохим проводником тепла, он нагревается только в нижнем слое, непосредственно касающемся земной поверхности. Основным же путем передачи тепла вверх служит турбулентное перемешивание. Благодаря этому к нагретой поверхности подходят все новые и новые массы воздуха, нагреваются и поднимаются.

Так как источник тепла для воздуха – земная поверхность, то очевидно, что с высотой температура его убывает, амплитуда колебаний становится меньше, максимум и минимум в суточном ходе наступают позднее, чем на почве. Высота измерения температуры воздуха едина для всех стран – 2 м. Для специальных целей температура измеряется и на других высотах.

Другой источник нагревания и охлаждения воздуха – адиабатические процессы, когда температура воздушной массы повышается или понижается без притока тепла извне. При опускании воздуха из верхних слоев тропосферы в нижние газы уплотняются, и механическая энергия сжатия переходит в тепловую. Температура при этом повышается на 1С на 100 м высоты.

Охлаждение воздуха связанно с адиабатическим поднятием, при котором воздух поднимается и расширяется. Тепловая энергия и в этом случае превращается в кинетическую. На каждые 100 м подъема сухой воздух охлаждается на 10С. Если адиабатические превращения происходят в сухом воздухе, процессы называют сухоадиабатическими. Но воздух обычно содержит водяные пары. Охлаждение влажного воздуха при поднятии сопровождается конденсацией влаги. Выделяющаяся при этом теплота уменьшает величину охлаждения в среднем до 0,6С на 100 м высоты (влажноадиабатический процесс). При подъеме воздуха преобладают влажноадиабатические процессы, при опускании – сухоадиабатические.

Другой способ охлаждения воздуха – непосредственная потеря тепла излучением. Это происходит в Арктике и Антарктиде, в пустынях по ночам, в умеренных широтах при безоблачном небе зимой и в ясные ночи летом.

Важным источником тепла для воздуха служит теплота конденсации, которая выделяется в атмосферу.

12.8 Тепловые пояса. Тропики и полярные круги, ограничивающие пояса освещенности, нельзя считать границами тепловых (температурных) поясов. На распределение температуры, кроме фигуры и положения Земли, сказывается влияние ряда факторов: распределение суши и воды, теплые и холодные морские и воздушные течения. Поэтому за границы тепловых поясов принимают изотермы. Существует семь тепловых поясов:

  • жаркий расположен между годовыми изотермами 20С северного и южного полушарий;

  • два умеренных ограничены со стороны экватора годовой изотермой 20С, со стороны полюсов изотермой 10С самого теплого месяца. С этими изотермами совпадает граница распределения древесной растительности;

  • два холодных находятся между изотермами 10С и 0С самого теплого месяца;

  • два пояса мороза расположены у полюсов и ограничены изотермой 0С самого теплого месяца. В северном полушарии – это Гренландия и пространство Северного Ледовитого океана, в южном – область к югу от параллели 60 ю. ш.

Термические условия поясов нарушают горные страны. Вследствие уменьшения температуры с высотой в горах прослеживается вертикальная температурная и климатическая поясность.

Для определения температуры воздуха используют термометры (ртутные, спиртовые и др.), аспирационные психрометры, термографы.

Источник: studfile.net

Тропосфера

Тропосфера — это самый плотный слой атмосферы и, следовательно, самый близкий к Земной поверхности. Общая масса атмосферы оценивается в 5х1018 кг, и 75% этого количества находится в тропосфере.

Толщина тропосферы колеблется от 8 км до 14 км, в зависимости от региона Земли. Самые тонкие места (где толщина достигает 8 км) находятся на северном и южном полюсах.

Поскольку это самый нижний слой атмосферы, тропосфера ответственна за жизнь на планете, а также там, где происходят почти все климатические явления. Термин «тропосфера» происходит от греческого «tropos» (означает «изменение»), чтобы отразить динамический характер изменений климата и поведение этого слоя атмосферы.

Область тропосферы, которая ограничивает её конец и начало стратосферы, называется тропопаузой. Тропопауза легко идентифицируется по различным картинам распределения давления и температурам каждого слоя.

Состав тропосферы

По объёму тропосфера состоит из 78,08% азота, 20,95% кислорода, 0,93% аргона и 0,04% углекислого газа. Воздух также состоит из меняющихся процентных показателей водяного пара, который попадает в тропосферу через явление испарения.

Температура тропосферы

Как и давление, температура в тропосфере также уменьшается с увеличением высоты. Это связано с тем, что почва поглощает бóльшую часть солнечной энергии и нагревает нижние уровни тропосферы. Принимая во внимание, что испарение выше в более тёплых областях, водяные пары присутствуют чаще на уровне моря и реже на больших высотах.

Что встречается в тропосфере?

Некоторые примеры того, что можно найти в тропосфере:

  • климат;
  • осадки, такие как: дождь, снег и град;
  • газы, такие как: азот, кислород, аргон и углекислый газ;
  • облака;
  • птицы.

Стратосфера

Стратосфера является вторым по величине слоём атмосферы, а также вторым, ближайшим к Земной поверхности. По оценкам, он содержит около 15% от общей массы атмосферы Земли.

Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин «стратосфера» происходит от греческого strato (значит «слой») для обозначения того факта, что сама стратосфера подразделяется на другие более тонкие слои.

Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует чёткое разделение между холодным и тяжёлым воздухом внизу и тёплым, лёгким воздухом сверху. Таким образом, с точки зрения температуры стратосфера работает точно противоположно тропосфере.

Поскольку эта зона более высокой вертикальной стабильности (без перемещений воздуха), пилоты самолётов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолёты и воздушные шары достигают максимальной эффективности.

Стратосфера также содержит хорошо известный озоновый слой, который поглощает большую часть ультрафиолетового излучения солнца. Без озонового слоя жизнь на Земле, какой мы её знаем, была бы невозможна.

Подобно тропосфере, стратосфера также имеет область, которая ограничивает её конец и показывает начало мезосферы, которая называется стратопауза.

Состав стратосферы

Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:

  • разлагаются в тропосфере;
  • могут быть устранены солнечным светом;
  • могут переноситься на поверхность Земли через дождь или другие осадки.

Из-за инверсии в динамике температуры между тропосферой и стратосферой воздух практически не обменивается между двумя слоями, в результате чего испарения воды существуют в стратосфере только в незначительных количествах. По этой причине в этом слое чрезвычайно редко образование облаков.

Что касается газов, стратосфера образована преимущественно озоном, присутствующим в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этой области. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие, как оксиды азота, азотная кислота, галогены и т. д.

Температура стратосферы

Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).

Что встречается в стратосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • озоновый слой;
  • самолёты и метеозонды;
  • некоторые птицы.

Мезосфера

Мезосфера — это последний атмосферный слой, в котором газы всё ещё смешиваются в воздухе и не организованы их массой. Этот слой считается наукой самым сложным для изучения, поэтому о нём мало подтверждённой информации.

Толщина мезосферы также составляет 35 км от стратопаузы, что означает, что она расположена между стратосферой и термосферой. Термин «мезосфера» происходит от греческого mesos (означает «центр»), так как является третьим среди пяти слоёв Земной атмосферы.

Метеозонды и самолёты не могут достичь так высоко, чтобы достичь мезосферы. В то же время спутники могут вращаться только над ним, таким образом получается, что они не могут должным образом измерять характеристики этого слоя.

Единственный способ изучения мезосферы в наши дни — это использование ракет, которые собирают довольно мало информации в каждой миссии.

Именно в мезосфере происходит сгорание небесных тел, попадающих в Земную атмосферу, что приводит к таким явлениям, как звездопад (метеорные потоки).

Состав мезосферы

Процентное содержание кислорода, азота и углекислого газа в мезосфере, по существу, такое же, как и в слоях ниже. Испарения воды там реже, чем в стратосфере, что, в свою очередь, переносит часть озона в мезосферу.

В мезосфере также есть материал из метеоров, которые испаряются при попадании в атмосферу. Таким образом, мезосфера также состоит из относительно высокой доли железа и других металлов.

Температура мезосферы

Температура в мезосфере уменьшается с увеличением высоты, варьируя от -3° C в самой низкой точке (стратопауза) до -143° C в самой высокой точке (мезопауза — самая холодная область всей Земной атмосферы).

Что встречается в мезосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • метеоры в сгорании;
  • серебристые облака (особый вид облаков, которые светятся ночью).

Термосфера

Термосфера расположена над мезосферой и ниже экзосферы. Толщина этого слоя составляет около 513 км, что намного больше, чем у всех нижних слоёв вместе взятых.

Хотя термосфера считается частью Земной атмосферы, плотность воздуха настолько низкая, что бóльшую часть слоя ошибочно рассматривают как космическое пространство. Эта идея подкрепляется тем фактом, что в слое недостаточно молекул для перемещения звуковых волн.

В термосфере ультрафиолетовое излучение вызывает явления фотоионизации молекул, т. е. образование ионов в результате контакта фотона с атомом. Это явление ответственно за создание ионосферы, расположенной внутри термосферы. Ионосфера играет важную роль в распространении радиоволн в отдалённые районы Земли.

Именно в термосфере спутники вращаются вокруг Международной космической станции (МКС). Кроме того, именно в термосфере происходит северное сияние.

Читайте подробнее про Северное сияние.

Слово «термосфера» происходит от греческого thermos (что значит «тепло»), что отражает тот факт, что температура в этом слое чрезвычайно высока.

Граница между термосферой и экзосферой называется термопаузой.

Состав термосферы

В отличие от слоёв ниже, где смешиваются газы, в термосфере частицы редко сталкиваются, что приводит к равномерному разделению элементов. Кроме этого, большинство молекул в термосфере разрушаются солнечным светом.

Верхние части термосферы состоят из атомарного кислорода, атомарного азота и гелия.

Температура термосферы

Температура в термосфере может варьироваться от 500º C до 2000º C. Это происходит потому, что большая часть солнечного света поглощается в этом слое.

Что встречается в термосфере?

Некоторые примеры того, что можно найти в термосфере:

  • спутники;
  • раньше, многоразовый транспортный космический корабль Спейс шаттл;
  • МКС;
  • северное сияние;
  • ионосфера.

Экзосфера

Экзосфера — это самый большой и крайний внешний слой Земной атмосферы. Он простирается на 600 км, пока плавно не перейдёт в межпланетное пространство. Это делает его толщиной в 10.000 км. Самая дальняя граница экзосферы достигает половины пути до Луны.

Термин «экзосфера» происходит от греческого exo (что значит «внешний»), обозначает тот факт, что это последний атмосферный слой перед космическим вакуумом.

Состав экзосферы

Частицы в экзосфере чрезвычайно далеки друг от друга и поэтому не классифицируются как газы, потому что плотность слишком низкая. Одна частица может пройти сотни километров до столкновения с другой. Они также не считаются плазмой, так как электрически они не заряжены.

В нижних областях экзосферы можно найти водород, гелий, углекислый газ и атомарный кислород, которые остаются минимально притянутыми к Земле гравитационным полем.

Температура экзосферы

Из-за того, что экзосфера находится почти в вакууме (из-за отсутствия взаимодействия между молекулами), температура в слое постоянная и холодная.

Что встречается в экзосфере?

Некоторые примеры того, что можно найти в экзосфере:

  • космический телескоп Хаббл;
  • спутники.

Атмосферы других планет

В Солнечной системе 8 планет и более 160 спутников. Из них, имеют значимые атмосферы:

  • Земля;
  • Венера;
  • Сатурн;
  • Марс;
  • Уран;
  • Юпитер;
  • Нептун;
  • Титан (спутник Сатурна);
  • Плутон.

Атмосфера Венеры

Атмосфера Венеры составляет около 96% углекислого газа, а температура поверхности около 464° C. Облака из серной кислоты движутся со скоростью примерно 100 метров в секунду.

Атмосфера Марса

На Марсе есть тонкая атмосфера, состоящая примерно на 95% из углекислого газа, а остальная часть из азота и аргона. Средняя температура приземного воздуха на Марсе -63° C. На Марсе наблюдаются облака как из воды, так и из углекислого газа. Ещё там чётко определены времена года.

Смотрите также, что такое Сингулярность и Космология.

Источник: www.uznaychtotakoe.ru

Атмосфера Земли — это газовая оболочка нашей планеты. Кстати, подобные оболочки есть практически у всех небесных тел, начиная от планет Солнечной системы и заканчивая крупными астероидами. Состав атмосферы зависит от многих факторов — размера небесного тела, его скорости, массы и множества других параметров. Но только оболочка нашей планеты содержит в себе компоненты, которые позволяют нам жить.

Атмосфера Земли: краткая история возникновения

Считается, что в начале своего существования наша планета вообще не имела газовой оболочки. Но молодое, новообразованное небесное тело постоянно развивалось. Первичная атмосфера Земли образовалась в результате постоянных извержений вулканов. Именно так за много тысяч лет вокруг Земли образовалась оболочка из водяного пара, азота, углерода и других элементов (кроме кислорода).

Поскольку количество влаги в атмосфере ограничено, то ее избыток превращался в осадки — так формировались моря, океаны и прочие водоемы. В водной среде появлялись и развивались первые организмы, заселившие планету. Большинство из них относилось к растительным организмам, вырабатывающим кислород путем фотосинтеза. Таким образом, атмосфера Земли начала наполняться этим жизненно необходимым газом. А в результате скопления оксигена образовался и озоновый слой, которые защищал планету от губительного влияния ультрафиолетовых излучений. Именно эти факторы и создали все условия для нашего существования.

Строение атмосферы Земли

Как известно, газовая оболочка нашей планеты состоит из нескольких слоев — это тропосфера, стратосфера, мезосфера, термосфера. Нельзя провести четкие границы между этими слоями — все зависит от времени года и широты участка планеты.

Тропосфера — нижняя часть газовой оболочки, высота которой составляет в среднем от 10 до 15 километров. Именно здесь сосредоточенная большая часть атмосферного воздуха. Кстати, именно тут находится вся влага и формируются облака. За счет содержания кислорода тропосфера поддерживает жизнедеятельность всех организмов. Кроме того, она имеет решающее значение в формировании погоды и климатических особенностей местности — здесь образуются не только облака, но и ветра. Температура падает с высотой.

Стратосфера — начинается от тропосферы и заканчивается на высоте от 50 до 55 километров. Здесь температура с высотой растет. Эта часть атмосферы практически не содержит водяного пара, но зато имеет озоновый слой. Иногда здесь можно заметить образование «перламутровых» облаков, которые можно увидеть только ночью — считается, что они представлены сильно конденсированными водяными каплями.

Мезосфера — тянется до 80 километров ввысь. В этом слое можно заметить резкое падение температуры по мере продвижения вверх. Здесь также сильно развита турбулентность. Кстати, в мезосфере образовываются так называемые «серебристые облака», которые состоят из небольших кристаллов льда — увидеть их можно только ночью. Интересно, что у верхней границы мезосферы воздуха практически нет — его в 200 раз меньше, чем возле земной поверхности.

Термосфера — это верхний слой земной газовой оболочки, в котором принято различать ионосферу и экзосферу. Интересно, что с высотой температура здесь очень резко поднимается — на высоте 800 километров от земной поверхности она составляет более 1000 градусов Цельсия. Ионосфера характеризируется сильно разжиженным воздухом и огромным содержанием активных ионов. Что же касается экзосферы, то эта часть атмосферы плавно переходит в межпланетное пространство. Стоит отметить, что термосфера не содержит в себе воздуха.

Можно заметить, что атмосфера Земли — это очень важная часть нашей планеты, которая остается решающим фактором в появлении жизни. Она обеспечивает жизнедеятельность, поддерживает существование гидросферы (водной оболочки планеты) и защищает от ультрафиолетовых излучений.

Источник: FB.ru

Как появилась атмосфера?

Атмосфера земли защищает всех нас от угроз необъятного космоса. Именно она не пропускает опасные излучения, падающие метеориты и нормализует температуру на планете. Ведь благодаря парниковому эффекту, возникающему из-за отражения лучей Солнца от облаков, Земля стала теплее примерно на 30 градусов. Да и само появление жизни было бы невозможно, без разнообразия состава атмосферы. Ведь, если посмотреть на другие планеты, то они и близко непохожи на Землю. Но почему существует атмосфера земли?

Примерная толщина атмосферы составляет более 120 километров, а масса воздуха в ней просто огромна – 5.3*1018 кг. Такой объем возник из-за разнообразия газов в ее составе. Почти вся таблица Менделеева. Но атмосфера земли стала такой, как она есть сейчас, не сразу. Раньше вся поверхность планеты была испещрена кратерами от метеоритов, которым не стоило особо труда пробиться сквозь тонкую пелену, окружающую Землю. Изначально, в составе атмосферы был лишь водород и гелий, а потом, благодаря наличию извергающихся вулканов, добавились аммиак, метан, углекислый газ, сера и азот. Теперь именно они составляют 78 процентов от общей массы атмосферы.

Проходили миллионы и миллионы лет и появился кислород, именно с его приходом все изменилось. Как это случилось? Мантия планеты была раскалена и буквально трещала по швам, выпуская наружу различные газы. А вулканы рождали водяные пары, на них воздействовал ультрафиолет, получая водород и кислород. Но, увы, он не мог надолго задержаться в атмосфере, виной тому были чрезвычайно высокие температуры и излучение солнца, заставляющие его распадаться на исходные части. Все изменилось с приходом первых живых организмов.

Живые организмы

Атмосфера Земли сформировалась именно благодаря совместным усилиям планеты и живых организмов. Если первая позаботилась о наличии всевозможных газов, то вторые стали активно выделить кислород, который уже просто не успевал распадаться. В результате этого, за несколько миллиардов лет, он стал занимать 21 процент от массы атмосферы.

Но на этом участие живых организмов не закончилось, и они стали использовать углерод для того чтобы строить собственные скелеты. Кора Земли буквально наполнилась пластами из органики и останков ископаемых. Вместе с этим, количество углекислого газа серьезно уменьшилось, а кислорода становилось все больше и больше, в результате появился озоновый слой земли, взявший на себя роль защитника всех живых организмов от смертельно опасного влияния ультрафиолетовых лучей. Жизнь на Земле стала разнообразней и стали появляется более развитые существа.

Влияние атмосферы на внешний облик Земли

Любой человек, хотя бы раз глядевший на синее небо над головой, задумывался о том, почему же именно синий цвет? Ответ, опять же, кроется в атмосфере. Кислород способен рассеивать волны коротких диапазонов и в результате давать синий цвет. Конечно, другие газы также могут делать это, но в гораздо меньшей степени. Такой же эффект можно наблюдать и из космоса, откуда Земля виднеется будто окутанная синей дымкой.

Также, литосферные плиты и вулканы, отвечающие на вопрос, почему существует атмосфера земли, являются главными источники благородного газа Аргона, который занимает лишь 1 процент от общей массы атмосферы по причине своей летучести. Он поднимается в верхние слои и после отправляется в космос. Практически то же самое происходит и с гелием.

Атмосфера менялась сотни раз и каждый являлся сильнейшим толчком для развития всего живого. Но некоторые изменения настолько устойчивы, что их существование продолжится практически при любых условиях. Например, защитники экологии очень часто говорят про то, что озоновый слой земли может погибнуть, если человечество не прекратит свою пагубную деятельность. Даже в случае чрезвычайного сокращения количества кислорода в атмосфере, например, в 100 раз, слой продолжит свое существование. Это означает, что человек оставил лишь малый след в истории планеты, но в определенных точках мира, подобная проблема может серьезно сказаться на уровне жизни людей. Например, из-за смога, нависшего над Пекином, люди вынуждены дышать загрязненным воздухом. А тем временем, озоновый слой защищает землю от ультрафиолета и продолжит это делать в любом случае.

Из чего состоит атмосфера?

Выше уже говорилось, что атмосфера является скоплением различных газов, образующих защитную оболочку. Однако, атмосфера земли слои имеет различные, каждый из которых обладает уникальным набором характеристик.

Тропосфера

Строение атмосферы
Строение атмосферы

Первый слой атмосферы, находящийся на промежутке от 0 до 20 километров. Высота зависит от времени года и типа широты. В этом слое содержится примерно 80 процентов всего воздуха и 90 процентов водяного пара. Турбулентность, конвекция, возникновение облаков и циклонов, все это происходит именно здесь. Температура меняется в зависимости от высоты. Как говорит школьный курс – чем выше, тем холоднее. А дальнейшее развитие показало, что каждый 100 метров температура понижается на 0,65 градусов Цельсия.
Какой из атмосферных слоев ближе к земле? Как уже говорилось выше, тропосфера. И именно эта близость повлияла на создание воздушного дна. Места, где происходит контакт с литосферов. Роль дна крайне высока для всего живого на Земле, именно тут поверхность создает ветры, возникают перепады давления, разделяющиеся неровностями и выпуклостями. Также, здесь происходит круговорот воды в природе, вся вода, испаряющаяся с площади океанов, возвращается обратно в них, а слой становится похож на самый обычный водяной фильтр, огромных размеров.

Тропопауза

В этом слое, понижение температуры с повышением высоты прекращается и на этом его роль заканчивается;

Стратосфера

На отрезке между 8 и 50 километрами вверх, находится стратосфера. В ней практически нет водяного пара, и из-за этого атмосферное давление земли серьезно отличается от здешних показателей. Здесь же происходит нагрев воздуха до 0-1 градуса по Цельсию. В нижних слоях стратосферы постоянно летают самолеты.

Нахождение на этой высоте гарантирует отсутствие зон турбулентности и делает движение более простым, благодаря разреженности воздуха.
Но в какой-то момент разреженность становится столь высока, что нахождение в этом слое атмосферы более невозможно из-за нехватки притока воздуха для двигателей. Поэтому стратосфера излюбленное место боевых самолетов и метеорологических зондов, которые собирают данные об изменениях тропосферы.

Что удивительно, на такой высоте все еще могут выживать живые организмы. Наиболее часто встречается аэропланктон, но были случаи, когда в турбины самолета попадали разновидности грифов, а некоторые утки могут летать над Эверестом.

Стратопауза

Очередной промежуточный слой, в котором окружающая температура застывает на отметке в 0 градусов по Цельсию.

Озоновый слой

Атмосферные слои земли содержат в себе и «защитника» всего живого, о котором уже говорилось выше. Находится он именно между страто- и мезосферой.

Мезосфера

Самая опасная и малоизученная часть атмосферы. А всему виной чрезвычайно малое давление и разреженность воздуха. Воздушные шары перестают двигаться, оставаясь висеть на месте, реактивные самолеты становятся бесполезными из-за отсутствия аэродинамики. Полеты остаются возможными лишь для ракет и раекетопланов. Даже спутники не могут надолго задерживаться в этом слое атмосферы, часто они просто сгорают здесь.
Именно поэтому, о мезосфере практически ничего не известно, кроме того, что в этом слое сгорает большинство падающих на землю метеоритов.

Мезопауза

Переходный слой атмосферы с температурой воздуха порядка -90 градусов.

Линия Кармана

Условная граница между космосом и атмосферой, находящаяся на высоте 100 км над уровнем моря.

Термосфера

Слой, начинающийся на отметке линии Кармана и заканчивающийся на 800 км. Отличается чрезвычайно высокими температурами, порядка 1600 градусов по Цельсию. Подобная температура не испепеляет космические шаттлы лишь по двум причинам: 1) чрезвычайно малая концентрация воздуха, создающая эффект вакуума; 2) радиаторы, которыми оснащены все летающие аппараты. Они помогают избавляться от избытка энергии.

Термопауза

Граница термосферы, в которой практически отсутствует поглощение солнечного излучения, и температура перестает меняться в зависимости от изменения высоты.

Экзосфера

На этом слои атмосферы заканчиваются, а происходит это на высоте 800 километров, где атмосфера состоит из атомов водорода, ионизированных под воздействием солнечного излучения. Как результат, чрезвычайная разреженность и низкое давление. Огромные размеры этого слоя перетекают в корону Земли, растянутую на 100 тысяч километров от планеты.

Свойства атмосферы земли и их влияние на человека

Какой из атмосферных слоев ближе к земле, мы уже разобрались, а вот с влиянием атмосферы на человека, все еще не до конца понятно. Если человек поднимется на высоту более 5 километров, то произойдет кислородное голодание, особенно заметно оно будет у человека, поднявшегося на такую высоту без предварительных тренировок. Как итог – работоспособность и общее самочувствие серьезно ухудшатся. А дыхание станет невозможным уже после 9 км, несмотря на то, что кислород содержится вплоть до 115 км.

Если же преодолеть границу высоты в 20 км, то вода и межтканевые жидкости в теле человека станут закипать, что практически мгновенно приведет к смерти. Определение «космос», где человек не может находиться без специальных приспособлений, начинается уже с 15 км.
Тропосфера и стратосфера носят защитные функции и предотвращают попадание радиации на Землю. Если бы их не было, то ультрафиолетовый спектр, находящийся на высоте 40 км, воздействовал бы на человека и на поверхности Земли, что неизбежно привело бы к смерти всех разумных существ.

Если подняться выше отметки в 60 км, то все привычные явления, например, распространение звука, аэродинамика, теплообмен и так далее, прекратятся, из-за того, что они могут происходить лишь в нижних слоях атмосферы.

А поднявшись выше 100 километров, становится невозможно передать тепло любым способом, кроме теплового излучения. Так как различные аппараты космических кораблей, самолетов и так далее, более не охлаждаются изнутри, что ведет к бесполезности воздушных радиаторов.

А что с облаками?

Главная составляющая нашей Земли и причина появления всего живого – атмосфера, но в то же время, ее появление было бы невозможно, без влияния водной поверхности планеты. Вода находится, как в морях, океанах и реках, так и в воздухе. Примерно 5.2 * 10^15 кг воды размещено в атмосфере. Это и водяной пар, и газ, и ледяные кристаллы. Наибольшая концентрация содержится в облаках. Из-за своего огромного размера, облака могут содержать сотни тонн воды.

Подобные образования видны из космоса даже невооруженным взглядом. А все из-за того, что более половины поверхности Земли покрыто облаками. Между прочим, они влияют на теплообмен планеты. В зимнее время происходит поглощение солнечных лучей и за счет парникового эффекта, температура планеты повышается. А летом, огромная энергия Солнца блокируется лишь благодаря наличию облаков.

Стоит сказать, что именно из-за того, что в пустынях они отсутствуют, все накопленное за день тепло, так быстро улетучивается с поверхности планеты. В других же регионах, именно облака способствуют нормализации температуры в ночное время суток.

Большинство видов облаков формируется в тропосфере, но далее происходит бурное развитие, породившее целую классификацию этих загадочных образований. Метеорологи предсказывают по ним погоду, а также определяют количество примесей того или иного газа в воздухе.

Проблема загрязнения атмосферы

Хоть человек и оказывает минимальное влияние на планету в целом, но нельзя не отметить, чрезвычайно увеличение количества углекислого газа в последнее время, которое происходит из-за активного сжигания запасов углеводородного топлива, копившегося веками в результате отмирания других живых организмов.

Углекислый газ поглощается океанами и участвует в процессе фотосинтеза, но все равно лишь за последний век, его количество увеличилось на 10 процентов и если темпы не будут снижены, то это может привести к серьезным изменениям мирового климата.

К тому же, происходит аэрозольное загрязнение, возникающие в результате извержения вулканов, пылевых бурь и уноса пыльцы растений, но есть и искусственные причины, созданные человеком. Сжигание топлива, использование цемента, добыча полезных ископаемых. Возможно, именно вынос твердых частиц в атмосферу Земли и окажет решающее влияние на изменение планетарного климата.

 

Источник: CosmosPlanet.ru

Как формировалась атмосфера?

Как появилась атмосфера на земле

Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов — 78% азота, 21% кислорода и небольшого количества других газов,— например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода — она состояла из газов, первоначально существовавших в Солнечной системе.

Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.

Зарождение атмосферы

  1. Дождь из мелких планетоидов обрушился на зарождающуюся Землю 4,6 миллиарда лет назад. Газы солнечной туманности, заключенные внутри планеты, при столкновении вырвались наружу и образовали примитивную атмосферу Земли, состоящую из азота, двуокиси углерода и водяного пара.
  2. Тепло, выделяющееся при образовании планеты, удерживается слоем плотных облаков первозданной атмосферы. «Парниковые газы» — такие, как двуокись углерода и водяной пар — останавливают излучение тепла в космос. Поверхность Земли залита бурлящим морем расплавленной магмы.
  3. Когда столкновения планетоидов стали не такими частыми, Земля начала охлаждаться и появились океаны. Водяной пар конденсируется из густых облаков, и дождь, продолжающийся несколько эпох, постепенно заливает низменности. Таким образом появляются первые моря.
  4. Воздух очищается по мере того, как водяной пар конденсируется и образует океаны. С течением времени в них растворяется двуокись углерода, и в атмосфере теперь преобладает азот. Из-за отсутствия кислорода не образуется защитный озоновый слой, и ультрафиолетовые солнечные лучи беспрепятственно достигают земной поверхности.
  5. Жизнь появляется в древних океанах в течение первого миллиарда лет. Простейшие сине-зеленые водоросли защищены от ультрафиолета морской водой. Они используют для производства энергии солнечный свет и двуокись углерода, при этом в качестве побочного продукта выделяется кислород, который начинает постепенно накапливаться в атмосфере.
  6. Миллиарды лет спустя формируется богатая кислородом атмосфера. Фотохимические реакции в верхних атмосферных слоях создают тонкий слой озона, который рассеивает вредный ультрафиолетовый свет. Теперь жизнь может выйти из океанов на сушу, где в результате эволюции возникает множество сложных организмов.

Как появилась атмосфера на земле

 Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.

Как появилась атмосфера на земле

Источник: Information-Technology.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.