АТМОСФЕ́РА Земли (от греч. ἀτμός – пар, испарение и σφαῖρα – шар), воздушная оболочка, состоящая из ряда газов и взвешенных в ней частиц примесей – аэрозолей. Масса А. 5,157·1015 т. Столб воздуха оказывает давление на поверхность Земли: ср. атмосферное давление на уровне моря 1013,25 гПа (ок. 760 мм рт. ст.). Средняя по глобусу темп-ра воздуха у поверхности Земли 15 °C, при этом темп-ра изменяется примерно от 57 °C в субтропич. пустынях до –89 °C в Антарктиде. Плотность воздуха и давление убывают с высотой по закону, близкому к экспоненциальному.
Строение атмосферы
По вертикали А. имеет слоистую структуру, определяемую гл. обр. особенностями вертикального распределения темп-ры (рис.), которое зависит от географич.
ложения, сезона, времени суток и т. д. Нижний слой А. – тропосфера – характеризуется падением темп-ры с высотой (примерно на 6 °C на 1 км), его высота от 8–10 км в полярных широтах до 16–18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится ок. 80% всей массы А. Над тропосферой располагается стратосфера – слой, который характеризуется в общем повышением темп-ры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня ок. 20 км темп-ра мало меняется с высотой (т. н. изотермич. область) и нередко даже незначительно уменьшается. Выше темп-ра возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34–36 км – быстрее. Верхняя граница стратосферы – стратопауза – расположена на выс. 50–55 км, соответствующей максимуму темп-ры (260–270 К). Слой А., расположенный на выс. 55–85 км, где темп-ра снова падает с высотой, называется мезосферой, на его верхней границе – мезопаузе – темп-ра достигает летом 150–160 К, а зимой 200–230 К. Над мезопаузой начинается термосфера – слой, характеризующийся быстрым повышением темп-ры, достигающей на выс. 250 км значений 800–1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству.
Состав атмосферы
До выс. ок. 100 км А. практически однородна по химич. составу и ср. молекулярная масса воздуха (ок. 29) в ней постоянна. Вблизи поверхности Земли А. состоит из азота (ок. 78,1% по объёму) и кислорода (ок. 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и др. постоянных и переменных компонентов (см. Воздух).
Кроме того, А. содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относит. содержание осн. составляющих воздуха постоянно во времени и однородно в разных географич. районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.
Выше 100–110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На выс. ок. 1000 км начинают преобладать лёгкие газы – гелий и водород, а ещё выше А. Земли постепенно переходит в межпланетный газ.
Наиболее важная переменная компонента А. – водяной пар, который поступает в А. при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относит. содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на выс. 1,5–2 км. В вертикальном столбе А. в умеренных широтах содержится ок. 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.
Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), ок. 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом – его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении $p=$ 1 атм и темп-ре $T=$ 0 °C).
озоновых дырах, наблюдаемых весной в Антарктике с нач. 1980-х гг., содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой А. является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в осн. антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её темп-ры).
Важную роль в формировании климата планеты играет атмосферный аэрозоль – взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйств. деятельности человека, вулканич. извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космич.
ли, попадающей в верхние слои А. Бóльшая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканич. извержений образует т. н. слой Юнге на выс. ок. 20 км. Наибольшее количество антропогенного аэрозоля попадает в А. в результате работы автотранспорта и ТЭЦ, химич. производств, сжигания топлива и др. Поэтому в некоторых районах состав А. заметно отличается от обычного воздуха, что потребовало создания спец. службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.
Эволюция атмосферы
Совр. А. имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты ок. 4,5 млрд. лет назад. В течение геологич. истории Земли А. претерпевала значит. изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преим. более лёгких, в космич. пространство; выделения газов из литосферы в результате вулканич. деятельности; химич. реакций между компонентами А. и породами, слагающими земную кору; фотохимич. реакций в самой А. под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (напр., метеорного вещества).
звитие А. тесно связано с геологич. и геохимич. процессами, а последние 3–4 млрд. лет также с деятельностью биосферы. Значит. часть газов, составляющих совр. А. (азот, углекислый газ, водяной пар), возникла в ходе вулканич. деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах ок. 2 млрд. лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.
По данным о химич. составе карбонатных отложений получены оценки количества углекислого газа и кислорода в А. геологического прошлого. На протяжении фанерозоя (последние 570 млн. лет истории Земли) количество углекислого газа в А. изменялось в широких пределах в соответствии с уровнем вулканич. активности, темп-рой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в А. была значительно выше современной (до 10 раз). Количество кислорода в А. фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В А. докембрия масса углекислого газа была, как правило, больше, а масса кислорода – меньше по сравнению с А. фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении осн. части фанерозоя был гораздо теплее по сравнению с совр. эпохой.
Атмосфера и жизнь
Без А. Земля была бы мёртвой планетой. Органич. жизнь протекает в тесном взаимодействии с А. и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), А. является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органич. вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органич. вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минер. питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации.
нденсация водяного пара в А., образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химич. составом атмосферных газов, растворённых в воде. Поскольку химич. состав А. существенно зависит от деятельности организмов, биосферу и А. можно рассматривать как часть единой системы, поддержание и эволюция которой (см. Биогеохимические циклы) имела большое значение для изменения состава А. на протяжении истории Земли как планеты.
Радиационный, тепловой и водный балансы атмосферы
Солнечная радиация является практически единств. источником энергии для всех физич. процессов в А. Главная особенность радиац. режима А. – т. н. парниковый эффект: А. достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиац. потерю тепла земной поверхностью (см. Атмосферное излучение).
отсутствие А. ср. темп-ра земной поверхности была бы –18 °C, в действительности она 15 °C. Приходящая солнечная радиация частично (ок. 20%) поглощается в А. (гл. обр. водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (ок. 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (ок. 23%) отражается от неё. Коэф. отражения определяется отражат. способностью подстилающей поверхности, т. н. альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70–90% для свежевыпавшего снега. Радиац. теплообмен между земной поверхностью и А. существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением А. Алгебраич. сумма потоков радиации, входящих в земную атмосферу из космич. пространства и уходящих из неё обратно, называется радиационным балансом.
Преобразования солнечной радиации после её поглощения А. и земной поверхностью определяют тепловой баланс Земли как планеты. Гл. источник тепла для А. – земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара.
ли этих притоков теплоты равны в ср. 20%, 7% и 23% соответственно. Сюда же добавляется ок. 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне А. на ср. расстоянии от Земли до Солнца (т. н. солнечная постоянная), равен 1367 Вт/м2, изменения составляют 1–2 Вт/м2 в зависимости от цикла солнечной активности. При планетарном альбедо ок. 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м2. Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана – Больцмана, эффективная темп-ра уходящего теплового длинноволнового излучения 255 К (–18 °C). В то же время ср. темп-ра земной поверхности составляет 15 °C. Разница в 33 °C возникает за счёт парникового эффекта.
Водный баланс А. в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. А. над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в А. с океанов на континенты, равно объёму стока рек, впадающих в океаны.
Движение воздуха
Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение темп-ры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанич. вод и высокой теплоёмкости воды сезонные колебания темп-ры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах темп-ра воздуха над океанами летом заметно ниже, чем над континентами, а зимой – выше.
Неодинаковый разогрев А. в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (поясá высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропич. широт давление зимой обычно повышено, а летом понижено, что связано с распределением темп-ры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (см. Турбулентность в атмосфере).
С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части А. наблюдаются зап. ветры со скоростями в средней тропосфере ок. 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты – ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной вост. составляющей (с востока на запад). Достаточно устойчивы муссоны – воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского ок. В средних широтах движение воздушных масс имеет в осн. зап. направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри – циклоны и антициклоны, охватывающие мн. сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), т. н. тропические циклоны. В Атлантике и на востоке Тихого ок. они называются ураганами, а на западе Тихого ок. – тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100–150 и даже 200 м/с.
Климат и погода
Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физич. свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропич. широт темп-ра воздуха у земной поверхности в ср. 25–30 °C и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропич. поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.
В субтропич. и средних широтах темп-ра воздуха значительно меняется в течение года, причём разница между темп-рами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Вост. Сибири годовая амплитуда темп-ры воздуха достигает 65 °C. Условия увлажнения в этих широтах весьма разнообразны, зависят в осн. от режима общей циркуляции А. и существенно меняются от года к году.
В полярных широтах темп-ра остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России св. 65% её площади, в осн. в Сибири.
За последние десятилетия стали всё более заметны изменения глобального климата. Темп-ра повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 в. ср.-годовая темп-ра воздуха у земной поверхности в России выросла на 1,5–2 °C, причём в отд. районах Сибири наблюдается повышение на неск. градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.
Погода определяется условиями циркуляции А. и географич. положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологич. спутников. См. также Метеорология.
Оптические, акустические и электрические явления в атмосфере
При распространении электромагнитного излучения в А. в результате рефракции, поглощения и рассеяния света воздухом и разл. частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптич. явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в А. (см. Атмосферная видимость). От прозрачности А. на разл. длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в т. ч. возможность астрономич. наблюдений с поверхности Земли. Для исследований оптич. неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Напр., фотографирование сумерек с космич. аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в А. определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и мн. другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (см. Распространение радиоволн).
Распространение звука в А. зависит от пространственного распределения темп-ры и скорости ветра (см. Атмосферная акустика). Оно представляет интерес для зондирования А. дистанц. методами. Взрывы зарядов, запускаемых ракетами в верхнюю А., дали богатую информацию о системах ветров и ходе темп-ры в стратосфере и мезосфере. В устойчиво стратифицированной А., когда темп-ра падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают т. н. внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.
Отрицательный заряд Земли и обусловленное им электрич. поле А. вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрич. цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие назв. атмосфериков (см. Свистящие атмосферики). Во время резкого увеличения напряжённости электрич. поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отд. вершинах в горах и др. (Эльма огни). А. всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрич. проводимость А. Главные ионизаторы воздуха у земной поверхности – излучение радиоактивных веществ, содержащихся в земной коре и в А., а также космич. лучи. См. также Атмосферное электричество.
Влияние человека на атмосферу
В течение последних столетий происходил рост концентрации парниковых газов в А. вследствие хозяйств. деятельности человека. Процентное содержание углекислого газа возросло с 2,86 10–2 двести лет назад до 3,8·10–2 в 2005, содержание метана – с 0,7· 10–4 примерно 300–400 лет назад до 1,8·10–4 в нач. 21 в.; ок. 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в А. до сер. 20 в. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987. Рост концентрации углекислого газа в А. вызван сжиганием всё возрастающих количеств угля, нефти, газа и др. видов углеродного топлива, а также сведе́нием лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.
Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты с.-х. растений от градобития путём рассеивания в грозовых облаках спец. реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.
Изучение атмосферы
Сведения о физич. процессах в А. получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологич. станций и постов, расположенных на всех континентах и на мн. островах. Ежедневные наблюдения дают сведения о темп-ре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрич. станциях. Большое значение для изучения А. имеют сети аэрологич. станций, на которых при помощи радиозондов выполняются метеорологич. измерения до выс. 30–35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрич. явлениями в А., химич. составом воздуха.
Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового ок., а также метеорологич. сведениями, получаемыми с н.-и. и др. судов.
Всё больший объём сведений об А. в последние десятилетия получают с помощью метеорологич. спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях темп-ры, облачности и её водозапасе, элементах радиац. баланса А., о темп-ре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигац. спутников, удаётся определять в А. вертикальные профили плотности, давления и темп-ры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиац. баланса системы Земля – А., измерять содержание и изменчивость малых атмосферных примесей, решать мн. др. задачи физики атмосферы и мониторинга окружающей среды.
Источник: bigenc.ru
Ветры, наблюдаются над земной поверхностью, разделяют на три группы: местные ветры, вызванные местными условиями (температурой, особенностями рельефа); ветры циклонов и антициклонов; ветры, является частью общей циркуляции атмосферы.
Общую циркуляцию атмосферы образуют крупнейшие воздушные потоки планетарного масштаба, захватывающие всю тропосферу и нижнюю стратосферу (примерно до 20 км) и характеризуются относительной устойчивостью. В тропосфере к ним относятся пассаты, западные ветры умеренных широт и восточные ветры приполярных областей, муссоны. Причиной этих планетарных перемещений воздуха разница давления.
Над экватором формируется пояс пониженного давления из-за того, что здесь воздух теплый течение года и оно, преимущественно, поднимается вверх (доминирует восходящее движение воздуха). В верхних слоях тропосферы оно охлаждается и растекается в направлении высоких широт. Сила Кориолиса, отклоняя воздушные потоки, идущие в верхней тропосфере от экватора, придает им в 30-х широтах западного направления, заставляя двигаться только вдоль параллелей. Поэтому это охлажденный воздух подвергается здесь нисходящего движения, вызывая высокое давление (хотя у поверхности температуры воздуха даже выше, чем на экваторе). Эти субтропические пояса высокого давления служат основными «витророздиламы на Земле. От них объемы воздуха нижнего слоя тропосферы направляются как к экватору, так и в сторону умеренных широт.
Ветры, характеризующиеся устойчивостью направления и скорости, в течение всего года дуют от поясов высокого давления (25-35 ° с. И ю. Ш.) До экватора называются пассатами. Вследствие вращения Земли вокруг своей оси они отклоняются от предыдущего направления, в Северном полушарии они дуют с северо-востока на юго-запад, а в Южной — с юго-востока на Северо-Запад.
Ветры, дующие от субтропических поясов высокого давления в направлении полюсов, отклоняясь вправо или влево в зависимости от полушария, меняют свое направление на западное. Поэтому в умеренных широтах преобладают западные ветры, хотя они и не такие стали, как пассаты.
Из областей высокого давления полярных широт в направлении умеренных широт со сравнительно низким давлением также дуют постоянные ветры. Испытывая действия силы вращения, в Северном полушарии они северо-восточными, а в Южном — юго-восточными.
В умеренных широтах, где происходит встреча теплых воздушных масс со стороны тропиков и холодных — из полярных областей, постоянно возникают фронтальные циклоны и антициклоны, в которых и осуществляется перенос воздуха с запада на восток.
Источник: worldofscience.ru
Тропосфера: где происходит погода
Из всех слоев атмосферы тропосфера является тем, с которым мы больше всего знакомы (осознаете ли вы это или нет), так как мы живем на ее дне — поверхности планеты. Она окутывает поверхность Земли и простирается вверх на несколько километров. Слово тропосфера означает «изменение шара». Очень подходящее название, так как этот слой, где происходит наша повседневная погода.
Начиная с поверхности планеты, тропосфера поднимается на высоту от 6 до 20 км. Нижняя треть слоя, ближайшая к нам, содержит 50% всех атмосферных газов. Это единственная часть всего состава атмосферы, которая дышит. Благодаря тому, что воздух нагревается снизу земной поверхностью, поглощающей тепловую энергию Солнца, с увеличением высоты температура и давление тропосферы понижаются.
На вершине находится тонкий слой, называемый тропопаузой, который является всего лишь буфером между тропосферой и стратосферой.
Стратосфера: дом озона
Стратосфера — следующий слой атмосферы. Он простирается от 6-20 км до 50 км над земной поверхностью Земли. Это слой, в котором летают большинство коммерческих авиалайнеров и путешествуют воздушные шары.
Здесь воздух не течет вверх и вниз, а движется параллельно поверхности в очень быстрых воздушных потоках. По мере того, как вы поднимаетесь, температура увеличивается, благодаря обилию природного озона (O3) — побочного продукта солнечной радиации и кислорода, который обладает способностью поглощать вредные ультрафиолетовые лучи солнца (любое повышение температуры с высотой в метеорологии, известно как «инверсия»).
Поскольку стратосфера имеет более теплые температуры внизу и более прохладные наверху, конвекция (вертикальные перемещения воздушных масс) встречается редко в этой части атмосферы. Фактически, вы можете рассматривать из стратосферы бушующую в тропосфере бурю, поскольку слой действует как «колпачок» для конвекции, через который не проникают штормовые облака.
После стратосферы снова следует буферный слой, на этот раз называемый стратопаузой.
Мезосфера: средняя атмосфера
Мезосфера находится примерно на расстоянии 50-80 км от поверхности Земли. Верхняя область мезосферы является самым холодным естественным местом на Земле, где температура может опускаться ниже -143° C.
Термосфера: верхняя атмосфера
После мезосферы и мезопаузы следует термосфера, расположенная между 80 и 700 км над поверхностью планеты, и содержит менее 0,01% всего воздуха в атмосферной оболочке. Температуры здесь достигают до +2000° C, но из-за сильной разреженности воздуха и нехватки молекул газа для переноса тепла, эти высокие температуры воспринимаются, как очень холодные.
Экзосфера: граница атмосферы и космоса
На высоте около 700-10000 км над земной поверхностью находится экзосфера — внешний край атмосферы, граничащий с космосом. Здесь метеорологические спутники вращаются вокруг Земли.
Как насчет ионосферы?
Ионосфера не является отдельным слоем, а на самом деле этот термин используется для обозначения атмосферы на высоте от 60 до 1000 км. Она включает в себя самые верхние части мезосферы, всю термосферу и часть экзосферы. Ионосфера получила свое название, потому что в этой части атмосферы излучение Солнца ионизируется, когда проходит магнитные поля Земли на севере и юге. Это явления наблюдается с земли как северное сияние.
Понравилась статья? Поделись с друзьями:
Источник: NatWorld.info
Воздушные течения.
С планетарным распределением давления связана сложная система воздушных течений. Некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору, и муссоны в средних широтах преобладают воздушные течения западного направления (с Запада на Восток), в которых возникают крупные вихри – циклоны и антициклоны, обычно простирающиеся на сотни и тысячи километров. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т.н. тропические циклоны). В верхней тропосфере и нижней стратосфере часто возникают сравнительно узкие (в сотни километров шириной) струйные течения, с резко очерченными границами, в пределах которых ветер достигает больших скоростей до 100–150 м/с.
Пассаты
(немецкий, единственное число Passat, вероятно, от испанского viento de pasade) – ветер, благоприятствующий переезду), устойчивые на протяжении года воздушные течения в тропических широтах над океанами. В Северном полушарии направление пассатов преимущественно северо-восточное, в Южном – юго-восточное. Между пассатами Северного и Южного полушарий – внутритропическая зона конвергенции; над пассатами в противоположном им направлении дуют антипассаты.
Муссоны
– система воздушных течений, в которой в одном сезоне преобладают ветры одного направления, а в другом – прямо противоположного или близкого к нему. Слово муссон происходит от арабского маусим, что значит сезон. В течение многих столетий арабские моряки называли этим словом систему ветров над Аравийским морем и Бенгальским заливом. В летние месяцы там дуют ветры с юго-запада, а в зимние – с северо-востока. О муссонах жители Ближнего Востока и Индии знали очень давно. Еще в 4–3 вв. до н.э. индийские и персидские мореплаватели использовали закономерности смены ветров при плавании в Аравийском море. В 1 и 2 вв. н.э. сложился великий муссонный путь от берегов Индии в Южно-Китайское море и Китай. Индийские, малайские и китайские мореплаватели летом вели по нему свои парусные суда на восток, а зимой на – запад. Внимание, которое в течение столетий в разных частях мира уделяется муссонам, связано не только с сезонной сменой преобладающих ветров, но и с закономерностями выпадения дождей в период муссона. Отсутствие муссонных дождей приводит к засухам, потере урожая, обмелению рек. В то же время слишком интенсивный муссон с бурными, продолжительными ливнями вызывает наводнения. Специфические признаки муссона – его устойчивость в течение сезона и смена от одного полугодия к другому, т.е. именно его сезонность. Причины муссонных ветров и смена их направления по сезонам связаны с годовым ходом Солнца и приходом солнечного излучения на земную поверхность.
Муссоны распространены в тропиках на огромных территориях от Западной Африки до Юго-Восточной Азии и Индонезии. Муссонная составляющая общей циркуляции атмосферы оказывает существенное влияние и на формирование климата восточных районов азиатского побережья России. Наиболее четко такой муссонный перенос и смена материкового и морского влияния выражены на юге Дальнего Востока и особенно в Приморском крае. В этих широтах муссон можно разделить на две фазы – зимнюю и летнюю: Азия «выдыхает» воздух зимой и «вдыхает» летом. Зимой наиболее ярко проявляется влияние континента. По мере остывания Евразийского материка над ним все чаще формируются области высокого атмосферного давления. Преобладание таких областей ведет к тому, что на картах атмосферного давления при осреднении за зимние месяцы здесь прослеживается огромная область высокого давления, названная сибирским или азиатским антициклоном. В это время здесь формируется мощный северо-западный поток континентального воздуха, с вертикальной мощностью до 4 км – зимний муссон. Летом муссонный перенос в данных широтах обычно возникает вследствие взаимодействия дальневосточной депрессии (области пониженного давления, формирующейся главным образом в бассейне Амура) и областями повышенного давления над окраинными морями (Японским и Охотским) и северо-западной частью Тихого океана. Максимум циклонической деятельности в южных районах Дальнего Востока приходится на лето и весну, минимум – на зиму и осень. Прогрев материка в летний период, меридиональное расположение горных хребтов, в частности, Сихоте-Алиня, образование антициклонов над окраинными морями приводит к тому, что циклоны, смещающиеся с западных районов, замедляют здесь свое движение, блокируются. Эти причины способствуют формированию летней дальневосточной депрессии. Основной особенностью климата южной части российского Дальнего Востока является выпадение осадков преимущественно в теплое время года: с июня по сентябрь выпадает более 60% их годового количества, причем характерной особенностью муссонного климата является то, что в самый дождливый месяц года выпадает осадков почти в 50 раз больше, чем в самый сухой. В континентальном климате это соотношение едва достигает четырех.
Сезонная смена влияния континента и океана обуславливает холодную зиму и дождливое влажное лето, определяя муссонный климат Дальнего Востока. См.также МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ.
Циклон
(от греческого kyklon – кружащийся) – область пониженного давления в атмосфере с минимумом в центре. Поперечник циклона – несколько тысяч километров. Характеризуется системой ветров, дующих против часовой стрелки в Северном полушарии и по часовой – в Южном. Погода при циклонах преобладает пасмурная с сильными ветрами. Это связано с особенностями распределения давления и характером циркуляции воздуха.
Под влиянием трения в нижних слоях атмосферы в циклоне наблюдается, помимо кругового движения воздуха, еще и движение от периферии к центру, и поэтому возникает постоянное вертикальное, восходящее, движение воздуха и его охлаждение по мере подъема. Воздух, охлаждаясь, становится влагонасыщенным, в нем образуются облака, дающие осадки. В циклонах, особенно вблизи их центров, всегда велика разность давления между центром и периферией (т.е. велики так называемые горизонтальные градиенты давления) и, следовательно, постоянно наблюдаются сильные порывистые ветры (вихри). По своему происхождению вихри разделяются на две основные группы: тропические (ураганы, тайфуны) и циклоны умеренных широт.
Тропические циклоны.
Родина тропических вихрей – океанские просторы в приэкваториальной области примерно между 10–15° северной и южной широт, их диаметр – несколько сотен километров, а высота – от 5 до 15 км. Тропические циклоны могут возникать в любое время года в тропических частях всех океанов, за исключением юго-восточной части Тихого океана и южной части Атлантики. Наиболее часто (в 87% случаев) тропические циклоны возникают между широтами 5° и 20°. В более высоких широтах они возникают лишь в 13% случаев. Никогда не отмечалось возникновение циклонов севернее 35° северной широты и южнее 22° южной широты. Тропические циклоны, достигшие значительной интенсивности, в каждом районе имеют свое название. В восточной части Тихого океана и в Атлантике их называют ураганами (от испанского слова «уракан» или английского «харикейн»), в странах полуострова Индостан – циклонами или штормами, на Дальнем Востоке – тайфунами (от китайского слова «тай», что означает сильный ветер). Есть и менее распространенные местные названия: «вилли-вилли» – в Австралии, «вилли-вау» – в Океании и «багио» – на Филиппинах. Тайфунам Тихого океана и ураганам Атлантики присваивают имена согласно установленным спискам. Для тайфунов используются четыре списка имен, для ураганов установлен один. Каждому тайфуну или урагану, образовавшемуся в данном календарном году, кроме имени присваивается порядковый номер двухзначная цифра года: например, 0115, что означает пятнадцатый по счету номер тайфуна в 2001.
Чаще всего они образуются в северной части тропической зоны Тихого океана: здесь, в среднем, за год прослеживается около 30 циклонов. В умеренные широты тропические циклоны выходят в период с конца июня по начало октября, а наиболее активны в августе-октябре. Отличительной особенностью циклонов этой группы является то, что они термически однородны (т.е. нет температурных контрастов между различными частями вихря), в них сосредоточено колоссальное количество энергии, они приносят с собой штормовые ветры и сильные осадки.
Тропические циклоны образуются там, где наблюдается высокая температура поверхности воды (выше 26°), а разность температур вода-воздух более 2°. Это приводит к усилению испарения, увеличению запасов влаги в воздухе, что, в известной степени, определяет накопление тепловой энергии в атмосфере и способствует вертикальному подъему воздуха. Появляющаяся мощная тяга увлекает все новые и новые объемы воздуха, нагревшиеся и увлажнившиеся над водной поверхностью. Вращение Земли придает подъему воздуха вихревое движение, и вихрь становится подобным гигантскому волчку, энергия которого грандиозна. Центральную часть воронки называют «глазом бури». Это феноменальное явление, которое поражает особенностями своего «поведения». Когда глаз бури хорошо выражен, на его границе осадки внезапно прекращаются, небо проясняется, а ветер значительно ослабевает, иногда до штиля. Форма глаза бури может быть самой разной, она постоянно меняется. Иногда встречается даже двойной глаз. Средний диаметр глаза бури в хорошо развитых циклонах равен 10–25 км, а в разрушительных он составляет 60–70 км.
Тропические циклоны в зависимости от их интенсивности:
1. Тропическое возмущение – скорости ветра небольшие (менее 17 м/с).
2. Тропическая депрессия – скорость ветра достигает 17–20 м/с.
3. Тропический шторм – скорость ветра до 38 м/с.
4. Тайфун (ураган) – скорость ветра превышает 39 м/с.
В жизненном цикле тропического циклона выделяют четыре стадии:
1. Стадия формирования. Начинается с появления первой замкнутой изобары (изобара – линия равного давления). Давление в центре циклона опускается до 990 гПа. Лишь около 10% тропических депрессий получает дальнейшее развитие.
2. Стадия молодого циклона или стадия развития. Циклон начинает быстро углубляться, т.е. отмечается интенсивное падение давления. Ветры ураганной силы образуют вокруг центра кольцо радиусом 40–50 км.
3. Стадия зрелости. Падение давления в центре циклона и увеличение скорости ветра постепенно прекращаются. Область штормовых ветров и интенсивных ливней увеличивается в размерах. Диаметр тропических циклонов в стадии развития и в зрелой стадии может колебаться от 60–70 км до 1000 км.
4. Стадия затухания. Начало заполнения циклона роста давления в его центре). Затухание происходит при перемещении тропического циклона в зону более низких температур поверхности воды или при переходе на сушу. Это связано с уменьшением притока энергии (тепла и влаги) с поверхности океана, а при выходе на сушу еще и с увеличением трения о подстилающую поверхность.
Двигаясь в сторону умеренных широт, тропические циклоны постепенно теряют свою силу и затухают.
Тайфуны.
К числу наиболее мощных и разрушительных тропических циклонов относятся тайфуны, они возникают над океаном к северо-востоку от Филиппин. Средняя продолжительность существования тайфуна составляет 11 дней, а максимальная – 18 дней. Минимальное давление, наблюдавшееся в таких тропических циклонах, колеблется в широких пределах: от 885 до 980 гПа. Максимальные суточные суммы осадков достигают 400 мм, а скорость ветра – 20–35 м/с. Основной сезон выхода тайфунов в умеренные широты с июля по сентябрь.
Торнадо.
Сильные штормы на Земле могут вызвать появление необычных, небольших по размерам, но неистовых облаков. Торнадо кружатся со скоростью сотен километров в секунду, а когда они достигают поверхности Земли, сметают практически все на своем пути вдоль длинной и узкой полосы следования. Как правило, торнадо длятся не более нескольких минут, но самые сильные и опасные из них могут продолжаться часами.
Циклоны умеренных широт.
Циклоны умеренных широт менее опасны, они возникают преимущественно в зонах атмосферных фронтов, где встречаются две различные воздушные массы. В северном полушарии самые обширные циклоны обычно наблюдаются над акваториями Атлантического и Тихого океанов. Повторяемость их зависит от времени года и географического района. В среднем, в северном полушарии циклоны над европейской частью континента более часты зимой, над Азиатской – летом. Циклоны имеют диаметр порядка 2–3 тыс. км и более.
Погода в циклоне внетропических широт неоднородна: различают переднюю и тыловую части циклона, левую и правую – по отношению к направлению его движения. В передней части циклона преобладают сплошная слоистообразная облачность теплого фронта, обложные осадки с ветрами южной четверти горизонта. В тылу циклона, за холодным фронтом, погода отличается неустойчивостью, с выпадением осадков ливневого типа, порывистым ветром северо-западной и северной четвертей; облачность может быть с разрывами и даже с кратковременными прояснениями, а летом – конвективного типа. Левая (чаще всего северная) часть циклона характеризуется условиями погоды, которые можно назвать промежуточными между передней и тыловой частями циклона; преобладают ветры восточной и северо-восточной четверти, облака сплошные, осадки обложные, выпадающие с перерывами и постепенно переходящие в кратковременные ливневого типа. Правая южная часть циклона некоторый период его жизни является «теплым сектором» – она заполнена теплой воздушной массой, которая со временем вытесняется наверх. Здесь, в зависимости от сезона и типа воздушной массы, погода может быть разнообразной, но преимущественно без существенных осадков, с туманами или низкой тонкой слоистой облачностью, нередко безоблачная и всегда теплая, с ветрами южной и юго-западной четверти.
Антициклон
– область повышенного давления в атмосфере с максимумом в центре (на уровне моря 1050–1070 гПа). Поперечник антициклона – порядка тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном, малооблачной и сухой погодой и слабыми ветрами.
В зависимости от географического района зарождения различают внетропические и субтропические антициклоны. Возникновение и развитие антициклонов тесно связано с развитием циклонов, практически это единый процесс. В одном районе создается дефицит массы, а в соседнем – избыток. Антициклоны занимают площади, сравнимые с размером материков, над которыми они лучше развиваются зимой,а над океанами – летом. В среднем, повторяемость антициклонов в 2,5–3 раза меньше, чем циклонов.
Годовой ход выражен довольно слабо, но подвижных антициклонов над континентами немного больше, чем над океанами. Есть районы, в которых антициклоны чаще всего становятся малоподвижными и существуют длительное время. От центра антициклона воздух оттекает во все стороны, что исключает возможность сближения и взаимодействия разнородных воздушных масс. В связи с нисходящими движениями воздуха в центральных частях антициклонов преобладает малооблачная погода. Однако при значительной влажности воздуха в холодную половину года в центральной части антициклона могут наблюдаться сплошные облака, а туманы наблюдаются как зимой, так и летом.
В каждом антициклоне погода существенно меняется в различных секторах. На окраинах антициклонов условия погоды, в общих чертах, сходны с условиями погоды в примыкающих секторах соседних циклонов.
Северная окраина антициклона обычно непосредственно связана с теплым сектором соседнего циклона. Здесь в холодное полугодие часто наблюдается сплошная облачность, иногда идут слабые осадки. Нередко отмечаются туманы. Летом в этом секторе антициклона облачностьнебольшая, в дневные часы могут развиваться кучевые облака.
Западная окраина антициклона примыкает к передней части области низкого давления. В холодное полугодие в этой части антициклона часто отмечаются слоисто-кучевые облака, из которых выпадают слабые осадки. Зона осадков довольно обширная и перемещается вдоль изобар, огибая антициклон по часовой стрелке и претерпевая некоторые изменения. Летом на западной окраине антициклона при высокой температуре воздуха и значительной влажности нередко развиваются кучевые облака и гремят грозы.
Южная окраина антициклона примыкает к северной части циклона. Здесь нередко наблюдаются слоистые облака, из которых зимой выпадают осадки. В этой части антициклона создаются большие перепады давления, поэтому нередко усиливается ветер и возникают метели.
Восточная окраина антициклона граничит с тыловой частью циклона. Летом при неустойчивой воздушной массе в дневные часы здесь образуются облака кучевых форм, выпадают ливневые дожди и гремят грозы. Зимой может наблюдаться безоблачная погода или не сплошная слоистая облачность.
В разных антициклонах наблюдаются значительные различия в погоде, что обусловливается в каждом случае свойствами воздушных масс и зависит от сезона. Поэтому для прогноза погоды свойства каждого антициклона исследуется индивидуально.
Цунами – длинные морские волны, образующиеся в океанах и морях под действием землетрясений, вулканических извержений, а также в результате резкого перепада атмосферного давления, либо при падении с берега в воду масс грунта и льда.
Основным районом, где возникает цунами, является Тихий океан. Из 400 действующих сегодня на земле вулканов 330 расположены в бассейне Тихого океана, здесь наблюдается более 80% всех землетрясений.
«Цунами» в переводе с японского языка означает «волна в гавани». И хотя этот перевод звучит несколько экзотически и носит описательный характер, указанный термин как нельзя лучше характеризует суть явления. Основная природа возникновения цунами – сейсмическая. В участках земной коры, находящихся под дном океана, происходят разрывы, проявляющиеся в виде землетрясений. В случаях, когда эпицентр землетрясений располагается на глубине более 50 км, цунами, как правило, не образуется. Существует и иная трактовка причин образования цунами – это извержение наземных и подводных вулканов. Иногда возникают цунами метеорологического происхождения. Такие «метеоцунами» связаны с выходами на морские акватории тайфунов и ураганов.
Упрощенная схема образования цунами.
Чаще всего волны цунами бывают сейсмического происхождения, при землетрясениях образуются разломы поверхности земной коры – трещины и, как следствие – сбросы, сдвиги и надвиги, приводящие к опусканию или поднятию значительных районов дна. При этом в толще воды происходят мгновенные изменения объема и давления, вызывающие появление волн сжатия и разрежения, которые, достигая поверхности океана, вызывают ее колебания и формируют цунами. Период образовавшихся волн составляет от 2 до 20 мин, т.е. это длинные волны. В открытом море эти волны не заметны, но они несут огромную энергию. Скорость смещения волн цунами на глубокой воде составляет 500–700 км/час. При движении энергия цунами расходуется на преодоление сил вязкости и трения о дно. Интенсивность цунами связана с силой землетрясения. В России для определения интенсивности землетрясения используется 12-ти бальная шкала, в Японии единицей землетрясения служит магнитуда, представляющая собой величину, пропорциональную логарифму максимальной амплитуды горизонтального смешения почвы (дна) на расстоянии 100 км от очага землетрясения. Самые сильные землетрясения имеют магнитуду 8,5.
Основным методом предсказания цунами является сейсмический, основанный на существовании разницы между скоростью распространения сейсмических волн в земной коре и скоростью распространения в океане волн цунами. Сейсмические волны достигают побережья в 50–80 раз быстрее, чем волны цунами. Сейсмическая служба регистрирует землетрясение, определяет его параметры, цунамигенность и передает эту информацию оперативной службе Центра морской гидрометеорологии.
Таблица 1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВЕТРОВЫХ ВОЛН И ВОЛН ЦУНАМИ
Параметры
Ветровые волны
Цунами
Скорость распространения
до 100 км/час
до 1000 км/час
Длина волны
до 0,5 км
до 1000 км
Период
до 20 секунд
до 2,5 часов
Глубина проникновения
до 300 м
до самого дна
Высота волны в открытом море
до 30 м
до 2 м
Высота волны у побережья
до 40 м
до 70 м
Свыше 99% волн цунами вызываются подводными землетрясениями. При землетрясении под водой образуется вертикальная трещина и часть дна опускается. Дно внезапно перестает поддерживать столб воды, лежащий над ним. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, – среднему уровню моря, – и порождает серию волн.
Ветер
– движение воздуха относительно земной поверхности (горизонтальная составляющая этого движения), иногда говорят о восходящем или о нисходящем ветре, учитывая и его вертикальную составляющую.
Скорость ветра.
Оценка скорости ветра в баллах, так называемая шкала Бофорта,по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т.п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т.е. полное отсутствие ветра. Ветер в 4 балла,по Бофорту называется умеренным и соответствует скорости 5–7 м/сек; в 7 баллов – сильным, со скоростью 12–15 м/сек;в 9 баллов – штормом, со скоростью 18–21 м/сек;наконец, ветер в 12 баллов по Бофорту – это уже ураган, со скоростью свыше 29 м/сек. У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4–8 м/сек и редко превышают 12–15 м/сек.Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек.В тропических ураганах скорости ветра доходят до 65 м/сек,а отдельные порывы – до 100 м/сек.В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек.В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70–100 м/сек. Скорость ветра у земной поверхности измеряется анемометрами разной конструкции. Приборы для измерения ветра на наземных станциях устанавливаются на высоте 10–15 м над земной поверхностью.
Таблица 2. СИЛА ВЕТРА.
Шкала Бофорта для определения силы ветра
Баллы
Визуальные признаки на суше
Скорость ветра, км/ч
Термины, определяющие силу ветра
0
Спокойно; дым поднимается вертикально
Менее 1,6
Штиль
1
Направление ветра заметно по отклонению дыма, но не по флюгеру
Листья и мелкие веточки находятся в постоянном движении; развеваются легкие флаги
12,8–19,2
Слабый
4
Ветер поднимает пыль и бумажки; раскачиваются тонкие ветви
20,8–28,8
Умеренный
5
Качаются покрытые листвой деревья; появляется рябь на водоемах суши
30,4–38,4
Свежий
6
Качаются толстые ветви; слышен свист ветра в электропроводах; трудно удерживать зонт
40,0–49,6
Сильный
7
Качаются стволы деревьев; трудно идти против ветра
51,2–60,8
Крепкий
8
Ломаются ветви деревьев; практически невозможно идти против ветра
62,4–73,6
Очень крепкий
9
Небольшие повреждения; ветер срывает дымовые колпаки и черепицу с крыш
75,2–86,4
Шторм
10
На суше бывает редко. Деревья выворачиваются с корнями. Значительные разрушения строений
88,0–100,8
Сильный шторм
11
На суше бывает очень редко. Сопровождается разрушениями на большом пространстве
102,4–115,2
Жестокий шторм
12
Сильные разрушения (Баллы 13–17 были добавлены Бюро погоды США в 1955 и применяются в шкалах США и Великобритании)
116,8–131,2
Ураган
13
132,8–147,2
14
148,8–164,8
15
166,4–182,4
16
184,0–200,0
17
201,6–217,6
Направление ветра.
Под направлением ветра подразумевают направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т.е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад. И 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад. Шестнадцать румбов, указывающих направление, откуда дует ветер, имеют сокращенные обозначения: