Газ Объёмная концентрация (%) | Газ Объёмная концентрация (%) |
Азот…………………..78.084 | Кислород.…………….20.947 |
Аргон………………….0.934 | Углекислый газ……….0.0314 |
Неон……………………0.001818 | Гелий…………………..0.000524 |
Метан…………………..0.0002 | Криптон………………..0.000114 |
Водород…………………0.00005 | Закись азота…………….0.00005 |
Двуокись серы………….от 0 до 0.0001 | Озон……………………..от 0 до 0.000008 |
Двуокись азота………….от 0 до 0.000002 | Аммиак…………………..следы |
Оксид углерода………….следы | Йод……………………….следы |
Масса атмосферы = 5,15*1015 т
Структура атмосферы
Структура атмосферы обеспечивает возможность существования жизни на Земле. Составляет около 800 км в толщину. С удалением от поверхности её состав, плотность, давление, температура изменяются. Атмосфера Земли включает в себя следующие слои:
—тропосфера – нижний, самый тонкий и самый плотный слой, в нём содержится 80 % всей массы атмосферы. Здесь формируется климат Земли. Граница тропосферы проходит на высоте 10 – 12 км над поверхностью планеты (самолёты, как правило летают на высоте 9-10 км). Тропосфера является и самым тёплым слоем, поскольку солнечные лучи, отражаясь от поверхности Земли, нагревают воздух. По мере удаления от земной поверхности температура падает до –55 градусов в верхней части тропосферы (т.н. тропопауза).
—стратосфера – содержит важный для жизни озоновый слой, который сосредоточен на высоте 20-30 км. Граница стратосферы проходит на высоте около 50 км над поверхностью планеты. Здесь температура выше, чем в верхней части тропосферы, поскольку озоновый слой задерживает значительную часть ультрафиолетовых лучей.
—мезосфера — находится над стратосферой. Граница находится в пределах 50-95 км от поверхности Земли. В пределах верхней границы мезосферы имеется мезопауза – около –90 градусов. Это самая холодная область во всей атмосфере. Здесь образуются облака изо льда, которые можно наблюдать только поздно вечером, когда заходящее солнце подсвечивает их снизу.
Мезосфера является преградой на пути метеоритов, которые под влиянием земного притяжения входят в атмосферу Земли. Скорость их движения достигает до 64 км/ч. В основном, по своим размерам они не превышают горошину. В мезосфере, несмотря на то, что воздух очень разрежен, метеориты сгорают в результате трения о воздух на высоте 60-70 км.
— термосфера – последний основной слой атмосферы, отделяющий Землю от космоса. Он начинается приблизительно на высоте 100 км и распространяется до высоты 500-800 км. В нём содержится лишь 0,001% всей массы атмосферы. Здесь температура повышается и на высоте 480 км может достигать 1200 градусов по Цельсию. Термосфера состоит из ионосферы, магнитосферы и экзосферы.
В ионосфере (170-330 км от поверхности Земли) солнечная радиация вызывает «ионизацию». Здесь частицы получают электрический заряд. Когда они проносятся через атмосферу можно наблюдать находящееся на большой высоте полярное сияние. Ионосфера отражает радиоволны, обеспечивая возможность дальней радиосвязи.
Магнитосфера (340-480 км от поверхности Земли) представляет собой наружный край магнитного поля Земли. Магнитосфера действует как гигантский магнит и защищает Землю, улавливая частицы большой энергии.
Экзосфера – самый верхний слой атмосферы (от 480 и до 700-800 км). Молекулы в этом слое настолько далеко находятся друг от друга, что в конечном итоге атмосфера постепенно исчезает и сливается с космическим пространством.
3.Роль атмосферы в функционировании биосферы. Свойства атмосферы и возможности по самоочищению.
Атмосфера спасает всё живое на Земле, как от «звёздных осколков», так и от губительных ультрафиолетовых, рентгеновских, космических лучей.
Наличие воздушной оболочки придаёт нашему небу голубой цвет, т.к. молекулы основных элементов воздуха и различные примеси рассеивают, главным образом, лучи с короткой длиной волны, т.е. фиолетовые, синие и голубые. По мере удаления от поверхности Земли и уменьшения плотности атмосферы цвет неба темнеет, сначала становится густо-синим, а в стратосфере приобретает тёмно-синюю окраску.
Одной из особенностей атмосферы является её способность к самоочищению. Этот процесс происходит вследствие сухого и мокрого выпадения примесей, поглощения их земной поверхностью растениями, переработки бактериями, микроорганизмами и другими путями. Зелёные насаждения способствуют очищению воздуха от пыли, оксида углерода, диоксида серы и т.д. Одно взрослое дерево липы может в течение суток аккумулировать десятки килограммов диоксида серы, превращая его в безопасное вещество. Однако возможности природы ограничены.
Во всём мире проходят компании с целью убедить правительства сократить вырубку лесов. Уничтожение млн. кв. км леса означает уменьшение поступления кислорода в атмосферу и скопление большого количества углекислого газа, создающего эффект тепловой ловушки.
Атмосфера способна обеспечивать равновесие между продуцированием кислорода, потреблением углекислого газа зелёными растениями. Это позволяет сохранять замкнутый цикл, от которого зависит жизнедеятельность всех животных и растений планеты в течение сотен тысяч лет.
Однако теперь этому равновесию угрожают последствия производственной деятельности человека.
В результате всемирной индустриализации за последние 200 лет стали нарушаться пропорции в газовом составе атмосферы. Это напрямую угрожает сбалансированности процессов, протекающих в биосфере.
4.Загрязнение атмосферы
Увеличение концентрации в атмосфере отдельных компонентов ведёт к её загрязнению.
Изменение газового состава
Загрязнение
Увеличение содержания аэрозолей
4.1 Изменение газового состава
В настоящее время наблюдается повышение концентрации таких составляющих атмосферного воздуха, которые могут оказывать особенно негативное влияние на живые организмы.
СО2 – углекислый газ, не токсичен. За последние 100 лет содержание СО2 в атмосфере выросло с 0, 027% до 0,03%. Ежегодный прирост составляет 0,0004% в год. Повышение концентрации углекислого газа связывают с глобальным изменением климата на Земле.
Углекислый газ относят к группе парниковых газов (сюда также включают метан (СН4), оксиды азота). Эти газы образуются при сжигании различных ископаемых видов топлива, при проведении агротехнических мероприятий (например, при внесении азотных удобрений).
Парниковый эффект. Парниковые газы, всегда присутствующие в атмосфере, задерживают тепло солнечных лучей, отражённых от поверхности Земли. Если бы этот процесс прекратился, все воды планеты перешли бы в состояние льда, что привело бы к гибели все живые организмы. Однако, когда содержание «парниковых газов» увеличивается из-за антропогенного вмешательства, в атмосфере удерживается слишком большое количество тепла. Это приводит к потеплению климата во всём мире. За последнее столетие средняя температура на планете увеличилась на полградуса Цельсия. Прогнозируется дальнейшее потепление к середине нынешнего века на 1 — 4,5 градусов.
Сейчас в атмосфере увеличивается доля примесей, которые оказывают различное токсическое действие на человека.
СО – оксид углерода, токсичен. Без цвета и запаха. Образуется при работе энергоустановок, содержится в выбросах двигателей внутреннего сгорания. Контактируя с человеческим организмом, соединяется с гемоглобином в крови. Гемоглобин становится неспособным переносить кислород к тканям, т.е. воздействует на нервную сердечно-сосудистую систему – вызывает удушье. (Например, при воздействии в течение 2-3 часов на организм концентрации 200-220 мг/м3 наступает отравление СО). Ежегодные выбросы в атмосферу составляют не менее 1250 млн. т.
SО2 —диоксид серы, токсичен. Бесцветный газ с острым запахом. Образуется в результате сжигания серосодержащего топлива или в результате переработки сернистых руд. Раздражает слизистые оболочки глаз и дыхательных путей. При концентрации около 50 мг/м3 образует последовательно H2SO3 и H2SO4. При содержании в воздухе SO2 от 0,23 мг/м3 происходит усыхание хвойных деревьев и при концентрации от 0,5 мг/м3 — лиственных. Ежегодные выбросы в атмосферу составляют около 170 млн. т. в год.
NOX (NO, N2O5, NO2, N2O3) – оксиды азота. Без цвета и запаха. Очень ядовиты. При наличии в воздухе оксидов азота токсичность СО возрастает. Источники – предприятия, производящие азотную кислоту, азотные удобрения, целлулоид. В атмосферу поступает ежегодно до 20 млн. т. оксидов азота.
Углеводороды – пары бензина, пентан, гексан и т.д. Обладают наркотическим действием. К канцерогенным веществам относят бенз(а)пирен С20Н12, который образуется в процессах пиролиза угля углеводородных топлив (при температуре более 600 градусов по Цельсию)
Необходимо отметить повышенное содержание следующих примесей, которые имеют антропогенное происхождение: сероводород и сероуглерод, соединения фтора, соединения хлора и т.д.
Кислотныедожди. Содержат растворы серной и азотной кислот. Образуются в результате реакции оксидов серы и оксидов азота с водяными парами атмосферы. Это превращает выпадающие дожди в слабые растворы кислот.
Кислотные дожди убивают памятники архитектуры. Твёрдый мрамор (CаО и СО2)реагирует с раствором серной кислоты и превращается в гипс (СаSО4). Исторические памятники Греции, Рима, простояв тысячелетия, разрушаются на глазах.
В местах выпадения кислотных дождей погибают растения, животные. Известны случаи, когда кислотные дожди уничтожали целые леса. Кислотные дожди вливаются в водоёмы, реки, убивая даже мельчайшие формы жизни.
4.2 Повышение плотности аэрозоля
Аэрозоли – взвешенные частицы, присутствующие в атмосфере. Повышение концентрации аэрозоля может иметь естественный характер. Естественное загрязнение атмосферы происходит при извержении вулканов, при лесных, торфяных пожарах, выветривании пород. Происходит выпадение космической пыли — около 5 млн. т в год.
Производственные процессы, являющиеся причиной антропогенного запыления атмосферы, оказывают большое влияние на климат Земли.
Взвешенные вещества сажи, дыма, интенсивно поглощают солнечный свет, увеличивают количество ядер конденсации и тем самым облачность атмосферы. Количество солнечных дней снижается до 25 – 50%. Размер аэрозолей колеблется в пределах 11 – 51 мкм, период нахождения во взвешенном состоянии мельчайших аэрозолей составляет от нескольких дней до нескольких лет. Пример: Источником атмосферного аэрозоля является сажа, зола, которая образуется при неполном сгорании топлива. Сажа – высокодисперсный нетоксичный порошок, на 95% состоящий из углерода. Обладает большой абсорбционной способностью по отношению к тяжёлым углеводородам. Это делает сажу очень опасной для человека.
5. Озоновый экран Земли
Озоновый экран, расположенный в стратосфере, защищает нас путём поглощения большей части (2/3) солнечных ультрафиолетовых лучей.
Внутри озонового слоя происходит непрерывный переход из одной формы кислорода в другую. Молекулы О2 расщепляются на отдельные атомы кислорода (О). Эти атомы соединяются с молекулами кислорода, образуя озон О3. Озон снова распадается на кислород и О2 и отдельные атомы. Необходимую энергию даёт солнечное излучение. Поглощая эту энергию в основном в ультрафиолетовой части спектра, озоновый слой не даёт ультрафиолетовому излучению достигать Земли.
6.1 Разрушение озонового слоя
Впервые в 1985 г. исследователи Антарктиды обнаружили озоновую дыру над частью южного полушария. Сейчас озоновые дыры обнаружили и над северным полушарием.
Выяснилось, что разрушение озона в основном вызвано присутствием химических соединений — искусственно синтезированных хлорфторуглеродов (ХФУ). Которые сравнительно недавно получили широкое распространение. Они нашли применение в бытовой химии, использовались в холодильных установках при производстве пенопласта и т.д.
Для человека эти соединения не опасны. Однако, предполагается, что, поднимаясь вверх в атмосфере, эти газы достигают озонового слоя и разрушают его. ХФУ попадают в верхние слои атмосферы в качестве примесей. Под действием солнечного света их молекулы распадаются с высвобождением атомов хлора. Хлор «отбирает» один атом кислорода у озона, превращая его в обычный кислород. Один атом хлора может проделать это со множеством (до 100000) молекул озона.
Международное сообщество принимает некоторые меры по защите озонового слоя.
1987г. – правительства 56 стран обязались сократить производство ХФУ.
1996г. – промышленно развитые страны полностью прекратили производство фреона, галлонов и тетрахлорида углерода.
2010г. — к этому времени производство ХФУ обязаны прекратить развивающиеся страны.
Международный экологический фонд предоставил Москве, Киеву безвозмездную помощь для поэтапного сокращения потребления ОРВ. Деньги направлены предприятиям, производящим аэрозоли, холодильную технику для перехода к использованию углеродного аэрозольного пропелента (УАП).
Межведомственные комиссии по охране озонового слоя созданы на правительственном уровне.
6. Определение степени загрязнённости атмосферы
В большинстве стран критерием качества воздушного бассейна является предельно допустимая концентрация (ПДК) загрязняющего вещества для атмосферного воздуха, определяемая количеством вещества, находящегося в 1 м3 воздуха, которое не оказывает вредного влияния на здоровье людей, постоянно его вдыхающих.
Опасность загрязнения атмосферы определяют следующим образом:
j = ci / ПДКi ,
где сi – физическая концентрация загрязняющего вещества в приземном слое атмосферы (пространство до 2-х м над поверхностью земли), замеренная или рассчитанная в мг/м, ПДК – максимально разовая предельно допустимая концентрация загрязняющего вещества в мг/м.
Если значение j 1, то опасности загрязнения нет, если же j больше 1, то опасность загрязнения существует.
Например, для сернистого газа (SO2) ПДК в атмосфере населённых пунктов – 0,5 мг/м3; диоксида азота (NO2) – 0,085 мг/м3
При совместном присутствии в атмосфере нескольких веществ, обладающих эффектом суммации (т.е. взаимно усиливающих воздействие на организм человека), опасность загрязнения определяется из выражения:
j = c1/ ПДК1 + c2 / ПДК2 … +… ci / ПДКi ,
где с1,с2,…, с3 – фактические концентрации веществ, в мг/м; ПДК1, ПДК2, …., ПДК3 – максимально разовые предельно допустимые концентрации для этих веществ в мг/ м3
Это выражение используется при установлении качества воздуха, если в нём одновременно присутствуют такие вещества, как, например, фенол и ацетон, сернистый газ и диоксид азота, этилен, пропилен, бутилен.
Непревышение ПДК должно обеспечиваться за счёт ограничения интенсивности выбросов загрязняющих веществ. Важным фактором, влияющим на концентрацию загрязняющих веществ в атмосфере, является её способность к рассеиванию и самоочищению. Этот процесс происходит вследствие сухого и мокрого выпадения примесей, поглощению их земной поверхностью, переработки бактериями, микроорганизмами и другими путями.
7. Способы и методы очистки выбросов в атмосферу от вредных веществ
Строительство очистных сооружений — важная мера по предотвращению загрязнённости атмосферы.
Способы очистки выбросов в атмосферу можно объединить в следующие группы:
-очистка от выбросов пыли и аэрозолей вредных веществ;
-очистка выбросов от вредных газообразных веществ;
-снижение загрязнённости атмосферы выхлопными газами от ДВС транспортных средств и стационарных установок;
Для очистки выбросов от вредных веществ используются механические, физические, химические и комбинированные методы.
Механические методы базируются на использовании сил гравитации, инерции, центробежных сил и т.д.
Физические методы базируются на использовании электрических и электростатических полей, охлаждении, конденсации и т.д.
В химических методах используются реакции окисления, нейтрализации и т.д.
В физико-химических методах используются принципы сорбции (абсорбции, хемосорбции, адсорбции), коагуляции и флотации.
Рассмотрим некоторые из физико-химических методов:
Метод абсорбции:
-этот метод заключается в разделении газовоздушной смеси на составные части путём поглощения одного или нескольких компонентов этой смеси абсорбентом (поглотителем) с образованием раствора. В качестве абсорбента используется жидкость, способная поглощать вредные примеси. При соприкосновении жидких и газообразных веществ на поверхности обеих фаз образуется жидкостная и газовая плёнки.
Растворимый в жидкости компонент газовоздушной смеси проникает путём диффузии сначала через газовую плёнку, потом через жидкостную и поступает в верхние слои абсорбента. Например, для удаления из выбросов ароматических углеводородов, водяных паров используется серная кислота.
Метод хемосорбции:
Основан на поглощении газов и паров твёрдыми или жидкими поглотителями с образованием химических соединений.
Метод адсорбции:
Основан на свойствах некоторых твёрдых тел с ультрамикроскопической структурой селективно (избирательно) извлекать и концентрировать на своей поверхности отдельные компоненты из газовой смеси. Наиболее часто в качестве адсорбента используется активированный уголь, активированный глинозём, активированный оксид AL и прочие комплексные оксиды.
Каталитический метод:
Этим методом превращают токсичные компоненты промышленных выбросов в вещества безвредные или менее вредные для окружающей среды путём введения в систему дополнительных веществ, называемых катализаторами. Каталитические методы основаны на взаимодействии удаляемых веществ со специально добавляемым в смесь веществом на твёрдых катализаторах.
Источник: studopedia.ru
Строение атмосферы
По вертикали А. имеет слоистую структуру, определяемую гл. обр. особенностями вертикального распределения темп-ры (рис.), которое зависит от географич. положения, сезона, времени суток и т. д. Нижний слой А. – тропосфера – характеризуется падением темп-ры с высотой (примерно на 6 °C на 1 км), его высота от 8–10 км в полярных широтах до 16–18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится ок. 80% всей массы А. Над тропосферой располагается стратосфера – слой, который характеризуется в общем повышением темп-ры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня ок. 20 км темп-ра мало меняется с высотой (т. н. изотермич. область) и нередко даже незначительно уменьшается. Выше темп-ра возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34–36 км – быстрее. Верхняя граница стратосферы – стратопауза – расположена на выс. 50–55 км, соответствующей максимуму темп-ры (260–270 К). Слой А., расположенный на выс. 55–85 км, где темп-ра снова падает с высотой, называется мезосферой, на его верхней границе – мезопаузе – темп-ра достигает летом 150–160 К, а зимой 200–230 К. Над мезопаузой начинается термосфера – слой, характеризующийся быстрым повышением темп-ры, достигающей на выс. 250 км значений 800–1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству.
Состав атмосферы
До выс. ок. 100 км А. практически однородна по химич. составу и ср. молекулярная масса воздуха (ок. 29) в ней постоянна. Вблизи поверхности Земли А. состоит из азота (ок. 78,1% по объёму) и кислорода (ок. 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и др. постоянных и переменных компонентов (см. Воздух).
Кроме того, А. содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относит. содержание осн. составляющих воздуха постоянно во времени и однородно в разных географич. районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.
Выше 100–110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На выс. ок. 1000 км начинают преобладать лёгкие газы – гелий и водород, а ещё выше А. Земли постепенно переходит в межпланетный газ.
Наиболее важная переменная компонента А. – водяной пар, который поступает в А. при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относит. содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на выс. 1,5–2 км. В вертикальном столбе А. в умеренных широтах содержится ок. 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.
Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), ок. 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом – его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении $p=$ 1 атм и темп-ре $T=$ 0 °C). В озоновых дырах, наблюдаемых весной в Антарктике с нач. 1980-х гг., содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой А. является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в осн. антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её темп-ры).
Важную роль в формировании климата планеты играет атмосферный аэрозоль – взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйств. деятельности человека, вулканич. извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космич. пыли, попадающей в верхние слои А. Бóльшая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканич. извержений образует т. н. слой Юнге на выс. ок. 20 км. Наибольшее количество антропогенного аэрозоля попадает в А. в результате работы автотранспорта и ТЭЦ, химич. производств, сжигания топлива и др. Поэтому в некоторых районах состав А. заметно отличается от обычного воздуха, что потребовало создания спец. службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.
Эволюция атмосферы
Совр. А. имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты ок. 4,5 млрд. лет назад. В течение геологич. истории Земли А. претерпевала значит. изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преим. более лёгких, в космич. пространство; выделения газов из литосферы в результате вулканич. деятельности; химич. реакций между компонентами А. и породами, слагающими земную кору; фотохимич. реакций в самой А. под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (напр., метеорного вещества). Развитие А. тесно связано с геологич. и геохимич. процессами, а последние 3–4 млрд. лет также с деятельностью биосферы. Значит. часть газов, составляющих совр. А. (азот, углекислый газ, водяной пар), возникла в ходе вулканич. деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах ок. 2 млрд. лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.
По данным о химич. составе карбонатных отложений получены оценки количества углекислого газа и кислорода в А. геологического прошлого. На протяжении фанерозоя (последние 570 млн. лет истории Земли) количество углекислого газа в А. изменялось в широких пределах в соответствии с уровнем вулканич. активности, темп-рой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в А. была значительно выше современной (до 10 раз). Количество кислорода в А. фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В А. докембрия масса углекислого газа была, как правило, больше, а масса кислорода – меньше по сравнению с А. фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении осн. части фанерозоя был гораздо теплее по сравнению с совр. эпохой.
Атмосфера и жизнь
Без А. Земля была бы мёртвой планетой. Органич. жизнь протекает в тесном взаимодействии с А. и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), А. является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органич. вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органич. вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минер. питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации. Конденсация водяного пара в А., образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химич. составом атмосферных газов, растворённых в воде. Поскольку химич. состав А. существенно зависит от деятельности организмов, биосферу и А. можно рассматривать как часть единой системы, поддержание и эволюция которой (см. Биогеохимические циклы) имела большое значение для изменения состава А. на протяжении истории Земли как планеты.
Радиационный, тепловой и водный балансы атмосферы
Солнечная радиация является практически единств. источником энергии для всех физич. процессов в А. Главная особенность радиац. режима А. – т. н. парниковый эффект: А. достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиац. потерю тепла земной поверхностью (см. Атмосферное излучение). В отсутствие А. ср. темп-ра земной поверхности была бы –18 °C, в действительности она 15 °C. Приходящая солнечная радиация частично (ок. 20%) поглощается в А. (гл. обр. водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (ок. 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (ок. 23%) отражается от неё. Коэф. отражения определяется отражат. способностью подстилающей поверхности, т. н. альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70–90% для свежевыпавшего снега. Радиац. теплообмен между земной поверхностью и А. существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением А. Алгебраич. сумма потоков радиации, входящих в земную атмосферу из космич. пространства и уходящих из неё обратно, называется радиационным балансом.
Преобразования солнечной радиации после её поглощения А. и земной поверхностью определяют тепловой баланс Земли как планеты. Гл. источник тепла для А. – земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара. Доли этих притоков теплоты равны в ср. 20%, 7% и 23% соответственно. Сюда же добавляется ок. 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне А. на ср. расстоянии от Земли до Солнца (т. н. солнечная постоянная), равен 1367 Вт/м2, изменения составляют 1–2 Вт/м2 в зависимости от цикла солнечной активности. При планетарном альбедо ок. 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м2. Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана – Больцмана, эффективная темп-ра уходящего теплового длинноволнового излучения 255 К (–18 °C). В то же время ср. темп-ра земной поверхности составляет 15 °C. Разница в 33 °C возникает за счёт парникового эффекта.
Водный баланс А. в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. А. над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в А. с океанов на континенты, равно объёму стока рек, впадающих в океаны.
Движение воздуха
Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение темп-ры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанич. вод и высокой теплоёмкости воды сезонные колебания темп-ры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах темп-ра воздуха над океанами летом заметно ниже, чем над континентами, а зимой – выше.
Неодинаковый разогрев А. в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (поясá высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропич. широт давление зимой обычно повышено, а летом понижено, что связано с распределением темп-ры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (см. Турбулентность в атмосфере).
С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части А. наблюдаются зап. ветры со скоростями в средней тропосфере ок. 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты – ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной вост. составляющей (с востока на запад). Достаточно устойчивы муссоны – воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского ок. В средних широтах движение воздушных масс имеет в осн. зап. направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри – циклоны и антициклоны, охватывающие мн. сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), т. н. тропические циклоны. В Атлантике и на востоке Тихого ок. они называются ураганами, а на западе Тихого ок. – тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100–150 и даже 200 м/с.
Климат и погода
Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физич. свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропич. широт темп-ра воздуха у земной поверхности в ср. 25–30 °C и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропич. поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.
В субтропич. и средних широтах темп-ра воздуха значительно меняется в течение года, причём разница между темп-рами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Вост. Сибири годовая амплитуда темп-ры воздуха достигает 65 °C. Условия увлажнения в этих широтах весьма разнообразны, зависят в осн. от режима общей циркуляции А. и существенно меняются от года к году.
В полярных широтах темп-ра остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России св. 65% её площади, в осн. в Сибири.
За последние десятилетия стали всё более заметны изменения глобального климата. Темп-ра повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 в. ср.-годовая темп-ра воздуха у земной поверхности в России выросла на 1,5–2 °C, причём в отд. районах Сибири наблюдается повышение на неск. градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.
Погода определяется условиями циркуляции А. и географич. положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологич. спутников. См. также Метеорология.
Оптические, акустические и электрические явления в атмосфере
При распространении электромагнитного излучения в А. в результате рефракции, поглощения и рассеяния света воздухом и разл. частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптич. явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в А. (см. Атмосферная видимость). От прозрачности А. на разл. длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в т. ч. возможность астрономич. наблюдений с поверхности Земли. Для исследований оптич. неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Напр., фотографирование сумерек с космич. аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в А. определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и мн. другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (см. Распространение радиоволн).
Распространение звука в А. зависит от пространственного распределения темп-ры и скорости ветра (см. Атмосферная акустика). Оно представляет интерес для зондирования А. дистанц. методами. Взрывы зарядов, запускаемых ракетами в верхнюю А., дали богатую информацию о системах ветров и ходе темп-ры в стратосфере и мезосфере. В устойчиво стратифицированной А., когда темп-ра падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают т. н. внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.
Отрицательный заряд Земли и обусловленное им электрич. поле А. вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрич. цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие назв. атмосфериков (см. Свистящие атмосферики). Во время резкого увеличения напряжённости электрич. поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отд. вершинах в горах и др. (Эльма огни). А. всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрич. проводимость А. Главные ионизаторы воздуха у земной поверхности – излучение радиоактивных веществ, содержащихся в земной коре и в А., а также космич. лучи. См. также Атмосферное электричество.
Влияние человека на атмосферу
В течение последних столетий происходил рост концентрации парниковых газов в А. вследствие хозяйств. деятельности человека. Процентное содержание углекислого газа возросло с 2,86 10–2 двести лет назад до 3,8·10–2 в 2005, содержание метана – с 0,7· 10–4 примерно 300–400 лет назад до 1,8·10–4 в нач. 21 в.; ок. 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в А. до сер. 20 в. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987. Рост концентрации углекислого газа в А. вызван сжиганием всё возрастающих количеств угля, нефти, газа и др. видов углеродного топлива, а также сведе́нием лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.
Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты с.-х. растений от градобития путём рассеивания в грозовых облаках спец. реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.
Изучение атмосферы
Сведения о физич. процессах в А. получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологич. станций и постов, расположенных на всех континентах и на мн. островах. Ежедневные наблюдения дают сведения о темп-ре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрич. станциях. Большое значение для изучения А. имеют сети аэрологич. станций, на которых при помощи радиозондов выполняются метеорологич. измерения до выс. 30–35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрич. явлениями в А., химич. составом воздуха.
Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового ок., а также метеорологич. сведениями, получаемыми с н.-и. и др. судов.
Всё больший объём сведений об А. в последние десятилетия получают с помощью метеорологич. спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях темп-ры, облачности и её водозапасе, элементах радиац. баланса А., о темп-ре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигац. спутников, удаётся определять в А. вертикальные профили плотности, давления и темп-ры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиац. баланса системы Земля – А., измерять содержание и изменчивость малых атмосферных примесей, решать мн. др. задачи физики атмосферы и мониторинга окружающей среды.
Источник: bigenc.ru
Атмосфера – газовая оболочка нашей планеты, которая вращается вместе с Землей. Газ, находящийся в атмосфере, называют воздухом. Атмосфера соприкасается с гидросферой и частично покрывает литосферу. А вот верхние границы определить трудно. Условно принято считать, что атмосфера простирается вверх приблизительно на три тысячи километров. Там она плавно перетекает в безвоздушное пространство.
Химический состав атмосферы Земли
Формирование химического состава атмосферы началось около четырех миллиардов лет назад. Изначально атмосфера состояла лишь из легких газов – гелия и водорода. По мнению ученых исходными предпосылками создания газовой оболочки вокруг Земли стали извержения вулканов, которые вместе с лавой выбрасывали огромное количество газов. В дальнейшем начался газообмен с водными пространствами, с живыми организмами, с продуктами их деятельности. Состав воздуха постепенно менялся и в современном виде зафиксировался несколько миллионов лет назад.
Главные же составляющие атмосферы это азот (около 79%) и кислород (20%). Оставшийся процент (1%) приходится на следующие газы: аргон, неон, гелий, метан, углекислый газ, водород, криптон, ксенон, озон, аммиак, двуокиси серы и азота, закись азота и окись углерода, входящих в этот один процент.
Кроме того, в воздухе содержится водяной пар и твердые частицы (пыльца растений, пыль, кристаллики соли, примеси аэрозолей).
В последнее время ученые отмечают не качественное, а количественное изменение некоторых ингредиентов воздуха. И причина тому – человек и его деятельность. Только за последние 100 лет содержание углекислого газа значительно возросло! Это чревато многими проблемами, самая глобальная из которых – изменение климата.
Формирование погоды и климата
Атмосфера играет важнейшую роль в формировании климата и погоды на Земле. Очень многое зависит от количества солнечных лучей, от характера подстилающей поверхности и атмосферной циркуляции.
Рассмотрим факторы по порядку.
1. Атмосфера пропускает тепло солнечных лучей и поглощает вредную радиацию. О том, что лучи Солнца падают на разные участки Земли под разными углами, знали еще древние греки. Само слово "климат" в переводе с древнегреческого означает "наклон". Так, на экваторе солнечные лучи падают практически отвесно, потому здесь очень жарко. Чем ближе к полюсам, тем больше угол наклона. И температура понижается.
2. Из-за неравномерного нагревания Земли в атмосфере формируются воздушные течения. Они классифицируются по своим размерам. Самые маленькие (десятки и сотни метров) – это местные ветра. Далее следуют муссоны и пассаты, циклоны и антициклоны, планетарные фронтальные зоны.
Все эти воздушные массы постоянно перемещаются. Некоторые из них довольно статичны. Например, пассаты, которые дуют от субтропиков по направлению к экватору. Движение других во многом зависит от атмосферного давления.
3. Атмосферное давление – еще один фактор, влияющий на формирование климата. Это давление воздуха на поверхность земли. Как известно, воздушные массы перемещаются с области с повышенным атмосферным давлением в сторону области, где это давление ниже.
Всего выделено 7 зон. Экватор – зона низкого давления. Далее, по обе стороны от экватора вплоть до тридцатых широт – область высокого давления. От 30° до 60° – опять низкое давление. А от 60° до полюсов – зона высокого давления. Между этими зонами и циркулируют воздушные массы. Те, что идут с моря на сушу, несут дожди и ненастье, а те, что дуют с континентов – ясную и сухую погоду. В местах, где воздушные течения сталкиваются, образуются зоны атмосферного фронта, которые характеризуются осадками и ненастной, ветреной погодой.
Ученые доказали, что от атмосферного давления зависит даже самочувствие человека. По международным стандартам нормальное атмосферное давление – 760 мм рт. столба при температуре 0°C. Этот показатель рассчитан на те участки суши, которые находятся практически вровень с уровнем моря. С высотой давление понижается. Поэтому, например, для Санкт-Петербурга 760 мм рт.ст. – это норма. А вот для Москвы, которая расположена выше, нормальное давление – 748 мм рт.ст.
Давление меняется не только по вертикали, но и по горизонтали. Особенно это чувствуется при прохождении циклонов.
Строение атмосферы
Атмосфера напоминает слоеный пирог. И каждый слой имеет свои особенности.
• Тропосфера — самый близкий к Земле слой. "Толщина" этого слоя изменяется по мере удаления от экватора. Над экватором слой простирается ввысь на 16-18 км, в умеренных зонах – на 10-12км, на полюсах – на 8-10 км.
Именно здесь содержится 80% всей массы воздуха и 90% водяного пара. Здесь образуются облака, возникают циклоны и антициклоны. Температура воздуха зависит от высоты местности. В среднем она понижается на 0,65° C на каждые 100 метров.
• Тропопауза – переходный слой атмосферы. Его высота – от нескольких сотен метров до 1-2 км. Температура воздуха летом выше, чем зимой. Так, например, над полюсами зимой –65° C. А над экватором в любое время года держится –70° C.
• Стратосфера – это слой, верхняя граница которого проходит на высоте 50-55 километров. Турбулентность здесь низкая, содержание водяного пара в воздухе – ничтожное. Зато очень много озона. Максимальная его концентрация – на высоте 20-25 км. В стратосфере температура воздуха начинает повышаться и достигает отметки +0,8° C. Это обусловлено тем, что озоновый слой взаимодействует с ультрафиолетовым излучением.
• Стратопауза – невысокий промежуточный слой между стратосферой и следующей за ней мезосферой.
• Мезосфера — верхняя граница этого слоя – 80-85 километров. Здесь происходят сложные фотохимические процессы с участием свободных радикалов. Именно они обеспечивают то нежное голубое сияние нашей планеты, которое видится из космоса.
В мезосфере сгорает большинство комет и метеоритов.
• Мезопауза – следующий промежуточный слой, температура воздуха в котором минимум -90°.
• Термосфера — нижняя граница начинается на высоте 80 — 90 км, а верхняя граница слоя проходит приблизительно по отметке 800 км. Температура воздуха возрастает. Она может варьироваться от +500° C до +1000° C. В течение суток температурные колебания составляют сотни градусов! Но воздух здесь настолько разрежен, что понимание термина "температура" как мы его представляем, здесь не уместно.
• Ионосфера — объединяет мезосферу, мезопаузу и термосферу. Воздух здесь состоит в основном из молекул кислорода и азота, а также из квазинейтральной плазмы. Солнечные лучи, попадая в ионосферу сильно ионизируют молекулы воздуха. В нижнем слое (до 90 км) степень ионизация низкая. Чем выше, тем больше ионизация. Так, на высоте 100-110 км электроны концентрируются. Это способствует отражению коротких и средних радиоволн.
Самый важный слой ионосферы – верхний, который находится на высоте 150-400 км. Его особенность в том, что он отражает радиоволны, а это способствует передаче радиосигналов на значительные расстояния.
Именно в ионосфере происходят такое явление, как полярное сияние.
• Экзосфера – состоит из атомов кислорода, гелия и водорода. Газ в этом слое очень разрежен и нередко атомы водорода ускользают в космическое пространство. Поэтому этот слой и называют "зоной рассеивания".
Первым ученым, который предположил, что наша атмосфера имеет вес, был итальянец Э. Торричелли. Остап Бендер, например, в романе "Золотой теленок" сокрушался, что на каждого человека давит воздушный столб весом в 14 кг! Но великий комбинатор немного ошибался. Взрослый человек испытывает на себя давление в 13-15 тонн! Но мы не чувствуем этой тяжести, потому что атмосферное давление уравновешивается внутренним давлением человека. Вес нашей атмосферы составляет 5 300 000 000 000 000 тонн. Цифра колоссальная, хотя это всего лишь миллионная часть веса нашей планеты.
Источник: xn—-8sbiecm6bhdx8i.xn--p1ai
Состав атмосферы
Атмосфера Земли состоит в основном из двух газов — азота (78%) и кислорода (21%). Кроме того, она содержит примеси углекислого и других газов. Вода в атмосфере существует в виде пара, капель влаги в облаках и кристалликов льда.
Слои атмосферы
Атмосфера состоит из многих слоев, между которыми нет четких границ. Температуры разных слоев заметно отличаются друг от друга.
- Безвоздушная магнитосфера. Здесь летает большинство спутников Земли за пределами земной атмосферы.
- Экзосфера (450-500 км от поверхности). Почти не содержит газов. Некоторые спутники погоды совершают полеты в экзосфере. Термосфера (80-450 км) характеризуется высокими температурами, достигающими в верхнем слое 1700°С.
- Мезосфера (50—80 км). В этой сфере температура падает по мере увеличения высоты. Именно здесь сгорает большинство метеоритов (осколков космических пород), попадающих в атмосферу.
- Стратосфера (15—50 км). Содержит озоновый спой, т. е. слой озона, поглощающего ультрафиолетовое излучение Солнца. Это приводит к повышению температуры около поверхности Земли. Здесь обычно летают реактивные самолеты, так как видимость в этом слое очень хорошая и почти нет помех, вызванных погодными условиями.
- Тропосфера. Высота варьируется от 8 до 15 км от земной поверхности. Именно здесь формируется погода планеты, так как в этом слое содержится больше всего водяных паров, пыли и возникают ветры. Температура понижается по мере удаления от земной поверхности.
Атмосферное давление
Хотя мы и не ощущаем этого, слои атмосферы оказывают давление на поверхность Земли. Наиболее высокое атмосферное давление около поверхности, а при удалении от неё оно постепенно снижается. Оно зависит от перепада температур суши и океана, и поэтому в районах, находящихся на одинаковой высоте над уровнем моря нередко бывает разное давление. Низкое давление приносит сырую погоду, а при высоком обычно устанавливаете ясная погода.
Движение воздушных масс в атмосфере
Изменения температуры и давления заставляют воздушные массы в нижних слоях атмосферы перемешаться. Так возникают ветры, дующие из областей высокого давления в области низкого. Во многих регионах возникают и местные ветры, вызванные перепадами температур суши и моря. Горы также оказывают существенное влияние на направление ветров.
Парниковый эффект
Углекислый газ и другие газы, входящие в состав земной атмосферы, задерживают солнечное тепло. Этот процесс принято называть парниковым эффектом, так как он во многом напоминает циркуляцию тепла в парниках. Парниковый эффект влечет за собой глобальное потепление на планете. В областях высокого давления — антициклонах — устанавливается ясная солнечная погода. В областях низкого давления — циклонах — обычно стоит неустойчивая погода. Тепло и световая энергия, поступающие в атмосферу. Газы задерживают тепло, отражающееся от земной поверхности, вызывая тем самым повышение температуры на Земле.
Озон в атмосфере
В стратосфере существует особый озоновый слой. Озон задерживает большую часть ультрафиолетового излучения Солнца, защищая от него Землю и все живое на ней. Ученые установили, что причиной разрушения озонового слоя являются особые хлорофторуглекислые газы, содержащиеся в некоторых аэрозолях и холодильном оборудовании. Над Арктикой и Антарктидой в озоновом слое были обнаружены огромные дыры, способствующие увеличению количества ультрафиолетового излучения, воздействующего на поверхность Земли.
Озон образуется в нижних слоях атмосферы в результате химической реакции между солнечным излучением и различными выхлопными дымами и газами. Обычно он рассеивается по атмосфере, но, если под слоем теплого воздуха образуется замкнутый слой холодного, озон концентрируется и возникает смог. К сожалению, это не может восполнять потери озона в озоновых дырах.
На фотоснимке со спутника хорошо видна дыра в озоновом слое над Антарктикой. Размеры дыры меняются, но ученые считают, что она постоянно увеличивается. Предпринимаются попытки снизить уровень выхлопных газов в атмосфере. Следует уменьшать загрязнение воздуха и применять в городах бездымные виды топлива. Смог вызывает раздражение глаз и удушье у многих людей.
Возникновение и эволюция атмосферы Земли
Современная атмосфера Земли представляет собой результат длительного эволюционного развития. Она возникла в результате совместных действий геологических факторов и жизнедеятельности организмов. В течение всей геологической истории земная атмосфера пережила несколько глубоких перестроек. На основе геологических данных и теоретических (предпосылок первозданная атмосфера молодой Земли, существовавшая около 4 млрд. лет тому назад, могла состоять из смеси инертных и благородных газов с небольшим добавлением пассивного азота (Н. А. Ясаманов, 1985; А. С. Монин, 1987; О. Г. Сорохтин, С. А. Ушаков, 1991, 1993). В настоящее время взгляд на состав и строение ранней атмосферы несколько видоизменился. Первичная атмосфера (протоатмосфера) на самой ранней протопланетной стадии., т.е. старше чем 4,2 млрд. лет, могла состоять из смеси метана, аммиака и углекислого газа. В результате дегазации мантии и протекающих на земной поверхности активных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СO2 и СО, серы и ее соединений, а также сильных галогенных кислот — НСI, НF, НI и борной кислоты, которые дополнялись находившимися в атмосфере метаном, аммиаком, водородом, аргоном и некоторыми другими благородными газами. Эта первичная атмосфера была чрезвычайно тонкой. Поэтому температура у земной поверхности была близкой к температуре лучистого равновесия (А. С. Монин, 1977).
С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнечных лучей стал трансформироваться. Привело это к разложению метана на водород и углекислоту, аммиака — на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, который медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности сине-зеленых водорослей в процессе фотосинтеза стал вырабатываться кислород, который, однако, в начале в основном расходовался на «окисление атмосферных газов, а затем и горных пород. При этом аммиак, окислившийся до молекулярного азота, стал интенсивно накапливаться в атмосфере. Как предполагается, значительная чаешь азота современной атмосферы является реликтовой. Метан и оксид углерода окислялись до углекислоты. Сера и сероводород окислялись до SO2 и SO3, которые вследствие своей высокой подвижности и легкости быстро удалились из атмосферы. Таким образом, атмосфера из восстановительной, какой она была в архее и раннем протерозое, постепенно превращалась в окислительную.
Углекислый газ поступал в атмосферу как вследствие окисления метана, так и в результате дегазации мантии и выветривания горных пород. В том случае, если бы весь углекислый газ, выделившийся за всю историю Земли, сохранился в атмосфере, его парциальное давление в настоящее время могло стать таким же, как на Венере (О. Сорохтин, С. А. Ушаков, 1991). Но на Земле действовал обратный процесс. Значительная часть углекислого газа из атмосферы растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформированы мощнейшие толщи хемогенных и органогенных карбонатов.
Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходовался на окислительные процессы, Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Появлений; свободного кислорода в атмосфере привело к гибели большинства прокариот, которые обитали в восстановительных условиях. Прокариотные организмы сменили места своего обитания. Они ушли с поверхности Земли в ее глубины и области, где еще сохранялись восстановительные условия. Им на смену пришли эукариоты, которые стали энергично перерабатывать углекислоту в кислород.
В течение архея и значительной части протерозоя практически весь кислород, возникающий как: абиогенным, так и биогенным путем, в основном расходовался на окисление железа и серы. Уже к концу протерозоя все металлическое двухвалентное железо, находившееся на земной поверхностей или окислилось, или переместилось в земное ядро. Это привело к тому, что парциальное давление кислорода в раннепротерозойской атмосфере изменилось.
В середине протерозоя концентрация кислорода в атмосфере достигала точки Юри и составляла 0,01% современного уровня. Начиная с этого времени кислород стал накапливаться в атмосфере и, вероятно, уже в конце рифея его содержание достигло точки Пастера (0,1% современного уровня). Возможно, в вендском периоде возник озоновый слой и Ь этого времени уже никогда не исчезал.
Появление свободного кислорода в земной атмосфере стимулировало эволюцию жизни и привело к возникновению новых форм с более совершенным метаболизмом. Если ранее эукариотные одноклеточные водоросли и цианеи, появившиеся в начале протерозоя, требовали содержания кислорода в воде всего 10-3 его современной концентрации, то с возникновением бесскелетных Metazoa в конце раннего венда, т. е. около 650 млн. лет тому назад, концентрация кислорода в атмосфере должна была бы быть значительно выше. Ведь Metazoa использовали кислородное дыхание и для этого требовалось, чтобы парциальное давление кислорода достигло критического уровня — точки Пастера. В этом случае анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом.
После этого дальнейшее накопление кислорода в земной атмосфере происходило довольно быстро. Прогрессивное увеличение объема сине-зеленых водорослей способствовало достижению в атмосфере необходимого для жизнеобеспечения животного мира уровня кислорода. Определенная стабилизация содержания кислорода в атмосфере произошла с того момента, когда растения вышли на сушу, — примерно 450 млн. лет назад. Выход растений на сушу, происшедший в силурийском периоде, привел к окончательной стабилизации уровня кислорода в атмосфере. Начиная с этого времени его концентрация стала колебаться в довольно узких пределах, никогда не всходивших за рамки существования жизни. Полностью концентрация кислорода в атмосфере стабилизировалась со времени появления цветковых растений. Это событие произошло в середине мелового периода, т.е. около 100 млн. лет тому назад.
Основная масса азота сформировалась на ранних стадиях развития Земли, главным образом за счет разложения аммиака. С появлением организмов начался процесс связывания атмосферного азота в органическое вещество и захоронения его в морских осадках. После выхода организмов на сушу азот стал захоронятся и в континентальных осадках. Особенно усилились процессы переработки свободного азота с появлением наземных растений.
На рубеже криптозоя и фанерозоя, т. е. около 650 млн. лет тому назад, содержание углекислого газа в атмосфере снизилось до десятых долей процентов, а содержания, близкого к современному уровню, он достиг лишь совсем недавно, примерно 10—20 млн. лет тому назад.
Таким образом, газовый состав атмосферы не только предоставлял организмам жизненное пространство, но и определял особенности их жизнедеятельности, способствовал расселению и эволюции. Возникающие сбои в распределении благоприятного для организмов газового состава атмосферы как из-за космических, так и планетарных причин приводили к массовым вымираниям органического мира, которые неоднократно происходили в течение криптозоя и на определенных рубежах фанерозойской истории.
Этносферные функции атмосферы
Атмосфера Земли обеспечивает живые организмы необходимым веществом, энергией и определяет направленность и скорость метаболических процессов. Газовый состав современной атмосферы является оптимальным для существования и развития жизни. Будучи областью формирования погоды и климата, атмосфера должна создавать комфортные условия для жизнедеятельности людей, животных и растительности. Отклонения в ту или другую сторону в качестве атмосферного воздуха и погодных условиях создают экстремальные условия для жизнедеятельности животного и растительного мира, в том числе и для человека.
Атмосфера Земли не только обеспечивает условия существования человечества, являясь основным фактором эволюции этносферы. Она в то же время оказывается энергетическим и сырьевым ресурсом производства. В целом атмосфера — это фактор, сохраняющий здоровье человека, а некоторые области в силу физико-географических условий и качества атмосферного воздуха служат рекреационными территориями и являются областями, предназначенными для санаторно-курортного лечения и отдыха людей. Таким образом, атмосфера является фактором эстетического и эмоционального воздействия.
Этносферные и техносферные функции атмосферы, определенные совсем недавно (Е. Д. Никитин, Н. А. Ясаманов, 2001), нуждаются в самостоятельном и углубленном исследовании. Так, весьма актуальным является изучение энергетических атмосферных функций как с точки зрения возникновения и действия процессов, наносящих ущерб окружающей среде, так и с точки зрения воздействия на здоровье и благосостояние людей. В данном случае речь идет об энергии циклонов и антициклонов, атмосферных вихрей, атмосферном давлении и других экстремальных атмосферных явлениях, эффективное использование которых будет способствовать успешному решению проблемы получения не загрязняющих окружающую среду альтернативных источников энергии. Ведь воздушная среда, особенно та ее часть, которая располагается над Мировым океаном, является областью выделения колоссального объема свободной энергии.
Например, установлено, что тропические циклоны средней силы только за сутки выделяют энергию, эквивалентную энергии 500 тыс. атомных бомб, сброшенных на Хиросиму и Нагасаки. За 10 дней существования такого циклона высвобождается энергия, достаточная для удовлетворения всех энергетических потребностей такой страны, как США, в течение 600 лет.
В последние годы было опубликовано большое количество работ ученых естественнонаучного профиля, в той или иной мере касающихся разных сторон деятельности и влияния атмосферы на земные процессы, что свидетельствует об активизации междисциплинарных взаимодействий в современном естествознании. При этом проявляется интегрирующая роль определенных его направлений, среди которых надо отметить функционально-экологическое направление в геоэкологии.
Данное направление стимулирует анализ и теоретическое обобщение информации по экологическим функциям и планетарной роли различных геосфер, а это, в свою очередь, является важной предпосылкой для разработки методологии и научных основ целостного изучения нашей планеты, рационального использования и охраны ее природных ресурсов.
Атмосфера Земли состоит из нескольких слоев: тропосферы, стратосферы, мезосферы, термосферы, ионосферы и экзосферы. В верхней части тропосферы и нижней части стратосферы располагается слой, обогащенный озоном, именуемый озоновым экраном. Установлены определенные (суточные, сезонные, годовые и т. д.) закономерности в распределении озона. Со времени своего возникновения атмосфера влияет на течение планетарных процессов. Первичный состав атмосферы был совершенно иным, чем в настоящее время, но с течением времени неуклонно росли доля и роль молекулярного азота, около 650 млн. лет назад появился свободный кислород, количество которого непрерывно повышалось, но соответственно снижалась концентрация углекислого газа. Высокая подвижность атмосферы, ее газовый состав и наличие аэрозолей обусловливают ее выдающуюся роль и активное участие в разнообразных геологических и биосферных процессах. Велика роль атмосферы в перераспределении солнечной энергии и развитии катастрофических стихийных явлений и бедствий. Негативное воздействие на органический мир и природные системы оказывают атмосферные вихри — смерчи (торнадо), ураганы, тайфуны, циклоны и другие явления. Основными источниками загрязнений наряду с природными факторами выступают различные формы хозяйственной деятельности человека. Антропогенные воздействия на атмосферу выражаются не только в появлении различных аэрозолей и парниковых газов, но ив увеличении количества водяных паров, и проявляются в виде смогов и кислотных дождей. Парниковые газы меняют температурный режим земной поверхности, выбросы некоторых газов уменьшают объем озонового экрана и способствуют возникновению озоновых дыр. Велика этносферная роль атмосферы Земли.
Роль атмосферы в природных процессах
Приземная атмосфера в силу своего промежуточного состояния между литосферой и космическим пространством и своего газового состава создает условия для жизнедеятельности организмов. Вместе с тем от количества, характера и периодичности атмосферных осадков, от частот и силы ветров и особенно от температуры воздуха зависят выветривание и интенсивность разрушения горных пород, перенос и аккумуляция обломочного материала. Атмосфера выступает центральным компонентом климатической системы. Температура и влажность воздуха, облачность и осадки, ветер — все это характеризует погоду, т. е. непрерывно меняющееся состояние атмосферы. Одновременно эти же компоненты характеризуют и климат, т. е. усредненный многолетний режим погоды.
Состав газов, наличие облачности и различных примесей, которые называются аэрозольными частицами (пепел, пыль, частички водяного пара), определяют особенности прохождения солнечной радиации сквозь атмосферу и препятствуют уходу теплового излучения Земли в космическое пространство.
Атмосфера Земли очень подвижна. Возникающие в ней процессы и изменения ее газового состава, толщины, облачности, прозрачности и наличие в ней тех или иных аэрозольных частиц воздействуют как на погоду, так и на климат.
Действие и направленность природных, процессов, а также жизнь и деятельность на Земле определяются солнечной радиацией. Она дает 99,98% теплоты, поступающей на земную поверхность. Ежегодно это составляет 134*1019 ккал. Такое количество теплоты можно получить при сжигании 200 млрд. т. каменного угля. Запасов водорода, создающего этот поток термоядерной энергии в массе Солнца, хватит, по крайней мере, еще на 10 млрд. лет, т. е. на период в два раза больший, чем существуют само Солнце и наша планета.
Около 1/3 общего количества солнечной энергии, поступающей на верхнюю границу атмосферы, отражается обратно в мировое пространство, 13% поглощается озоновым слоем (в том числе почти вся ультрафиолетовая радиация),. 7% — остальной атмосферой и лишь 44% достигает земной поверхности. Суммарная солнечная радиация, достигающая Земли за сутки, равна энергии, которую человечество получило в результате сжигания всех видов топлива за последнее тысячелетие.
Количество и характер распределения солнечной радиации на земной поверхности находятся в тесной зависимости от облачности и прозрачности атмосферы. На величину рассеянной радиации влияют высота Солнца над горизонтом, прозрачность атмосферы, содержание в ней водяных паров, пыли, общее количество углекислоты и т. д.
Максимальное количество рассеянной радиации попадает в полярные районы. Чем ниже Солнце над горизонтом, тем меньше теплоты поступает на данный участок местности.
Большое значение имеют прозрачность атмосферы и облачность. В пасмурный летний день обычно холоднее, чем в ясный, так как дневная облачность препятствует нагреванию земной поверхности.
Большую роль в распределении теплоты играет запыленность атмосферы. Находящиеся в ней тонкодисперсные твердые частицы пыли и пепла, влияющие на ее прозрачность, отрицательно сказываются на распределении солнечной радиации, большая часть которой отражается. Тонкодисперсные частицы попадают в атмосферу двумя путями: это или пепел, выбрасываемый во время вулканических извержений, или пыль пустынь, переносимая ветрами из аридных тропических и субтропических областей. Особенно много такой пыли образуется в период засух, когда потоками теплого воздуха она выносится в верхние слои атмосферы и способна находиться там продолжительное время. После извержения вулкана Кракатау в 1883 г. пыль, выброшенная на десятки километров в атмосферу, находилась в стратосфере около 3 лет. В результате извержения в 1985 г. вулкана Эль-Чичон (Мексика) пыль достигла Европы, и поэтому произошло некоторое понижение приземных температур.
Атмосфера Земли содержит переменное количество водяного пара. В абсолютном исчислении по массе или объему его количество составляет от 2 до 5%.
Водяной пар, как и углекислота, усиливает парниковый эффект. В возникающих в атмосфере облаках и туманах протекают своеобразные физико-химические процессы.
Первоисточником водяного пара в атмосферу является поверхность Мирового океана. С него ежегодно испаряется слой воды толщиной от 95 до 110 см. Часть влаги возвращается в океан после конденсации, а другая воздушными потоками направляется в сторону материков. В областях переменно-влажного климата осадки увлажняют почву, а во влажных создают запасы грунтовых вод. Таким образом, атмосфера является аккумулятором влажности и резервуаром осадков. Облака и туманы, формирующиеся в атмосфере, обеспечивают влагой почвенный покров и тем самым играют определяющую роль в развитии животного и растительного мира.
Атмосферная влага распределяется по земной поверхности благодаря подвижности атмосферы. Ей присуща весьма сложная система ветров и распределения давления. В связи с тем что атмосфера находится в непрерывном движении, характер и масштабы распределения ветровых потоков и давления все время меняются. Масштабы циркуляции изменяются от микрометеорологических, размером всего в несколько сотен метров, до глобального — в несколько десятков тысяч километров. Огромные атмосферные вихри участвуют в создании систем крупномасштабных воздушных течений и определяют общую циркуляцию атмосферы. Кроме того, они являются источниками катастрофических атмосферных явлений.
От атмосферного давления зависит распределение погодных и климатических условий и функционирование живого вещества. В том случае, если атмосферное давление колеблется в небольших пределах, оно не играет решающей роли в самочувствии людей и поведении животных и не отражается на физиологических функциях растений. С изменением давления, как правило, связаны фронтальные явления и изменения погоды.
Фундаментальное значение имеет атмосферное давление для формирования ветра, который, являясь рельефообразующим фактором, сильнейшим образом воздействует на животный и растительный мир.
Ветер способен подавить рост растений и в то же время способствует переносу семян. Велика роль ветра в формировании погодных и климатических условий. Выступает он и в качестве регулятора морских течений. Ветер как один из экзогенных факторов способствует эрозии и дефляции выветрелого материала на большие расстояния.
Эколого-геологическая роль атмосферных процессов
Уменьшение прозрачности атмосферы за счет появления в ней аэрозольных частиц и твердой пыли влияет на распределение солнечной радиации, увеличивая альбедо или отражательную способность. К такому же результату приводят и разнообразные химические реакции, вызывающие разложение озона и генерацию «перламутровых» облаков, состоящих из водяного пара. Глобальное изменение отражательной способности, так же как изменения газового состава атмосферы, главным образом парниковых газов, являются причиной климатических изменений.
Неравномерное нагревание, вызывающее различия в атмосферном давлении над разными участками земной поверхности, приводит к атмосферной циркуляции, которая является отличительной чертой тропосферы. При возникновении разности в давлении воздух устремляется из областей повышенного давления в область пониженных давлений. Эти перемещения воздушных масс вместе с влажностью и температурой определяют основные эколого-геологические особенности атмосферных процессов.
В зависимости от скорости ветер производит на земной поверхности различную геологическую работу. При скорости 10 м/с он качает толстые ветви деревьев, поднимает и переносит пыль и мелкий песок; со скоростью 20 м/с ломает ветви деревьев, переносит песок и гравий; со скоростью 30 м/с (буря) срывает крыши домов, вырывает с корнем деревья, ломает столбы, передвигает гальку и переносит мелкий щебень, а ураганный ветер со скоростью 40 м/с разрушает дома, ломает и сносит столбы линий электропередач, вырывает с корнем крупные деревья.
Большое негативное экологическое воздействие с катастрофическими последствиями оказывают шквальные бури и смерчи (торнадо) — атмосферные вихри, возникающие в теплое время года на мощных атмосферных фронтах, имеющие скорость до 100 м/с. Шквалы — это горизонтальные вихри с ураганной скоростью ветра (до 60—80 м/с). Они часто сопровождаются мощными ливнями и грозами продолжительностью от нескольких минут до получаса. Шквалы охватывают территории шириной до 50 км и проходят расстояние в 200—250 км. Шквальная буря в Москве и Подмосковье в 1998 г. повредила крыши многих домов и повалила деревья.
Смерчи, называемые в Северной Америке торнадо, представляют собой мощные воронкообразные атмосферные вихри, часто связанные с грозовыми облаками. Это суживающиеся в середине столбы воздуха диаметром от нескольких десятков до сотен метров. Смерч имеет вид воронки, очень похожей на хобот слона, спускающейся с облаков или поднимающейся с поверхности земли. Обладая сильной разреженностью и высокой скоростью вращения, смерч проходит путь до нескольких сотен километров, втягивая в себя пыль, воду из водоемов и различные предметы. Мощные смерчи сопровождаются грозой, дождем и обладают большой разрушительной силой.
Смерчи редко возникают в приполярных или экваториальных областях, где постоянно холодно или жарко. Мало смерчей в открытом океане. Смерчи происходят в Европе, Японии, Австралии, США, а в России особенно часты в Центрально-Черноземном районе, в Московской, Ярославской, Нижегородской и Ивановской областях.
Смерчи поднимают и перемещают автомобили, дома, вагоны, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США. Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек. Смерчи относятся к быстродействующим катастрофическим атмосферным процессам. Они формируются всего за 20—30 мин, а время их существования 30 мин. Поэтому предсказать время и место возникновения смерчей практически невозможно.
Другими разрушительными, но действующими продолжительное время атмосферными вихрями являются циклоны. Они образуются из-за перепада давления, которое в определенных условиях способствует возникновению кругового движения воздушных потоков. Атмосферные вихри зарождаются вокруг мощных восходящих потоков влажного теплого воздуха и с большой скоростью вращаются по часовой стрелке в южном полушарии и против часовой — в северном. Циклоны в отличие от смерчей зарождаются над океанами и производят свои разрушительные действия над материками. Основными разрушительными факторами являются сильные ветры, интенсивные осадки в виде снегопада, ливней, града и нагонные наводнения. Ветры со скоростями 19 — 30 м/с образуют бурю, 30 — 35 м/с — шторм, а более 35 м/с — ураган.
Тропические циклоны — ураганы и тайфуны — имеют среднюю ширину в несколько сот километров. Скорость ветра внутри циклона достигает ураганной силы. Длятся тропические циклоны от нескольких дней до нескольких недель, перемещаясь со скоростью от 50 до 200 км/ч. Циклоны средних широт имеют больший диаметр. Поперечные размеры их составляют от тысячи до нескольких тысяч километров, скорость ветра штормовая. Движутся в северном полушарии с запада и сопровождаются градом и снегопадом, имеющими катастрофический характер. По числу жертв и наносимому ущербу циклоны и связанные с ними ураганы и тайфуны являются самыми крупными после наводнений атмосферными стихийными явлениями. В густонаселенных районах Азии число жертв во время ураганов измеряется тысячами. В 1991 г. в Бангладеш во время урагана, который вызвал образование морских волн высотой 6 м, погибло 125 тыс. человек. Большой ущерб наносят тайфуны территории США. При этом гибнут десятки и сотни людей. В Западной Европе ураганы приносят меньший ущерб.
Катастрофическим атмосферным явлением считаются грозы. Они возникают при очень быстром поднятии теплого влажного воздуха. На границе тропического и субтропического поясов грозы происходят по 90—100 дней в году, в умеренном поясе по 10—30 дней. В нашей стране наибольшее количество гроз случается на Северном Кавказе.
Грозы обычно продолжаются менее часа. Особую опасность представляют интенсивные ливни, градобития, удары молнии, порывы ветра, вертикальные потоки воздуха. Опасность градобития определяется размерами градин. На Северном Кавказе масса градин однажды достигала 0,5 кг, а в Индии отмечены градины массой 7 кг. Наиболее градоопасные районы у нас в стране находятся на Северном Кавказе. В июле 1992 г. град повредил в аэропорту «Минеральные Воды» 18 самолетов.
К опасным атмосферным явлениям относятся молнии. Они убивают людей, скот, вызывают пожары, повреждают электросеть. От гроз и их последствий ежегодно в мире гибнет около 10 000 человек. Причем в некоторых районах Африки, во Франции и США число жертв от молний больше, чем от других стихийных явлений. Ежегодный экономический ущерб от гроз в США составляет не менее 700 млн. долларов.
Засухи характерны для пустынных, степных и лесостепных регионов. Недостаток атмосферных осадков вызывает иссушение почвы, понижение уровня подземных вод и в водоемах до полного их высыхания. Дефицит влаги приводит к гибели растительности и посевов. Особенно сильными бывают засухи в Африке, на Ближнем и Среднем Востоке, в Центральной Азии и на юге Северной Америки.
Засухи изменяют условия жизнедеятельности человека, оказывают неблагоприятное воздействие на природную среду через такие процессы, как осолонение почвы, суховеи, пыльные бури, эрозия почвы и лесные пожары. Особенно сильными пожары бывают во время засухи в таежных районах, тропических и субтропических лесах и саваннах.
Засухи относятся к кратковременным процессам, которые продолжаются в течение одного сезона. В том случае, когда засухи длятся более двух сезонов, возникает угроза голода и массовой смертности. Обычно действие засухи распространяется на территорию одной или нескольких стран. Особенно часто продолжительные засухи с трагическими последствиями возникают в Сахельской области Африки.
Большой ущерб приносят такие атмосферные явления, как снегопады, кратковременные ливневые дожди и продолжительные затяжные дожди. Снегопады вызывают массовые сходы лавин в горах, а быстрое таяние выпавшего снега и ливневые продолжительные дожди приводят к наводнениям. Огромная масса воды, падающая на земную поверхность, особенно в безлесных районах, вызывает сильную эрозию почвенного покрова. Происходит интенсивный рост овражно-балочных систем. Наводнения возникают в результате крупных паводков в период обильного выпадения атмосферных осадков или половодья после внезапно наступившего потепления или весеннего таяния снега и, следовательно, по происхождению относятся к атмосферным явлениям (они рассматриваются в главе, посвященной экологической роли гидросферы).
Источник: www.polnaja-jenciklopedija.ru