Из чего сделана земля


Сотни миллионов лет силы притяжения сжимали «строительный материал» Земли — третьей по удаленности от Солнца планеты, которая появилась 4,6 млрд лет назад. Ее формирование не окончено и по сей день. До сих пор недра планеты и ее тонкая кора находятся в постоянном движении, изменяя очертания материков, рельеф и климат.

Рождение Земли и ее структура (4,6 млрд лет назад)

Туманность, из которой появилась Земля, представляла собой обломки звезд более ранних поколений. Она состояла из микроскопических частиц льда, железа и других веществ, собранных в более охлажденных слоях звезд и выброшенных в космос. Силы притяжения сталкивали эти частицы газового диска и склеивали их между собой. Такое явление называется аккрецией.

История нашей планеты записана в горных породах, но даже самые древние из них насчитывают только 3,7 млрд лет, поэтому о более ранних событиях земной эволюции можно судить лишь на основании косвенных данных и построенных на их основе гипотез.


На следующем этапе формирования планеты мелкие частицы соединялись в крупные (размером до километра) — «строительные блоки», называемые планетезималями, которые сталкивались, то разрушаясь, то, наоборот, соединяясь вместе. Таким образом постепенно 5–4,6 млрд лет назад возникло ядро — центр-зародыш будущей планеты Земля.

Наиболее крупные из таких зародышей стали конкурировать между собой за планетезимали, которые оставались свободными. Это происходило на протяжении 1–10 млн лет. Зародыши планет внутренней части Солнечной системы захватывали газовые облака и сливались друг с другом. Процесс образования каждой планеты оказался уникальным, этим и объясняется их разнообразие.

Современная наука считает, что Земля сформировалась за 300–400 млн лет. Этот процесс был достаточно бурным, его сопровождали столкновения с астероидами и падения метеоритов.

Как в гигантской центрифуге, более плотные вещества опускались к центру планеты, в то время как легкие всплывали на поверхность. Эволюция Земли продолжалась и после ее рождения. Два вида энергии: та, которая образовывалась при склеивании частиц, та, что высвобождалась в результате ядерных реакций, разогревали недра юной планеты. В результате этого стало интенсивно формироваться ядро и внутренние оболочки Земли.

Внутренние слои планеты были настолько раскалены, что на глубине всего в несколько десятков километров лежал пласт расплавленных горных пород. С момента формирования Земли вещество и энергия недр, поверхности и атмосферы находились в состоянии постоянного взаимного обмена. Тем самым были созданы условия для зарождения будущей жизни.


Начальный этап жизни юной планеты после ее рождения принято называть догеологическим. Этот период длился 0,9 млрд лет, он пока еще недостаточно изучен и скрывает множество загадок. В то время появлялось множество вулканов, которые выбрасывали газы и водяные пары.

Принято считать, что в догеологический период сформировались важнейшие оболочки, которые современная наука выделяет в структуре Земли, — ядро, мантия и земная кора. Такое расслоение было вызвано мощной метеоритной бомбардировкой планеты и последующим плавлением некоторых ее частей.

Существует две гипотезы того, как появилось земное ядро. Согласно первой изначально однородное вещество, из которого состояла Земля, разделилось на тяжелый центр, куда «стекало» расплавленное железо, и более легкую мантию, состоящую из силикатов. Образование ядра, которое и по сей день остается жидким, происходило по мере того, как капли металла и другие тяжелые химические соединения как бы просачивались к сердцу планеты. Место опускающихся тяжелых соединений занимали более легкие шлаки — они поднимались к поверхности Земли. Из них состоит современная кора планеты и внешняя часть мантии. Это предположение не дает убедительного объяснения тому, как расплавленный железно-никелевый сплав мог «просочиться» более чем на тысячу километров вглубь земного шара и достичь его центра.


Сторонники второй гипотезы считают, что железное ядро Земли — это остатки железных метеоритов, с которыми сталкивалась планета вскоре после своего рождения. Потом их покрыл слой каменных (силикатных) метеоритов, из которого образовалась мантия. Уязвимое место этой гипотезы в том, что для такого хода событий железные и каменные метеориты должны были существовать раздельно и падать на Землю в строгой очередности. В то же время исследования показывают, что те из них, которые имеют железную структуру, могут появиться только в результате разрушения уже сформированной планеты. Таким образом, они не могут быть младше других планет Солнечной системы. Так как обе гипотезы не вполне убедительны, остается признать, что точным знанием о возникновении ядра Земли люди пока не обладают.

Плотное внутреннее ядро Земли очень важно для всего живого. Благодаря ему масса планеты достаточно велика, чтобы удерживать в своем гравитационном поле атмосферные газы, водяные пары, без которых не было бы гидросферы, и другие земные слои. Если бы Земля лишилась своего ядра, то мы остались бы и без воды, и без воздуха.

Как же устроено земное ядро, которое, очевидно, возникло в самом начале жизни планеты? В нем есть внешние и внутренние оболочки. Считается, что внешний слой лежит на глубине в 2900–5100 км от поверхности Земли и по своим физическим свойствам характеризуется почти как жидкость. Он состоит из потоков расплавленного железа и никеля и является прекрасным проводником электрического тока. Именно этому слою мы обязаны существованием магнитного поля нашей планеты, которое создается по законам электромагнитной индукции постоянно движущимся проводником тока.


Промежуток в 1270 км от внешнего слоя до центра земного шара занимает внутреннее ядро, состоящее на 4/5 из железа и на 1/5 из диоксида кремния. Оно обладает очень высокой температурой и большой плотностью. Внешнее ядро связано с земной мантией, тогда как внутреннее существует само по себе. Высокие температуры сочетаются в последнем с огромным давлением (до 3 млн атмосфер), поэтому его вещество остается твердым. Предполагают, что даже легчайший из земных газов — водород — в таких условиях существует в твердой фазе.

Происхождение земного ядра и внутренняя структура нашей планеты продолжают быть научными загадками. Очень многое остается непознанным по сей день. Пока большинство ученых сходятся во мнении, что формирование центральной оболочки началось одновременно с рождением самой Земли.

Ядро покрывает мантия. Ее пластическое (полурасплавленное, нетвердое) вещество заполняет толщу пространства на глубину 2900 км от земной коры к центру планеты. Масса мантии составляет примерно 67% от общей массы планеты. Считается, что этот слой неустойчив за счет своего пластического состояния и находится в постоянном движении. В наиболее глубоких слоях мантии, где давление выше, его состояние переходит в твердое. Внешняя оболочка Земли — кора — имеет толщину от нескольких километров под дном океанов до нескольких десятков километров под материками.


В самом начале истории нашей планеты земная кора была относительно тонкая и представляла собой застывший слой расплавленного базальта. На сегодняшний день в ней различают три слоя: осадочный — у самой поверхности, гранитный и самый глубокий — базальтовый. Первые два хорошо изучены геологами, а вот третий пока никто не видел. На континентах базальтовый слой не выходит на поверхность, а из-за нахождения на большой глубине он недоступен даже для самых современных буровых скважин.

Однако мы все равно знаем о нем кое-что благодаря новейшим сейсмическим методам. Во время землетрясений на глубине 10–700 км возникают волны, которые называют сейсмическими. Как у всякой волны, их скорость тем выше, чем плотнее та среда, в которой они распространяются (например, звуковые волны распространяются в воде в 4,5 раза быстрее, чем в воздухе). Анализируя скорость сейсмических волн, можно судить о плотности вещества на разных уровнях в земной коре.

С помощью такого метода была построена карта глубины нашей планеты и доказано, что скорость сейсмических волн в самом нижнем слое земной коры близка к той, которая развивается в базальтовом. Еще одно косвенное подтверждение существования этого третьего загадочного слоя — повсеместное распространение на Земле базальтовых лав. Современные поля, состоящие из этого вещества, на поверхности планеты — след древних вулканических извержений. По глубоким разломам расплавленный базальт поднимался из земных недр, выплескивался на поверхность и застывал.


Как же возник базальтовый слой земной коры? В самом начале жизни нашей планеты, примерно 4–4,5 млрд лет назад, Земля была сильно раскалена. В верхней части мантии давление было немного ниже, поэтому там был возможен переход части веществ из твердого состояния в жидкое. Образовывалась магма, близкая по составу к базальту. Она медленно двигалась вверх к поверхности Земли. Извергаясь, магма остывала и отвердевала. Так постепенно складывалась кора из базальтов.

Говоря о строении Земли, нам часто придется пользоваться термином «горные породы». Считается, что впервые так назвал разные группы минералов русский ученый Василий Михайлович Севергин в конце XVIII в. В те времена изучение камней было частью горного дела, поэтому использовалось слово «горные», хотя камни, разумеется, существуют не только в горах.

Горные породы делятся на три основных типа: магматические, осадочные и метаморфические. Происхождение первого типа нам уже понятно: эти породы образованы застывшей магмой. Они имеют ярко выраженное кристаллическое строение, при этом чем медленнее остывала вулканическая лава, тем крупнее получались кристаллы. К таким породам относятся, например, граниты и базальты.

Осадочные породы возникают из обломков кристаллических минералов, их так и называют — обломочные (песок, речная галька или мельчайшие частицы, которые образуют глину), а также из останков живых организмов — тогда они называются органическими (это и каменный уголь, и известняк, в котором видны осколки морских ракушек, и, конечно же, нефть). Когда минералы подвергаются глубоким физическим и химическим изменениям (метаморфозам) под действием высоких температур и давления, получаются метаморфические породы.


Метаморфизму могут подвергаться как магматические, так и осадочные породы. К первым относятся многие сланцы, а ко вторым — хорошо известный мрамор, который возник в результате глубоких преобразований известняка.

Одной из самых распространенных в земной коре пород считаются метаморфические гнейсы.

Формирование поверхности древней Земли и возникновение Луны (4,6–4 млрд лет назад)

На начальном этапе формирования Земли (около 4,6–4 млрд лет назад) расслоение внутренней материи земного шара сопровождалось интенсивной метеоритной бомбардировкой поверхности планеты. Метеориты падали на Землю и образовывали кратеры. Огромная энергия ударов, подчиняясь закону ее сохранения, переходила в тепло: холодные (около абсолютного нуля!) метеориты разогревали земную поверхность и недра планеты. Одновременно с метеоритным подогревом шло постоянное извержение огромного количества вулканов. Пары и газы выходили наружу из глубин планеты.

Из раскаленных недр вырывалась расплавленная магма, которая покрывала огромные пространства юной планеты и образовывала базальтовые поля — в то время земная поверхность была похожа на лунную.

Шаг за шагом внутренняя структура Земли приближалась к современной научной модели. Формировались ядро, мантия и кора, которая еще многократно изменялась, прежде чем приняла знакомые нам очертания.


Луна превосходит любой другой спутник в Солнечной системе по соотношению собственного размера к такой же характеристике Земли. В этом заключатся непохожесть Луны на другие планеты-спутники. Ее загадку долго пыталась разгадать современная наука. Наиболее убедительной считается гипотеза, согласно которой Луна появилась после мощного столкновения небесных тел. О подробностях этой космической катастрофы и ее влиянии на историю Земли мы поговорим позже.

Луна не похожа на нашу планету: на ее поверхности нет воды, не существует лунной атмосферы, в ее составе мало железа, а также летучих соединений. Однако соотношение изотопов кислорода у этих планет почти одинаково. Этот важный показатель еще называют кислородной подписью. Такие данные позволяют выдвинуть гипотезу о том, что и Земля, и Луна сформировались из одних и тех же планетезималей («строительных блоков») на одинаковом расстоянии от Солнца.

Присутствием огромного спутника объясняются многие явления на нашей планете. Луна находится по космическим меркам не очень далеко от нас, поэтому ее притяжение хорошо ощущается на Земле. Оно вызывает приливы и отливы не только в океанах, но и в закрытых водоемах земной коры.

Лунное притяжение вызывает волны, которые пробегают по земной поверхности и вытягивают ее примерно на 50 см в сторону планеты-спутника.

Великая космическая катастрофа и метеоритные бомбардировки


Ученые Дональд Дэвис и Уильям Хартманн объясняли появление Луны с помощью гипотезы космической катастрофы. Суть ее в том, что протоземля в некоторый момент столкнулась с другой древней планетой, размер которой был, как у современного Марса. Этой гипотетической планете дали имя Тея — так греки называли мать богов солнца, зари и луны (Гелиоса, Эос и Селены).

Считается, что Тея появилась 4,6 млрд лет назад одновременно с другими планетами Солнечной системы и тоже вращалась по орбите Земли, но притяжение Солнца и Земли сместили ее, и она врезалась в Землю.

Столкновение произошло на небольшой скорости и почти по касательной — планеты не разрушились и только часть вещества Земли и Теи была выброшена в космос. Эти попавшие на околоземную орбиту обломки и дали начало Луне, которая стала двигаться по земной орбите. Земля же после столкновения увеличила скорость своего вращения (цикл «день-ночь») и наклон его оси.

Компьютерное моделирование подтвердило возможность такого хода событий и указало на то, что Луне после столкновения потребовалась сто лет — лишь миг по космическим меркам, — чтобы стать шаром. Низкое содержание железа в составе спутника нашей планеты объясняется тем, что столкновение произошло уже после формирования земного ядра, которое вобрало в себя большую часть земного железа.

Обломки астероидов, блуждающие в космосе, куски планетезималей, которые так и не стали планетами, — весь этот космический мусор выпадал на поверхности Земли и Луны в виде метеоритов. Предполагают, что в первые 700 млн лет своей жизни наша планета притягивала больше метеоритов, чем ее спутник, из-за своей массы, превосходящей лунную.


Масштабные геологические изменения последующих временных эпох скрыли от нас следы былых космических атак. На поверхности же Луны, а также таких планет, как Марс и Меркурий, остались отметки соударений — кратеры. Они могут быть огромными и напоминать моря размером в тысячи километров или совсем маленькими. Земля в начале своей жизни также подвергалась бомбардировке метеоритами самых разных размеров.

На поверхность нашей планеты за 100 млн лет упало 3 ´ 1022 кг космических обломков — этого хватило бы, чтобы составить грузовой поезд из 500 000 000 000 000 000 нагруженных вагонов! При падении метеоритов их кинетическая энергия переходила в тепловую. Они разрушались и взрывались, нагревая Землю, выделяя газы и смешивая вещества из своего состава с земными.

Тепло, которое при этом выделялось, частично расплавило оболочку молодой планеты, но последовавшие гигантские извержения вулканов почти полностью уничтожили следы космической бомбардировки.

Более 160 метеоритных кратеров найдено на поверхности Земли. Они сразу возникали группами в зонах метеоритных дождей, которые покрывали десятки квадратных километров земной поверхности. Метеоритный дождь — это падение множества обломков одного крупного метеорита.

При этом вместо одного углубления появляется целое поле из них — серия кратеров, направление которой может указать путь, по которому двигались обломки, оказавшись в атмосфере.

Кратеры, как правило, имеют округлую форму, они около 100 км в диаметре и обнесены возвышающимся по краям насыпным валом.

Метеориты достигают Земли по сей день. Фрагменты разрушившегося астероида упали из космоса 15 февраля 2013 г. на город Челябинск в России. Всего на территории этого государства существует 16 крупных кратеров, метеоритное происхождение которых доказано. Их помогают выявить снимки, сделанные со спутников.

В 1908 г. на Землю упал Тунгусский метеорит. Взрыв при этом был сравним с эффектом от взрыва очень мощной водородной бомбы (40–50 мегатонн в тротилловом эквиваленте). В радиусе 25–30 км от места падения были повалены деревья, а на значительной части Евразии заметно свечение неба и облаков. Далеко не всегда падение метеоритов выглядит так катастрофично. Большинство из найденных более скромны по размеру.

Метеориты по своему составу делятся на железные, каменные и смешанного типа (железокаменные). Железные метеориты в своем составе всегда имеют металл никель, анализ содержания которого в найденном камне позволяет признать его небесное происхождение.

Поверхность метеорита хранит следы его прохождения через земную атмосферу. Обломки космических тел проникают в верхние слои атмосферы с чудовищной скоростью — более 11 км/с! Возникающее при этом трение очень велико — летящее тело разогревается и плавится. Встречный поток воздуха мгновенно срывает размягчившийся слой, и за движущимся метеоритом тянется дымовой след — шлейф мелких капелек расплава. Сопротивление воздуха тормозит разогнавшееся тело, снижая его скорость до скорости свободного падения. При этом последний из расплавленных слоев застывает на поверхности небесного камня в виде тонкой (менее 1 мм) пленки, которую называют корой плавления. Она не отличается по своему составу от самого метеорита, но выделяется своей структурой и видом. Кора плавления почти всех метеоритов черного цвета.

В Российской Академии наук существует специальный комитет, который занимается поиском и изучением метеоритов. За долгое время им собрана одна из лучших в мире коллекций небесных камней — ее начало было положено еще в XVIII в. Метеориты собирают во многих городах России, с ними можно познакомиться в краеведческих и геологических музеях.

Десятки и сотни миллионов лет метеоритные обстрелы не только разогревали недра Земли, но и меняли ее облик. Даже процессы в первичной атмосфере, которые сделали ее наконец пригодной для жизни, могли быть вызваны такими небесными камнями. Когда метеорит на огромной скорости входит в плотные воздушные слои, он раскаляется и начинает гореть, при этом выделяются водяной пар и углекислый газ — обычные для многих реакций горения.

Типичный метеорит, попадая в атмосферу Земли, высвобождает около 12% своей массы в виде водяного пара и около 6% углекислого газа, всего 18% — почти пятую часть. Если вспомнить наш воображаемый гигантский поезд, нагруженный метеоритным веществом, которое выпало на планету вскоре после ее рождения, получится, что масса выделившихся газов поместилась бы в 90 000 000 000 000 000 наполненных вагонов. Такое колоссальное количество новых газов, занесенных метеоритами, изменило первичную атмосферу — она обогатилась веществами, которые впоследствии стали строительными материалами для жизни на Земле.

Одно из лучших мест для сбора и изучения метеоритов — ледяные пустыни Антарктиды. Своих камней там очень мало, поэтому чернеющий на снегу обломок, скорее всего, в буквальном смысле упал с неба. Изучение метеоритов настолько важно для развития наших знаний о космосе, что создаются даже специальные машины-роботы, которые будут способны обследовать антарктические просторы в поисках упавших небесных камней.

Сильно увеличив содержание в атмосфере водяных паров и углекислого газа, метеориты повысили общую влажность земной атмосферы и ее температуру. Второе обстоятельство вызвано присутствием углекислого газа и создаваемого им парникового эффекта — о нем мы еще будем говорить не раз. Часть ученых считает также, что метеоритный обстрел из космоса помог образованию в древнем океане крупных органических молекул. Для подтверждения этой гипотезы группа японских ученых провела интересный эксперимент: с помощью специально сконструированной пушки они воспроизводили древнюю метеоритную бомбардировку, обстреливая океан «метеоритами» типичного для космических тел состава (то есть содержащих железо, никель и углерод). Результаты показали, что в воде после такой бомбежки действительно появился ряд органических молекул, в том числе аминокислоты, жирные кислоты и амины.

Атмосфера и гидросфера Земли — условия существования будущей жизни (4,3–3,8 млрд лет назад)

В начале земной эволюции базальтовый слой земной коры образовывался в недрах планеты и расплавленная магма поднималась вверх по разломам коры. Она содержала газы. При высоких температурах и давлении химические реакции протекали бурно. Их продуктами становились такие привычные нам земные вещества, как азот, водород, монооксид углерода (угарный газ), углекислый газ и вода. Можно сказать, что первичная атмосфера вышла из земных недр.

Масса Земли к тому времени была уже достаточно большой, чтобы удерживать атмосферные газы за счет сил притяжения.

Однако первичная атмосфера не была похожа на современную.

Древние вулканы выбрасывали облака газов. Более легкие из них (водород и гелий) поднимались вверх, достигая открытого космоса, а тяжелые удерживались земным притяжением у поверхности планеты. Из этих газов 4,3–3,8 млрд лет назад и сложилась первичная атмосфера Земли. Конечно, то, что выдыхали вулканы, сильно отличалось от сегодняшней азотно-кислородной атмосферы. Юная планета была окружена облаками азота, аммиака, углекислого газа, метана, водорода, инертных (благородных) газов, а также парами воды, соляной, борной и плавиковой кислот. Только кислорода в первичной атмосфере почти не было — его содержание в «воздухе» древней планеты составляло менее 0,001% от нынешней концентрации.

В те времена практически весь кислород был связан в различных химических соединениях и не существовал в свободном состоянии. Ядовитая, непригодная для дыхания атмосфера также не обладала и озоновым слоем, который защищает сегодня все живое от космической радиации. Однако постепенно она обогащалась продуктами сгорания метеоритов.

Современная атмосфера Земли совсем не похожа на древнюю: ее главные составляющие — азот (3/4 объема), кислород (1/5) и благородный газ аргон (около 1/100). В ней существенно меньше углекислого газа и водяных паров, а другие летучие элементы представлены в крайне малых, как говорят химики, следовых количествах.

Медленное охлаждение Земли и формирование первичной атмосферы помогли появиться и водной оболочке планеты — гидросфере. Как мы знаем, в древней атмосфере было очень много водяного пара, который вырывался из недр вместе с расплавленной лавой. Конденсируясь, он выпадал в виде дождей. На земной поверхности собирались потоки воды, они сливались вместе и заполняли углубления. Так возникали древнейшие озера. Поверхность Земли была еще слишком горячей, жидкость закипала, и столбы пара снова поднимались в атмосферу. Такая циркуляция воды помогала остудить поверхность планеты. Со временем озера становились все крупнее, превращаясь в океаны. Новые потоки воды несли в них частицы горных пород, продукты выветривания и растворенные вещества с земной поверхности. Последние представляли собой смесь солей. Таким образом морская вода обретала свой вкус — именно такой, какой мы знаем сегодня.

Мы не должны удивляться тому, что вода на Земле появилась в виде пара вместе с потоками расплавленной магмы, вырывающейся из щелей коры: и в настоящее время количество воды, которая в связанном виде хранится в земной мантии, столь велико, что значительно превышает объем всех океанов и морей планеты.

Описанная схема формирования первичной атмосферы и гидросферы выглядит последовательной и логичной, но ведь никто из ученых не мог непосредственно наблюдать за теми процессами, которые протекали около 4 млрд лет назад. Мы имеем дело с гипотезами, основанными на косвенных данных. В них пока еще немало противоречий и загадок. Наука знает очень немного про первый период земной эволюции.

Земля — единственная среди планет Солнечной системы, где существует развитая гидросфера. Воды на нашей планете так много, что она занимает примерно 2/3 ее поверхности, образуя Мировой океан. Верхние слои коры, земную поверхность, нижние слои атмосферы и гидросферу иногда объединяют вместе и называют географической (ландшафтной) оболочкой.

Источник: SiteKid.ru

Внутреннее строение Земли

Планета Земля состоит из трех основных слоев: земной коры, мантии и ядра. Можно сравнить земной шар с яйцом. Тогда яичная скорлупа будет представлять собой земную кору, яичный белок — мантию, а желток — ядро.

Внутреннее строение Земли. Источник: Климанова О.А. География 5-6 классы

Из чего сделана земля

Верхняя часть Земли носит название литосфера (в переводе с греческого «каменный шар»). Это твердая оболочка земного шара, в состав которой входит земная кора и верхняя часть мантии.

Земная кора

Земная кора — это каменная оболочка, которая покрывает всю поверхность нашей планеты. Под океанами ее толщина не превышает 15-ти километров, а на материках — 75-ти. Если вернуться к аналогии с яйцом, то земная кора по отношению ко всей планете тоньше, чем яичная скорлупа. На долю этого слоя Земли приходится всего 5% объема и менее 1% массы всей планеты.

В составе земной коры ученые обнаружили оксиды кремния, щелочных металлов, алюминия и железа. Кора под океанами состоит из осадочного и базальтового слоев, она тяжелее континентальной (материковой). В то время как оболочка, покрывающая континентальную часть планеты, имеет более сложное строение.

Выделяют три слоя континентальной земной коры:

  • осадочный (10-15 км в основном осадочных пород);

  • гранитный (5-15 км метаморфических пород, по свойствам схожих с гранитом);

  • базальтовый (10-35 км магматических пород).

Разрез земной коры. Источник: Климанова О.А. География 5-6 классы

Из чего сделана земля

Мантия

Под земной корой располагается мантия («покрывало, плащ»). Этот слой имеет толщину до 2900 км. На него приходится 83% от общего объема планеты и почти 70% массы. Состоит мантия из тяжелых минералов, богатых железом и магнием. Этот слой имеет температуру свыше 2000°C. Тем не менее большая часть вещества мантии сохраняет твердое кристаллическое состояние из-за огромного давления. На глубине от 50 до 200 км располагается подвижный верхний слой мантии. Он называется астеносфера («бессильная сфера»). Астеносфера очень пластична, именно из-за нее происходит извержение вулканов и формирование залежей полезных ископаемых. В толщину астеносфера достигает от 100 до 250 км. Вещество, которое проникает из астеносферы в земную кору и изливается иногда на поверхность, называется магмой («месиво, густая мазь»). Когда магма застывает на поверхности Земли, она превращается в лаву.

Ядро

Под мантией, словно под покрывалом, располагается земное ядро. Оно находится в 2900 км от поверхности планеты. Ядро имеет форму шара радиусом около 3500 км. Поскольку людям еще не удалось добраться до ядра Земли, о его составе ученые строят догадки. Предположительно, ядро состоит из железа с примесью других элементов. Это самая плотная и тяжелая часть планеты. На нее приходится всего 15% объема Земли и аж 35% массы.

Считается, что ядро состоит из двух слоев — твердого внутреннего ядра (радиусом около 1300 км) и жидкого внешнего (около 2200 км). Внутреннее ядро словно бы плавает во внешнем жидком слое. Из-за этого плавного движения вокруг Земли образуется ее магнитное поле (именно оно защищает планету от опасных космических излучений, и на него реагирует стрелка компаса). Ядро — самая горячая часть нашей планеты. Долгое время считалось, что температура его достигает, предположительно, 4000-5000°C. Однако в 2013 году ученые провели лабораторный эксперимент, в ходе которого определили температуру плавления железа, которое, вероятно, входит в состав внутреннего земного ядра. Так выяснилось, что температура между внутренним твердым и внешним жидким ядром равна температуре поверхности Солнца, то есть около 6000 °C.

Строение нашей планеты — одна из множества неразгаданных человечеством тайн. Большая часть информации о нем получена косвенными методами, еще ни одному ученому не удалось добыть образцы земного ядра. Изучение строения и состава Земли по-прежнему сопряжено с непреодолимыми трудностями, но исследователи не сдаются и ищут новые способы добыть достоверные сведения о планете Земля.

Методические рекомендации

При изучении темы «Внутреннее строение Земли» у учащихся могут возникать трудности с запоминанием названий и очередности слоев земного шара. Латинские наименования будет намного легче запомнить, если дети создадут собственную модель Земли. Можно предложить ученикам выполнить модель земного шара из пластилина или рассказать о его устройстве на примере фруктов (кожура — земная кора, мякоть — мантия, косточка — ядро) и предметов, имеющих схожую структуру. Поможет в проведении урока учебник География. 5-6 классы О.А.Климановой, где вы найдете красочные иллюстрации и подробные сведения по теме.


#ADVERTISING_INSERT#

Источник: rosuchebnik.ru

Из чего сделана Земля? Человек начал изучение Луны и других планет — и тем не менее ему неизвестно точное строение Земли.

Приблизительный ответ на этот вопрос таков: Земля представляет собой огромный шар, или сферу, в основном состоящую из твердых скальных пород. Ядро Земли также твердое, так как внутренние породы находятся под чудовищным давлением.

Рассмотрим все это поподробнее. Поверхность Земли — это земная кора толщиной 18–50 км, состоящая из скальных пород. Ее еще называют «литосфера». Верхняя часть коры — это континенты, а углубления в ней занимают воды морей и океанов, внутренних морей и озер. Вся вода земной поверхности: океанов, озер, рек и всех малых водоемов — называется «гидросфера».

Человек смог изучить только самую верхнюю часть земной коры, поэтому нам трудно сказать, как выглядит Земля изнутри. При бурении скважин и проходке шахт обнаружили, что с увеличением глубины повышается температура. На глубине порядка 3,5 км от поверхности земли температура достаточно высока, чтобы вскипятить воду. Ученым при изучении внутреннего строения Земли помогло исследование землетрясений. Они полагают, что на большей глубине температура не повышается так быстро, как в земной коре. Поэтому, по их оценкам, температура ядра Земли не превышает 5500 °C. Несомненно, это очень высокая температура, так как при температуре 1200 °C плавятся скальные породы.

Земная кора состоит из двух слоев. Верхний слой, служащий основанием для континентов, состоит из гранита. Под этим слоем гранита находится очень обширный слой, состоящий из очень твердой породы, которая называется «базальт». Ученые считают, что в центре Земли расположено огромное ядро из расплавленного железа диаметром около 7500 км. Между центральным ядром и земной корой располагается слой толщиной около 3,5 тыс. км, называемый «мантией». В состав мантии предположительно входят породы, наподобие скальных, которые называют «оливины».

Источник: yourdesires.ru

Кора Земли — объяснение для детей

Земная кора содержит такие элементы как: кислород (47%), кремний (27%), алюминий (8%), железо (5%), кальций (4%), и по 2% магния, калия и натрия. Она создана в виде гигантских пластин, которые двигаются по жидкой мантии. Важно объяснить детям, что, хотя мы и не замечаем, но плиты не прекращают движения. Когда они сталкиваются, мы ощущаем землетрясения, а если одна наедет на другую, то образуется глубокий окоп или горы. Эти движения описывает теория тектоники плит.

Из чего сделана земляМантия Земли — объяснение для детей

Далее, толщиною в 2890 км, располагается мантия. Она представлена силикатными породами, богатыми на магний и железо. Из-за интенсивного тепла создаются скалы. Затем они остывают и снова возвращаются к ядру. Полагают, что именно это приводит тектонические плиты в движение. Когда мантии удается пробиться сквозь кору, вы видите извержение вулкана.

Ядро Земли — объяснение для детей

Наверняка, даже для самых маленьких понятно, что внутри Земли расположено ядро. Интересно, что оно состоит из двух половинок: внутреннее (твердое) с радиусом в 1220 км окружено внешним (жидкое – сплав никеля и железа) с толщиною в 2180 км. Пока планета вращается в привычном темпе, внутреннее ядро делает обороты отдельно, образуя магнитное поле. Можно также рассказать детям о том, как формируются полярные сияния. Ведь для этого заряженным частичкам солнечного ветра нужно пройти в молекулы воздуха над магнитными полюсами планеты и тогда эти молекулы начинают сиять.

Теперь вы знаете из чего состоит Земля. Если детям или школьникам любого возраста будет любопытно узнать больше интересных фактов и подробностей о третьей планете от Солнца, то обязательно посетите остальные страницы раздела. Не забудьте воспользоваться 3D-моделью Солнечной системы, где показаны все планеты, а также карта Венеры, ее поверхность и особенности вращения по орбите. В остальном вам всегда помогут наши, фото, картинки, рисунки, а также онлайн телескоп, функционирующий в режиме реального времени. Строение Земли невероятно просто понять, если следовать визуальному ряду.

Источник: v-kosmose.com

Из чего сделана земля

Землю, конечно, можно изучать без помощи космического корабля. Однако только в двадцатом столетии мы получили карту всей планеты. Изображения планеты, принимаемые из космоса, имеют важное значение. Например, они помогают в прогнозировании погоды и особенно в отслеживании и предсказании ураганов. И еще они необычайно красивы.

Можно выделить несколько отдельных слоев Земли, у которых есть свои определенные химические и сейсмические характеристики (толщина в км):

1 — 40 Кора
40 — 400 Верхняя мантия
400 — 650 Переходная область
650 — 2890 Нижняя мантия
2890 — 5150 Внешнее ядро
5150 — 6378 Внутреннее ядро

Изменения коры значительны по толщине. Под океанами она более тонкая, чем под континентами. Внутреннее ядро и кора твердые, внешнее ядро и слои мантии полужидкие. Различные уровни отделяются друг от друга неоднородностями, которые хорошо определяются сейсмическими данными; наиболее известная из них — неоднородность Мохоровичича, располагающаяся между корой и верхней мантией.

Большая часть массы Земли заключена в мантии; основная часть оставшейся массы приходится на в ядро, а масса той части, на которой мы обитаем, составляет крошечную долю от всей массы (масса в кг*1024):

Атмосфера 0,0000051
Океаны 0,0014
Кора 0,026
Мантия 4,043
Внешнее ядро 1,835
Внутреннее ядро 0,09675

Ядро, вероятно, состоит в основном из железа (или никеля и железа), хотя возможно присутствие и некоторых более легких элементов. Температура в центре ядра может достигать 7500 K, а это больше, чем температура поверхности Солнца. Нижняя мантия состоит из обычного кремния, магния и кислорода с небольшим количеством железа, кальция и алюминия. Верхняя мантия — это большей частью оливен и пироксен (железо-магниевые силикаты), кальций и алюминий. Эти данные мы получили только благодаря сейсмическим методам; образцы из верхней мантии достигают поверхности в виде вулканической лавы, но большая часть Земли для нас недостижима. Кора — это прежде всего кварц (кремниевая двуокись) и другие силикаты типа полевого шпата. Химический состав Земли (по массе) следующий:

Железо 34,6%
Кислород 29,5%
Кремний 15,2%
Магний 12,7%
Никель 2,4%
Сера 1,9%
Титан 0,05%

Другие планеты земной группы, возможно, имеют подобные структуры и составы с некоторыми отличиями: у Луны маленькое ядро; у Меркурия очень большое ядро относительно диаметра планеты; мантии Марса и Луны намного более толстые; у Луны и Меркурия нет отчетливой с химической точки зрения коры; Земля — единственная планета с отчетливо определяемым внутренним и внешним ядром. Обратите внимание, однако, что наши знания относительно внутреннего строения планет носят теоретический характер даже для Земли.

Земля — самое плотное тело Солнечной системы.

Земная поверхность очень молода. В относительно короткий (по астрономическим стандартам) период в 500 000 000 лет эрозия и тектонические процессы разрушили и создали заново большую часть поверхности Земли, уничтожив тем самым почти все следы ранней геологической поверхностни (типа кратеров, появившихся в результате столкновений). Возраст Земли — от 4.5 до 4.6 миллиардов лет, а возраст самых старых известных камней — приблизительно 4 миллиарда лет. Самые старые окаменелости живых организмов имеют возраст меньше чем 3.9 миллиардов лет.

На 71% Земная поверхность покрыта водой. Земля — единственая планета, на которой вода может существовать в жидком виде на поверхности (хотя, возможно, на поверхности Титана есть жидкий этан или метан и жидкая вода под поверхностью Европы — спутника Юпитера). Жидкая вода, как мы знаем, необходима для жизни. Способность океанов сохранять тепло также очень важна в поддержании относительно устойчивой температуры Земли. Жидкая вода также ответственна за эрозию и выветривание континентов Земли — процесс, уникальный в солнечной системе сегодня (хотя, возможно, это произошло в прошлом на Марсе).

Aтмосферу Земли составляет азот — на 77 %, кислород — 21 % со следами аргона, двуокиси углерода и воды. Когда Земля только формировалась, в ее атмосфере, возможно, было очень большее количество двуокиси углерода, но к нынешнему времени большая его часть уже входит в состав карбонатных горных пород, немного меньший его объем содержится в растворенном виде в океанах и остальная часть использовалась и используется растениями для жизни. Очень малое количество присутствующей сейчас в атмосфере двуокиси углерода чрезвычайно важно для поддержания поверхностной температуры Земли через парниковый эффект. Парниковый эффект поднимает среднюю поверхностную температуру приблизительно на 35° C выше той температуры, которая была бы без него; океаны были бы заморожены и жизнь была бы невозможна.

Присутствие свободного кислорода совершенно замечательно с химической точки зрения. Кислород в атмосфере Земли производится и поддерживается биологическими процессами. Без жизни не было бы в атмосфере и свободного кислорода.

Взаимодействие Земли и Луны замедляет вращение Земли примерно на 2 миллисекунды в столетие. Исследования показывают, что 900 миллионов лет назад год состоял из 481 18-часового дня.

У Земли умеренное магнитное поле, производимое электрическими токами в ядре. Взаимодействие солнечного ветра, магнитного поля Земли и верхних слоев атмосферы Земли вызывает полярные сияния. Нарушения в этих явлениях заставляют магнитные полюса перемещаться относительно поверхности Земли; северный магнитный полюс в настоящее время находится в северной Канаде.

Магнитное поле Земли и его взаимодействие с солнечным ветром также производит радиационные пояса Ван Аллена — пару колец ионизированного газа (или плазмы). Внешний пояс простирается на высоте от 19 000 км до 41 000 км; внутренний пояс располагается на высоте от 7 000 км до 13 000 км.

У Земли только один естественный спутник — Луна, но на орбиту Земли были выведены еще тысячи малых искусственных. Астероид 3753 (1986 ТО) имеет сложную орбитальную связь с Землей; он не является нашей луной, его называют термином «компаньон».

Источник: planetologia.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.