Атмосфера это воздушная оболочка земли


Атмосфера (от греческого atmos — воздух, и sphaira — шар) — воздушная оболочка Земли, которая окружает планету и вращается вместе с ней вокруг земной оси. Это самая верхняя оболочка земли. Само рождение атмосферы до сих остается загадкой для науки, а космонавты, которые видели Землю из космоса, говорят, что планета окружена голубоватой дымкой.

Толщина атмосферы примерно 3 тыс км: она начинается с земли и затем плавно переходит в космос.

Одна из теорий говорит, что атмосфера образовалась из раскаленных газов вулканов.Изначально в ней было больше азота, потом из-за дождей образовалась водная поверхность Земли, что привело к появлению растений, которые и создали баланс между азотом и кислородом.

Справка

Состав атмосферы

Атмосфера состоит из воздуха, который в свою очередь состоит из газов. Атмосферный воздух состоит из азота (78%), кислорода (21%), другие газы (1%). Другие газы это углекислый, гелий, пары, озон, криптон, ксеон, аргон  и другие. Сам воздух  обладает свойствами: прозрачен, без цвета и запаха, не видим, поддерживает горение, хорошо сжимаем и упруг.

Общая циркуляция воздуха в атмосфере

Слои


Таблица: строение атмосферы
Название слоя Расстояние в км Особенности
Экзосфера плавный переход в космос магнитные бури.
Термосфера до 800 хорошо проводит электричество. Здесь формируется северное сияние.
Мезосфера до 80 Разреженный воздух. Серебристые облака.
Стратосфера до 55 Нет пара — не образуются облака. Ураганные ветры. Перламутровые облака.
Тропосфера (*) над экватором — до 18. Над полюсами — до 9 Образуются облака. Формируются явления природы.

Тропосфера содержит 80% массы воздуха. Температура в ней снижается снизу вверх. Каждый километр понижает температуру воздуха на 6 градусов. Здесь происходит движение воздуха (ветер), формирование погодных явлений, формирование облаков и так далее. Все то, что мы называем погодой зарождается и происходит именно в тропосфере. Часто говорят, что «Тропосфера — кухня природы».

Снижение температуры происходит до мезосферы включительно. Дальше воздух начинает нагреваться, причем очень сильно. На высоте 550 км температура воздуха составляет +1500 градусов.

Атмосфера, ее строение и слои

Значение атмосферы


Значение атмосферы для Земли очень велико, поскольку именно содержится воздух, необходимый для жизни всех живых организмов. Без этой оболочки жизнь на Земле невозможна. Некоторые ученые по этому поводу говорят, что люди живут не на поверхности земли, а на дне воздушного океана.

Атмосфера обеспечивает:

  • защищает Землю от падения метеоритных тел. Только единицы достигают поверхности земли, а большая часть сгорает в атмосфере.
  • выступает в роли «одеяла», сохраняя комфортную температура на планете. Например, на Луне, где атмосферы нет, днем в среднем +140 градусов. а ночью -200 градусов.
  • сохраняет жизнь. Она состоит из кислорода, без которого жизнь невозможна.
  • защищает от ультрафиолетового излучения. На высоте примерно в 20 км начинается слой озона, который и выполняет эту функцию.

Именно атмосфера создала ту планету, на который мы живем, и облик которой видим каждый. Большой вред ей наносит результат промышленной деятельности людей: выбросы углекислого газа, копоти, пыли и так далее постепенно меняют состав атмосферы. Пока это происходит относительно безболезненно, но рано или поздно предел будет достигнут.

Как изучают

Изучение атмосферы сложный вопрос, и этим занимаются во всем мире. Создана специальная Всемирная метеорологическая организация, членом которой является Россия, которая занимается изучением атмосферы. Изучение производится с помощью метеостанций, воздушных шаров, ракет, спутников. Воздушные шары используются для определения размеров слое атмосферы. Такой шар поднимается вверх и определяет, где заканчивается тропосфера и начинается стратосфера.


Погода — состояние тропосферы в определенном месте и в определенном времени.

Справка

Метеорологический ящик

Похожие статьи

Источник: geografiyazemli.ru

Что такое атмосфера

Она играет роль защитного купола для нашей планеты и простирается до уровня около 1000 км над поверхностью Земли. Для атмосферы характерна высокая динамичность и неоднородный физический состав. На него оказывают сильное влияние биологические факторы. 

Озоновый слой защищает Землю от неблагоприятного воздействия ультрафиолета, излучаемого Солнцем, и от прочих вредных космических излучений. Большинство падающих метеоритов и других космических тел сгорает в земной атмосфере. Она же помогает поддерживать приемлемую для жизни температуру у поверхности нашей планеты. Нижние слои атмосферы участвуют в круговороте воды в природе за счет движения воздушных масс.


Благодаря атмосфере происходит формирование воздушных потоков (ветра), образуются облака и атмосферные осадки.

Плотность воздуха и атмосферное давление меняются c высотой в обратной пропорции. А вот с температурой не все так однозначно — она зависит от солнечной активности, магнитных бурь, разницы в поглощении газами солнечной энергии и множества других факторов.

Строение атмосферы Земли, структура и слои

Земная атмосфера состоит не из однородного слоя газов, а из нескольких слоев. Каждый из них характеризуется определенным набором газов, имеющих разную плотность. Чем больше плотность вещества, тем сильнее оно притягивается гравитационным полем земли. Поэтому структура нижних слоев более плотная, а у наиболее удаленных от земной поверхности — разреженная. Поскольку все виды газов имеют различные характеристики, то и слои, состоящие из них, обладают своими особенностями. Каждый из них имеет отдельное значение для земной атмосферы.

Тропосфера

Тропосфера является самым ближним и самым плотным атмосферным слоем. Ее граница над поверхностью Земли находится на уровне 7-8 км на полюсах и около 20 км над экватором, поэтому толщина этого слоя в разных местах земного шара неодинакова. Тропосфера имеет основное значение для обеспечения жизни на планете. Здесь происходят процессы циркуляции воды и образования облаков, формируются ветра, циклоны и антициклоны — все то, что определяет климатические и погодные условия. Большая часть живых организмов на Земле обитает именно в тропосфере.


С набором высоты в этом слое уменьшается не только атмосферное давление, но и температура. Это связано с отражением тепла от земной поверхности. Чем ближе к ней, тем воздух теплее. Процесс прогревания тропосферы от Земли, в свою очередь нагретой за счет солнечного излучения, носит название парникового эффекта. Отраженная солнечная энергия не может прогреть нижний слой на всю его глубину равномерно. Каждые 100 метров температура снижается приблизительно на полградуса. Ветер же с повышением высоты, напротив, усиливается — с каждым набранным километром на 2-3 км/с.

Стратосфера

Стратосфера является вторым по отношению к поверхности Земли и по величине слоем. На экваторе он достигает высоты 50 км, а его средняя толщина — 35 км. Признак этой зоны — крайне разреженная атмосфера и почти полное отсутствие водяных паров. Распределение температур здесь не такое, как в тропосфере — в нижней ее части находится тяжелый холодный воздух, а в верхней — более теплый и легкий. Воздушные пути, как правило, пролегают в нижней части стратосферы из-за отсутствия в ней зоны турбулентности, при этом температура за бортом может опускаться ниже минус 55 градусов. Зато в верхней части она достигает нулевой отметки. Сверхзвуковые самолеты способны подниматься на отметку 18-30 км.


Именно в стратосфере находится озоновый слой, защищающий все живое на земле от избыточного ультрафиолета. Этим слоем ограничивается и содержание живых микроорганизмов в атмосфере. Иногда в нижних слоях встречаются и птицы, которые могут стать причиной авиакатастрофы.

Мезосфера

Мезосфера является наименее изученным объектом из всех атмосферных слоев. С одной стороны, на такую высоту не способны подняться метеорологические зонды, а с другой — не могут опуститься спутники. Достичь мезосферы способны только ракеты, но из-за своей высокой скорости они не в состоянии собрать достаточное количество информации. Толщина этого слоя достигает размера 40-50 км, а его высота над поверхностью земли местами доходит до 80-90 км. Мезосфере по праву можно присвоить название «самого холодного места на планете» — в пределах ее верхней границы температура опускается ниже –140°.

Большая часть метеоров, летящих в сторону Земли, сгорает именно в мезосфере. Если небесное тело входит в этот слой со скоростью не ниже 11 км/ч под острым углом, происходит процесс его возгорания от трения с весьма заметным световым эффектом. Отсюда появилось понятие «метеоритного потока».

Термосфера и ионосфера

Условная граница между мезосферой и термосферой проходит на высоте 100 км.


отность воздуха здесь настолько минимальна, что все полеты выше этой линии по определению считаются космическими, хотя это не совсем верно. Толщина слоя в разных местах от 500 до 700 км. Высшая точка термосферы — 800 км. Максимальная отметка температуры в 1800 градусов отмечена на высоте 400 км. В термосфере находится Международная Космическая Станция, вокруг которой вращаются спутники. Необычайно высокая температура не приносит им вреда благодаря крайне низкой плотности воздуха.

Уникальность термосферы еще и в том, что она имеет внутреннее образование — ионосферу, появившуюся в результате молекулярной фотоионизации.

Фотоионизация — это образование ионов в процессе взаимодействия атомов с фотонами под действием ультрафиолетового излучения. Именно в ионосфере возникает полярное сияние, наблюдаемое с земли ближе к полюсам (северному и южному). Заряженные частицы солнечного ветра прорываются в магнитное поле планеты и, двигаясь в ней, излучают световую энергию, вызывая свечение в этом атмосферном слое. Описание этого явления глазами человека выглядит так: разноцветные дуги самых разных форм и размеров светятся, полыхают и переливаются в ночном небе. Чаще свечение имеет зеленоватый оттенок.

Экзосфера

Экзосфера — завершающий слой атмосферы Земли.

Он начинается на расстоянии примерно 600-800 км от земной поверхности и простирается на десятки тысяч километров, постепенно перерастая в геокорону. Экзосфера еще более разрежена, чем предыдущий слой. Частицы элементов, встречающиеся в ней, настолько разрознены, что их совокупность уже нельзя классифицировать как газ. Геокорона Земли достигает расстояния до 100 000 км от поверхности. Ее можно увидеть с космического корабля, когда он находится над Луной, заслоняющей Землю.


Состав атмосферы, газы и другие вещества

Тропосфера состоит из воздуха, содержащего азот (78,08%), кислород (20,95%), аргон (0,93%) и углекислый газ (всего 0,04%). В воздухе содержится и испаряемая с Земли влага в виде пара, количество которого все время меняется. 

Стратосфера состоит преимущественно из озона, создающего защитный озоновый слой Земли. Образовался он из кислорода, который в процессе фотосинтеза выделяли растения и микроорганизмы с древних времен. В результате химической реакции кислород, поднявшись в стратосферу, превратился в озон. Процентное соотношение азота, кислорода, аргона и углекислого газа остается таким же, но сам воздух настолько разрежен, что вдыхаемого количества кислорода уже недостаточно для живых существ. Поскольку движения воздушных потоков между стратосферой и тропосферой практически не наблюдается, то объем водяных испарений здесь очень мал. Поэтому облака здесь образуются крайне редко.

В мезосфере, как и в двух предыдущих слоях, воздух состоит из тех же компонентов, но является еще более разреженным, чем в стратосфере. Характерной особенностью является наличие железа и некоторых других металлов, оставшихся в этом слое в результате сгорания метеоров.


В термосфере, в отличие от нижних слоев атмосферы, молекулы газа, в силу гораздо большой разреженности, не перемешиваются между собой, а равномерно распределены и практически лишены возможности сталкиваться друг с другом. Солнечное излучение приводит к их разрушению, поэтому в верхних слоях можно наблюдать не молекулярные азот, кислород, а их атомы вместе с атомами гелия.

Экзосфера состоит большей частью из атомов водорода, а также отдельных атомов кислорода, азота, гелия, ионизированных солнечными лучами.

Атмосферы других планет Солнечной системы

Почти все планеты Солнечной системы имеют свою атмосферу, но, кроме Земли, для жизни не приспособлены. Каждая из них содержит частицы в виде аэрозоля — это пылинки с поверхности планеты либо от метеоров, а также конденсаты атмосферных газов в жидком или твердом состоянии.

  1. Марс. Состав атмосферы: углекислый газ (95%), азот и аргон (4%), кислород и водяной пар (1%). Давление в 160 раз меньше земного.
  2. Венера. Состав атмосферы: углекислый газ (96,5%), азот (до 3%), примеси аргона и других инертных газов. Мощность давления на Венере в 90 раз превышает земную. Высота атмосферного слоя достигает 5500 км.

  3. Меркурий. Имеет крайне низкое атмосферное давление. Присутствуют в небольшом количестве кислород, углерод, аргон, ксенон, гелий.
  4. Сатурн. Имеет динамичную атмосферу, состоящую из гелия, водорода и метана.
  5. Юпитер. Постоянно меняющаяся, нестабильная атмосфера состоит из гелия и водорода. Характерны атмосферные вихри и цветные облака, гигантские молнии. Высота атмосферного слоя 1000 км.
  6. Уран. Атмосфера достигает 8000 км над поверхностью планеты. Состоит из водорода (83%), гелия (15%) и метана (2%). Имеет облачный покров из метана и водорода.
  7. Нептун. Атмосфера также состоит из водорода, гелия и метана и имеет схожую водородно-метановую облачность.
  8. Плутон. Давление примерно в 7000 раз меньше, чем на Земле. Имеет разреженную атмосферу, состоящую из метана в газообразной форме и незначительное количество инертных газов.

Источник: wiki.fenix.help

Строение атмосферы

По вер­ти­ка­ли А. име­ет слои­стую струк­ту­ру, оп­ре­де­ляе­мую гл. обр. осо­бен­но­стя­ми вер­ти­каль­но­го рас­пре­де­ле­ния темп-ры (рис.), ко­то­рое за­ви­сит от гео­гра­фич. по­ло­же­ния, се­зо­на, вре­ме­ни су­ток и т. д. Ниж­ний слой А. – тро­по­сфе­ра – ха­рак­те­ри­зу­ет­ся па­де­ни­ем темп-ры с вы­со­той (при­мер­но на 6 °C на 1 км), его вы­со­та от 8–10 км в по­ляр­ных ши­ро­тах до 16–18 км в тро­пи­ках. Бла­го­да­ря бы­ст­ро­му убы­ва­нию плот­но­сти воз­ду­ха с вы­со­той в тро­по­сфе­ре на­хо­дит­ся ок. 80% всей мас­сы А. Над тро­по­сфе­рой рас­по­ла­га­ет­ся стра­то­сфе­ра – слой, ко­то­рый ха­рак­те­ри­зу­ет­ся в об­щем по­вы­ше­ни­ем темп-ры с вы­со­той. Пе­ре­ход­ный слой ме­ж­ду тро­по­сфе­рой и стра­то­сфе­рой на­зы­ва­ет­ся тро­по­пау­зой. В ниж­ней стра­то­сфе­ре до уров­ня ок. 20 км темп-ра ма­ло ме­ня­ет­ся с вы­со­той (т. н. изо­тер­мич. об­ласть) и не­ред­ко да­же не­зна­чи­тель­но умень­ша­ет­ся. Вы­ше темп-ра воз­рас­та­ет из-за по­гло­ще­ния УФ-ра­диа­ции Солн­ца озо­ном, вна­ча­ле мед­лен­но, а с уров­ня 34–36 км – бы­ст­рее. Верх­няя гра­ни­ца стра­то­сфе­ры – стра­то­пау­за – рас­по­ло­же­на на выс. 50–55 км, со­от­вет­ст­вую­щей мак­си­му­му темп-ры (260–270 К). Слой А., рас­по­ло­жен­ный на выс. 55–85 км, где темп-ра сно­ва па­да­ет с вы­со­той, на­зы­ва­ет­ся ме­зо­сфе­рой, на его верх­ней гра­ни­це – ме­зо­пау­зе – темп-ра дос­ти­га­ет ле­том 150–160 К, а зи­мой 200–230 К. Над ме­зо­пау­зой на­чи­на­ет­ся тер­мо­сфе­ра – слой, ха­рак­те­ри­зую­щий­ся бы­ст­рым по­вы­ше­ни­ем темп-ры, дос­ти­гаю­щей на выс. 250 км зна­че­ний 800–1200 К. В тер­мо­сфе­ре по­гло­ща­ет­ся кор­пус­ку­ляр­ная и рент­ге­нов­ская ра­диа­ция Солн­ца, тор­мо­зят­ся и сго­ра­ют ме­тео­ры, по­это­му она вы­пол­ня­ет функ­цию за­щит­но­го слоя Зем­ли. Ещё вы­ше на­хо­дит­ся эк­зо­сфе­ра, от­ку­да ат­мо­сфер­ные га­зы рас­сеи­ва­ют­ся в ми­ро­вое про­стран­ст­во за счёт дис­си­па­ции и где про­ис­хо­дит по­сте­пен­ный пе­ре­ход от А. к меж­пла­нет­но­му про­стран­ст­ву.

Состав атмосферы

До выс. ок. 100 км А. прак­ти­че­ски од­но­род­на по хи­мич. со­ста­ву и ср. мо­ле­ку­ляр­ная мас­са воз­ду­ха (ок. 29) в ней по­сто­ян­на. Вбли­зи по­верх­но­сти Зем­ли А. со­сто­ит из азо­та (ок. 78,1% по объёму) и ки­сло­ро­да (ок. 20,9%), а так­же со­дер­жит ма­лые ко­ли­че­ст­ва ар­го­на, ди­ок­си­да уг­ле­ро­да (уг­ле­ки­сло­го га­за), не­она и др. по­сто­ян­ных и пе­ре­мен­ных ком­по­нен­тов (см. Воз­дух).

Кро­ме то­го, А. со­дер­жит не­боль­шие ко­ли­че­ст­ва озо­на, ок­си­дов азо­та, ам­миа­ка, ра­до­на и др. От­но­сит. со­дер­жа­ние осн. со­став­ляю­щих воз­ду­ха по­сто­ян­но во вре­ме­ни и од­но­род­но в раз­ных гео­гра­фич. рай­онах. Со­дер­жа­ние во­дя­но­го па­ра и озо­на пе­ре­мен­но в про­стран­ст­ве и вре­ме­ни; не­смот­ря на ма­лое со­дер­жа­ние, их роль в ат­мо­сфер­ных про­цес­сах весь­ма су­ще­ст­вен­на.

Вы­ше 100–110 км про­ис­хо­дит дис­со­циа­ция мо­ле­кул ки­сло­ро­да, уг­ле­ки­сло­го га­за и во­дя­но­го па­ра, по­это­му мо­ле­ку­ляр­ная мас­са воз­ду­ха умень­ша­ет­ся. На выс. ок. 1000 км на­чи­на­ют пре­об­ла­дать лёг­кие га­зы – ге­лий и во­до­род, а ещё вы­ше А. Зем­ли по­сте­пен­но пе­ре­хо­дит в меж­пла­нет­ный газ.

Наи­бо­лее важ­ная пе­ре­мен­ная ком­по­нен­та А. – во­дя­ной пар, ко­то­рый по­сту­па­ет в А. при ис­па­ре­нии с по­верх­но­сти во­ды и влаж­ной поч­вы, а так­же пу­тём транс­пи­ра­ции рас­те­ния­ми. От­но­сит. со­дер­жа­ние во­дя­но­го па­ра ме­ня­ет­ся у зем­ной по­верх­но­сти от 2,6% в тро­пи­ках до 0,2% в по­ляр­ных ши­ро­тах. С вы­со­той оно бы­ст­ро па­да­ет, убы­вая на­по­ло­ви­ну уже на выс. 1,5–2 км. В вер­ти­каль­ном стол­бе А. в уме­рен­ных ши­ро­тах со­дер­жит­ся ок. 1,7 см «слоя оса­ж­дён­ной во­ды». При кон­ден­са­ции во­дя­но­го па­ра об­ра­зу­ют­ся об­ла­ка, из ко­то­рых вы­па­да­ют осад­ки ат­мо­сфер­ные в ви­де до­ж­дя, гра­да, сне­га.

Важ­ной со­став­ляю­щей ат­мо­сфер­но­го воз­ду­ха яв­ля­ет­ся озон, со­сре­до­то­чен­ный на 90% в стра­то­сфе­ре (ме­ж­ду 10 и 50 км), ок. 10% его на­хо­дит­ся в тро­по­сфе­ре. Озон обес­пе­чи­ва­ет по­гло­ще­ние жё­ст­кой УФ-ра­диа­ции (с дли­ной вол­ны ме­нее 290 нм), и в этом – его за­щит­ная роль для био­сфе­ры. Зна­че­ния об­ще­го со­дер­жа­ния озо­на ме­ня­ют­ся в за­ви­си­мо­сти от ши­ро­ты и се­зо­на в пре­де­лах от 0,22 до 0,45 см (тол­щи­на слоя озо­на при дав­ле­нии $p=$ 1 атм и темп-ре $T=$ 0 °C). В озо­но­вых ды­рах, на­блю­дае­мых вес­ной в Ан­тарк­ти­ке с нач. 1980-х гг., со­дер­жа­ние озо­на мо­жет па­дать до 0,07 см. Оно уве­ли­чи­ва­ет­ся от эк­ва­то­ра к по­лю­сам и име­ет го­до­вой ход с мак­си­му­мом вес­ной и ми­ни­му­мом осе­нью, при­чём ам­пли­ту­да го­до­во­го хо­да ма­ла в тро­пи­ках и рас­тёт к вы­со­ким ши­ро­там. Су­ще­ст­вен­ной пе­ре­мен­ной ком­по­нен­той А. яв­ля­ет­ся уг­ле­кис­лый газ, со­дер­жа­ние ко­то­ро­го в ат­мо­сфе­ре за по­след­ние 200 лет вы­рос­ло на 35%, что объ­яс­ня­ет­ся в осн. ан­тро­по­ген­ным фак­то­ром. На­блю­да­ет­ся его ши­рот­ная и се­зон­ная из­мен­чи­вость, свя­зан­ная с фо­то­син­те­зом рас­те­ний и рас­тво­ри­мо­стью в мор­ской во­де (со­глас­но за­ко­ну Ген­ри, рас­тво­ри­мость га­за в во­де умень­ша­ет­ся с рос­том её темп-ры).

Важ­ную роль в фор­ми­ро­ва­нии кли­ма­та пла­не­ты иг­ра­ет ат­мо­сфер­ный аэ­ро­золь – взве­шен­ные в воз­ду­хе твёр­дые и жид­кие час­ти­цы раз­ме­ром от не­сколь­ких нм до де­сят­ков мкм. Раз­ли­ча­ют­ся аэ­ро­зо­ли ес­те­ст­вен­но­го и ан­тро­по­ген­но­го про­ис­хо­ж­де­ния. Аэ­ро­золь об­ра­зу­ет­ся в про­цес­се га­зо­фаз­ных ре­ак­ций из про­дук­тов жиз­не­дея­тель­но­сти рас­те­ний и хо­зяйств. дея­тель­но­сти че­ло­ве­ка, вул­ка­нич. из­вер­же­ний, в результате подъ­ё­ма пы­ли вет­ром с по­верх­но­сти пла­не­ты, осо­бен­но с её пус­тын­ных ре­гио­нов, а так­же об­ра­зу­ет­ся из кос­мич. пы­ли, по­па­даю­щей в верх­ние слои А. Бóльшая часть аэ­ро­зо­ля со­сре­до­то­че­на в тро­по­сфе­ре, аэ­ро­золь от вул­ка­нич. из­вер­же­ний об­ра­зу­ет т. н. слой Юн­ге на выс. ок. 20 км. Наи­боль­шее ко­ли­че­ст­во ан­тро­по­ген­но­го аэ­ро­зо­ля по­па­да­ет в А. в ре­зуль­та­те ра­бо­ты ав­то­транс­пор­та и ТЭЦ, хи­мич. про­из­водств, сжи­га­ния то­п­ли­ва и др. Поэтому в не­ко­то­рых рай­онах со­став А. за­мет­но от­ли­ча­ет­ся от обыч­но­го воз­ду­ха, что по­тре­бо­ва­ло соз­да­ния спец. служ­бы на­блю­де­ний и кон­тро­ля за уров­нем за­гряз­не­ния ат­мо­сфер­но­го воз­ду­ха.

Эволюция атмосферы

Совр. А. име­ет, по-ви­ди­мо­му, вто­рич­ное про­ис­хо­ж­де­ние: она об­ра­зо­ва­лась из га­зов, вы­де­лен­ных твёр­дой обо­лоч­кой Зем­ли по­сле за­вер­ше­ния фор­ми­ро­ва­ния пла­не­ты ок. 4,5 млрд. лет на­зад. В те­че­ние гео­ло­гич. ис­то­рии Зем­ли А. пре­тер­пе­ва­ла зна­чит. из­ме­не­ния сво­его со­ста­ва под влия­ни­ем ря­да фак­то­ров: дис­си­па­ции (уле­ту­чи­ва­ния) га­зов, пре­им. бо­лее лёг­ких, в кос­мич. про­стран­ст­во; вы­де­ле­ния га­зов из ли­то­сфе­ры в ре­зуль­та­те вул­ка­нич. дея­тель­но­сти; хи­мич. ре­ак­ций ме­ж­ду ком­по­нен­та­ми А. и по­ро­да­ми, сла­гаю­щи­ми зем­ную ко­ру; фо­то­хи­мич. ре­ак­ций в са­мой А. под влия­ни­ем сол­неч­но­го УФ-из­лу­че­ния; ак­кре­ции (за­хва­та) ма­те­рии меж­пла­нет­ной сре­ды (напр., ме­те­ор­но­го ве­ще­ст­ва). Раз­ви­тие А. тес­но свя­за­но с гео­ло­гич. и гео­хи­мич. про­цес­са­ми, а по­след­ние 3–4 млрд. лет так­же с дея­тель­но­стью био­сфе­ры. Зна­чит. часть га­зов, со­став­ляю­щих совр. А. (азот, уг­ле­кис­лый газ, во­дя­ной пар), воз­ник­ла в хо­де вул­ка­нич. дея­тель­но­сти и ин­тру­зии, вы­но­сив­шей их из глу­бин Зем­ли. Ки­сло­род поя­вил­ся в за­мет­ных ко­ли­че­ст­вах ок. 2 млрд. лет то­му на­зад как ре­зуль­тат дея­тель­но­сти фо­то­син­те­зи­рую­щих ор­га­низ­мов, пер­во­на­чаль­но за­ро­див­ших­ся в по­верх­но­ст­ных во­дах океа­на.

По дан­ным о хи­мич. со­ста­ве кар­бо­нат­ных от­ло­же­ний по­лу­че­ны оцен­ки ко­ли­че­ст­ва уг­ле­ки­сло­го га­за и ки­сло­ро­да в А. гео­ло­ги­чес­ко­го про­шло­го. На про­тя­же­нии фа­не­ро­зоя (по­след­ние 570 млн. лет ис­то­рии Зем­ли) ко­ли­че­ст­во уг­ле­ки­с­ло­го га­за в А. из­ме­ня­лось в ши­ро­ких пре­де­лах в со­от­вет­ст­вии с уров­нем вул­ка­нич. ак­тив­но­сти, темп-рой океа­на и уров­нем фо­то­син­те­за. Боль­шую часть это­го вре­ме­ни кон­цен­тра­ция уг­ле­ки­сло­го га­за в А. бы­ла зна­чи­тель­но вы­ше со­вре­мен­ной (до 10 раз). Ко­ли­че­ст­во ки­с­ло­ро­да в А. фа­не­ро­зоя су­ще­ст­вен­но из­ме­ня­лось, при­чём пре­об­ла­да­ла тен­ден­ция к его уве­ли­че­нию. В А. до­кем­брия мас­са уг­ле­ки­сло­го га­за бы­ла, как пра­ви­ло, боль­ше, а мас­са ки­сло­ро­да – мень­ше по срав­не­нию с А. фа­не­ро­зоя. Ко­ле­ба­ния ко­ли­че­ст­ва уг­ле­ки­сло­го га­за ока­зы­ва­ли в про­шлом су­ще­ст­вен­ное влия­ние на кли­мат, уси­ли­вая пар­ни­ко­вый эф­фект при рос­те кон­цен­тра­ции уг­ле­ки­сло­го га­за, бла­го­да­ря че­му кли­мат на про­тя­же­нии осн. час­ти фа­не­ро­зоя был го­раз­до те­п­лее по срав­не­нию с совр. эпо­хой.

Атмосфера и жизнь

Без А. Зем­ля бы­ла бы мёрт­вой пла­не­той. Ор­га­нич. жизнь про­те­ка­ет в тес­ном взаи­мо­дей­ст­вии с А. и свя­зан­ны­ми с ней кли­ма­том и по­го­дой. Не­зна­чи­тель­ная по мас­се по срав­не­нию с пла­не­той в це­лом (при­мер­но мил­ли­он­ная часть), А. яв­ля­ет­ся не­пре­мен­ным ус­ло­ви­ем для всех форм жиз­ни. Наи­боль­шее зна­че­ние из ат­мо­сфер­ных га­зов для жиз­не­дея­тель­но­сти ор­га­низ­мов име­ют ки­сло­род, азот, во­дя­ной пар, уг­ле­кис­лый газ, озон. При по­гло­ще­нии уг­ле­ки­сло­го га­за фо­то­син­те­зи­рую­щи­ми рас­те­ния­ми соз­да­ёт­ся ор­га­нич. ве­ще­ст­во, ис­поль­зуе­мое как ис­точ­ник энер­гии по­дав­ляю­щим боль­шин­ст­вом жи­вых су­ществ, вклю­чая че­ло­ве­ка. Кис­лород не­об­хо­дим для су­ще­ст­во­ва­ния аэроб­ных ор­га­низ­мов, для ко­то­рых при­ток энер­гии обес­пе­чи­ва­ет­ся ре­ак­ция­ми окис­ле­ния ор­га­нич. ве­ще­ст­ва. Азот, ус­ваи­вае­мый не­ко­то­ры­ми мик­ро­ор­га­низ­ма­ми (азо­то­фик­са­то­ра­ми), не­об­хо­дим для ми­нер. пи­та­ния рас­те­ний. Озон, по­гло­щаю­щий жё­ст­кое УФ-из­лу­че­ние Солн­ца, зна­чи­тель­но ос­лаб­ля­ет эту вред­ную для жиз­ни часть сол­неч­ной ра­диа­ции. Кон­ден­са­ция во­дя­но­го па­ра в А., об­ра­зо­ва­ние об­ла­ков и по­сле­дую­щее вы­па­де­ние ат­мо­сфер­ных осад­ков по­став­ля­ют на су­шу во­ду, без ко­то­рой не­воз­мож­ны ни­ка­кие фор­мы жиз­ни. Жиз­не­дея­тель­ность ор­га­низ­мов в гид­ро­сфе­ре во мно­гом оп­ре­де­ля­ет­ся ко­ли­че­ст­вом и хи­мич. со­ста­вом ат­мо­сфер­ных га­зов, рас­тво­рён­ных в во­де. По­сколь­ку хи­мич. со­став А. су­ще­ст­вен­но за­ви­сит от дея­тель­но­сти ор­га­низ­мов, био­сфе­ру и А. мож­но рас­смат­ри­вать как часть еди­ной сис­те­мы, под­дер­жа­ние и эво­лю­ция ко­то­рой (см. Био­гео­хи­ми­че­ские цик­лы) име­ла боль­шое зна­че­ние для из­ме­не­ния со­ста­ва А. на про­тя­же­нии ис­то­рии Зем­ли как пла­не­ты.

Радиационный, тепловой и водный балансы атмосферы

Сол­неч­ная ра­диа­ция яв­ля­ет­ся прак­ти­че­ски единств. ис­точ­ни­ком энер­гии для всех фи­зич. про­цес­сов в А. Глав­ная осо­бен­ность ра­ди­ац. ре­жи­ма А. – т. н. пар­ни­ко­вый эф­фект: А. дос­та­точ­но хо­ро­шо про­пус­ка­ет к зем­ной по­верх­но­сти сол­неч­ную ра­диа­цию, но ак­тив­но по­гло­ща­ет те­п­ло­вое длин­но­вол­но­вое из­лу­че­ние зем­ной по­верх­но­сти, часть ко­то­ро­го воз­вра­ща­ет­ся к по­верх­но­сти в фор­ме встреч­но­го из­лу­че­ния, ком­пен­си­рую­ще­го ра­ди­ац. по­те­рю те­п­ла зем­ной по­верх­но­стью (см. Ат­мос­фер­ное из­лу­че­ние). В от­сут­ст­вие А. ср. темп-ра зем­ной по­верх­но­сти бы­ла бы –18 °C, в дей­ст­ви­тель­но­сти она 15 °C. При­хо­дя­щая сол­неч­ная ра­диа­ция час­тич­но (ок. 20%) по­гло­ща­ет­ся в А. (гл. обр. во­дя­ным па­ром, ка­п­ля­ми во­ды, уг­ле­кис­лым га­зом, озо­ном и аэ­ро­зо­ля­ми), а так­же рас­сеи­ва­ет­ся (ок. 7%) на час­ти­цах аэ­ро­зо­ля и флук­туа­ци­ях плот­но­сти (рэ­ле­ев­ское рас­сея­ние). Сум­мар­ная ра­диа­ция, дос­ти­гая зем­ной по­верх­но­сти, час­тич­но (ок. 23%) от­ра­жа­ет­ся от неё. Ко­эф. от­ра­же­ния оп­ре­де­ля­ет­ся от­ра­жат. спо­соб­но­стью под­сти­лаю­щей по­верх­но­сти, т. н. аль­бе­до. В сред­нем аль­бе­до Зем­ли для ин­те­граль­но­го по­то­ка сол­неч­ной ра­диа­ции близ­ко к 30%. Оно ме­ня­ет­ся от не­сколь­ких про­цен­тов (су­хая поч­ва и чер­но­зём) до 70–90% для свеже­вы­пав­ше­го сне­га. Ра­ди­ац. те­п­ло­об­мен ме­ж­ду зем­ной по­верх­но­стью и А. су­ще­ст­вен­но за­ви­сит от аль­бе­до и оп­ре­де­ля­ет­ся эф­фек­тив­ным из­лу­че­ни­ем по­верх­но­сти Зем­ли и по­гло­щён­ным ею про­ти­во­из­лу­че­ни­ем А. Ал­геб­ра­ич. сум­ма по­то­ков ра­диа­ции, вхо­дя­щих в зем­ную ат­мо­сфе­ру из кос­мич. про­стран­ст­ва и ухо­дя­щих из неё об­рат­но, на­зы­ва­ет­ся ра­диа­ци­он­ным ба­лан­сом.

Пре­об­ра­зо­ва­ния сол­неч­ной ра­диа­ции по­сле её по­гло­ще­ния А. и зем­ной по­верх­но­стью оп­ре­де­ля­ют те­п­ло­вой ба­ланс Зем­ли как пла­не­ты. Гл. ис­точ­ник те­п­ла для А. – зем­ная по­верх­ность; те­п­ло­та от неё пе­ре­да­ёт­ся не толь­ко в ви­де длин­но­вол­но­во­го из­лу­че­ния, но и пу­тём кон­век­ции, а так­же вы­де­ля­ет­ся при кон­ден­са­ции во­дя­но­го па­ра. До­ли этих при­то­ков те­п­ло­ты рав­ны в ср. 20%, 7% и 23% со­от­вет­ст­вен­но. Сю­да же до­бав­ля­ет­ся ок. 20% те­п­ло­ты за счёт по­гло­ще­ния пря­мой сол­неч­ной ра­диа­ции. По­ток сол­неч­ной ра­диа­ции за еди­ни­цу вре­ме­ни че­рез еди­нич­ную пло­щад­ку, пер­пен­ди­ку­ляр­ную сол­неч­ным лу­чам и рас­по­ло­жен­ную вне А. на ср. рас­стоя­нии от Зем­ли до Солн­ца (т. н. сол­неч­ная по­сто­ян­ная), ра­вен 1367 Вт/м2, из­ме­не­ния со­став­ля­ют 1–2 Вт/м2 в за­ви­си­мо­сти от цик­ла сол­неч­ной ак­тив­но­сти. При пла­не­тар­ном аль­бе­до ок. 30% средний по вре­ме­ни гло­баль­ный при­ток сол­неч­ной энер­гии к пла­не­те со­став­ля­ет 239 Вт/м2. По­сколь­ку Зем­ля как пла­не­та ис­пус­ка­ет в кос­мос в сред­нем та­кое же ко­ли­че­ст­во энер­гии, то, со­глас­но за­ко­ну Сте­фа­на – Больц­ма­на, эф­фек­тив­ная темп-ра ухо­дя­ще­го те­п­ло­во­го длин­но­вол­но­во­го из­лу­че­ния 255 К (–18 °C). В то же вре­мя ср. темп-ра зем­ной по­верх­но­сти со­став­ля­ет 15 °C. Раз­ни­ца в 33 °C воз­ни­ка­ет за счёт пар­ни­ко­во­го эф­фек­та.

Вод­ный ба­ланс А. в це­лом со­от­вет­ст­ву­ет ра­вен­ст­ву ко­ли­че­ст­ва вла­ги, ис­па­рив­шей­ся с по­верх­но­сти Зем­ли, ко­ли­че­ст­ву осад­ков, вы­па­даю­щих на зем­ную по­верх­ность. А. над океа­на­ми по­лу­ча­ет боль­ше вла­ги от про­цес­сов ис­па­ре­ния, чем над су­шей, а те­ря­ет в ви­де осад­ков 90%. Из­бы­ток во­дя­но­го па­ра над океа­на­ми пе­ре­но­сит­ся на кон­ти­нен­ты воз­душ­ны­ми по­то­ка­ми. Ко­ли­че­ст­во во­дя­но­го па­ра, пе­ре­но­си­мо­го в А. с океа­нов на кон­ти­нен­ты, рав­но объ­ё­му сто­ка рек, впа­даю­щих в океа­ны.

Движение воздуха

Зем­ля име­ет ша­ро­об­раз­ную фор­му, по­это­му к её вы­со­ким ши­ро­там при­хо­дит го­раз­до мень­ше сол­неч­ной ра­диа­ции, чем к тро­пи­кам. Вслед­ст­вие это­го ме­ж­ду ши­ро­та­ми воз­ни­ка­ют боль­шие тем­пе­ра­тур­ные кон­т­расты. На рас­пре­де­ле­ние темп-ры в су­ще­ст­вен­ной ме­ре влия­ет так­же вза­им­ное рас­по­ло­же­ние океа­нов и кон­ти­нен­тов. Из-за боль­шой мас­сы океа­нич. вод и вы­со­кой те­п­ло­ём­ко­сти во­ды се­зон­ные ко­ле­ба­ния темп-ры по­верх­но­сти океа­на зна­чи­тель­но мень­ше, чем су­ши. В свя­зи с этим в сред­них и вы­со­ких ши­ро­тах темп-ра воз­ду­ха над океа­на­ми ле­том за­мет­но ни­же, чем над кон­ти­нен­та­ми, а зи­мой – вы­ше.

Не­оди­на­ко­вый ра­зо­грев А. в раз­ных об­лас­тях зем­но­го ша­ра вы­зы­ва­ет не­од­но­род­ное по про­стран­ст­ву рас­пре­де­ле­ние ат­мо­сфер­но­го дав­ле­ния. На уров­не мо­ря рас­пре­де­ле­ние дав­ле­ния ха­рак­те­ри­зу­ет­ся от­но­си­тель­но низ­ки­ми зна­че­ния­ми вбли­зи эк­ва­то­ра, уве­ли­че­ни­ем в суб­тро­пи­ках (по­ясá вы­со­ко­го дав­ле­ния) и по­ни­же­ни­ем в сред­них и вы­со­ких ши­ро­тах. При этом над ма­те­ри­ка­ми вне­тро­пич. ши­рот дав­ле­ние зи­мой обыч­но по­вы­ше­но, а ле­том по­ни­же­но, что свя­за­но с рас­пре­де­ле­ни­ем темп-ры. Под дей­ст­ви­ем гра­ди­ен­та дав­ле­ния воз­дух ис­пы­ты­ва­ет ус­ко­ре­ние, на­прав­лен­ное от об­лас­тей с вы­со­ким дав­ле­ни­ем к об­лас­тям с низ­ким, что при­во­дит к пе­ре­ме­ще­нию масс воз­ду­ха. На дви­жу­щие­ся воз­душ­ные мас­сы дей­ст­ву­ют так­же от­кло­няю­щая си­ла вра­ще­ния Зем­ли (си­ла Ко­рио­ли­са), си­ла тре­ния, убы­ваю­щая с вы­со­той, а при кри­во­ли­ней­ных тра­ек­то­ри­ях и цен­тро­беж­ная си­ла. Боль­шое зна­че­ние име­ет тур­бу­лент­ное пе­ре­ме­ши­ва­ние воз­ду­ха (см. Тур­бу­лент­ность в ат­мос­фе­ре).

С пла­не­тар­ным рас­пре­де­ле­ни­ем дав­ле­ния свя­за­на слож­ная сис­те­ма воз­душ­ных те­че­ний (об­щая цир­ку­ля­ция ат­мо­сфе­ры). В ме­ри­дио­наль­ной плос­ко­сти в сред­нем про­сле­жи­ва­ют­ся две или три ячей­ки ме­ри­дио­наль­ной цир­ку­ля­ции. Вбли­зи эк­ва­то­ра на­гре­тый воз­дух под­ни­ма­ет­ся и опус­ка­ет­ся в суб­тро­пи­ках, об­ра­зуя ячей­ку Хэд­ли. Там же опус­ка­ет­ся воз­дух об­рат­ной ячей­ки Фер­ре­ла. В вы­со­ких ши­ро­тах час­то про­сле­жи­ва­ет­ся пря­мая по­ляр­ная ячей­ка. Ско­ро­сти ме­ри­дио­наль­ной цир­ку­ля­ции по­ряд­ка 1 м/с или мень­ше. Из-за дей­ст­вия си­лы Ко­рио­ли­са в боль­шей час­ти А. на­блю­да­ют­ся зап. вет­ры со ско­ро­стя­ми в сред­ней тро­по­сфе­ре ок. 15 м/с. Су­ще­ст­ву­ют срав­ни­тель­но ус­той­чи­вые сис­те­мы вет­ров. К ним от­но­сят­ся пас­са­ты – вет­ры, дую­щие от поя­сов вы­со­ко­го дав­ле­ния в суб­тро­пи­ках к эк­ва­то­ру с за­мет­ной вост. со­став­ляю­щей (с во­сто­ка на за­пад). Дос­та­точ­но ус­той­чи­вы мус­соны – воз­душ­ные те­че­ния, имею­щие чёт­ко вы­ра­жен­ный се­зон­ный ха­рак­тер: они ду­ют с океа­на на ма­те­рик ле­том и в про­ти­во­по­лож­ном на­прав­ле­нии зи­мой. Осо­бен­но ре­гу­ляр­ны мус­со­ны Ин­дий­ско­го ок. В сред­них ши­ро­тах дви­же­ние воз­душ­ных масс име­ет в осн. зап. на­прав­ле­ние (с за­па­да на вос­ток). Это зо­на атмо­сфер­ных фрон­тов, на ко­то­рых воз­ни­ка­ют круп­ные вих­ри – ци­кло­ны и ан­ти­ци­кло­ны, ох­ва­ты­ваю­щие мн. сот­ни и да­же ты­ся­чи ки­ло­мет­ров. Ци­кло­ны воз­ни­ка­ют и в тро­пи­ках; здесь они от­ли­ча­ют­ся мень­ши­ми раз­ме­ра­ми, но очень боль­ши­ми ско­ро­стя­ми вет­ра, дос­ти­гаю­ще­го ура­ган­ной си­лы (33 м/с и бо­лее), т. н. тро­пи­че­ские ци­кло­ны. В Ат­лан­ти­ке и на вос­то­ке Ти­хо­го ок. они на­зы­вают­ся ура­га­на­ми, а на за­па­де Ти­хо­го ок. – тай­фу­на­ми. В верх­ней тро­по­сфе­ре и ниж­ней стра­то­сфе­ре в об­лас­тях, раз­де­ляю­щих пря­мую ячей­ку ме­ри­дио­наль­ной цир­ку­ля­ции Хэд­ли и об­рат­ную ячей­ку Фер­ре­ла, час­то на­блю­да­ют­ся срав­ни­тель­но уз­кие, в сот­ни ки­ло­мет­ров ши­ри­ной, струй­ные те­че­ния с рез­ко очер­чен­ны­ми гра­ни­ца­ми, в пре­де­лах ко­то­рых ве­тер дос­ти­га­ет 100–150 и да­же 200 м/с.

Климат и погода

Раз­ли­чие в ко­ли­че­ст­ве сол­неч­ной ра­диа­ции, при­хо­дя­щей на раз­ных ши­ро­тах к раз­но­об­раз­ной по фи­зич. свой­ст­вам зем­ной по­верх­но­сти, оп­ре­де­ля­ет мно­го­об­ра­зие кли­ма­тов Зем­ли. От эк­ва­то­ра до тро­пич. ши­рот темп-ра воз­ду­ха у зем­ной по­верх­но­сти в ср. 25–30 °C и ма­ло ме­ня­ет­ся в те­че­ние го­да. В эк­ва­то­ри­аль­ном поя­се обыч­но вы­па­да­ет мно­го осад­ков, что соз­да­ёт там ус­ло­вия из­бы­точ­но­го ув­лаж­не­ния. В тро­пич. поя­сах ко­ли­че­ст­во осад­ков умень­ша­ет­ся и в ря­де об­лас­тей ста­но­вит­ся очень ма­лым. Здесь рас­по­ла­га­ют­ся об­шир­ные пус­ты­ни Зем­ли.

В суб­тро­пич. и сред­них ши­ро­тах темп-ра воз­ду­ха зна­чи­тель­но ме­ня­ет­ся в те­че­ние го­да, при­чём раз­ни­ца ме­ж­ду темп-ра­ми ле­та и зи­мы осо­бен­но ве­ли­ка в уда­лён­ных от океа­нов об­лас­тях кон­ти­нен­тов. Так, в не­ко­то­рых рай­онах Вост. Си­би­ри го­до­вая ам­пли­ту­да темп-ры воз­ду­ха дос­ти­га­ет 65 °C. Ус­ло­вия ув­лаж­не­ния в этих ши­ро­тах весь­ма раз­но­об­раз­ны, за­ви­сят в осн. от ре­жи­ма об­щей цир­ку­ля­ции А. и су­ще­ст­вен­но ме­ня­ют­ся от го­да к го­ду.

В по­ляр­ных ши­ро­тах темп-ра ос­та­ёт­ся низ­кой в те­че­ние все­го го­да, да­же при на­ли­чии её за­мет­но­го се­зон­но­го хо­да. Это спо­соб­ст­ву­ет ши­ро­ко­му рас­про­стра­не­нию ле­до­во­го по­кро­ва на океа­нах и су­ше и мно­го­лет­не­мёрз­лых по­род, за­ни­маю­щих в Рос­сии св. 65% её пло­ща­ди, в осн. в Си­би­ри.

За по­след­ние де­ся­ти­ле­тия ста­ли всё бо­лее за­мет­ны из­ме­не­ния гло­баль­но­го кли­ма­та. Темп-ра по­вы­ша­ет­ся боль­ше в вы­со­ких ши­ро­тах, чем в низ­ких; боль­ше зи­мой, чем ле­том; боль­ше но­чью, чем днём. За 20 в. ср.-го­до­вая темп-ра воз­ду­ха у зем­ной по­верх­но­сти в Рос­сии вы­рос­ла на 1,5–2 °C, при­чём в отд. рай­онах Си­би­ри на­блю­да­ет­ся по­вы­ше­ние на неск. гра­ду­сов. Это свя­зы­ва­ет­ся с уси­ле­ни­ем пар­ни­ко­во­го эф­фек­та вслед­ст­вие рос­та кон­цен­тра­ции ма­лых га­зо­вых при­ме­сей.

По­го­да оп­ре­де­ля­ет­ся ус­ло­вия­ми цир­ку­ля­ции А. и гео­гра­фич. по­ло­же­ни­ем ме­ст­но­сти, она наи­бо­лее ус­той­чи­ва в тро­пи­ках и наи­бо­лее из­мен­чи­ва в сред­них и вы­со­ких ши­ро­тах. Бо­лее все­го по­го­да ме­ня­ет­ся в зо­нах сме­ны воз­душ­ных масс, обу­слов­лен­ных про­хо­ж­де­ни­ем ат­мо­сфер­ных фрон­тов, ци­кло­нов и ан­ти­ци­кло­нов, не­су­щих осад­ки и уси­ле­ние вет­ра. Дан­ные для про­гно­за по­го­ды со­би­ра­ют­ся на на­зем­ных ме­тео­стан­ци­ях, мор­ских и воз­душ­ных су­дах, с ме­тео­ро­ло­гич. спут­ни­ков. См. так­же Ме­тео­ро­ло­гия.

Оптические, акустические и электрические явления в атмосфере

При рас­про­стра­не­нии элек­тро­маг­нит­но­го из­лу­че­ния в А. в ре­зуль­та­те реф­рак­ции, по­гло­ще­ния и рас­сея­ния све­та воз­ду­хом и разл. час­ти­ца­ми (аэ­ро­золь, кри­стал­лы льда, ка­п­ли во­ды) воз­ни­ка­ют раз­но­об­раз­ные оп­тич. яв­ле­ния: ра­ду­га, вен­цы, га­ло, ми­раж и др. Рас­сея­ние све­та обу­слов­ли­ва­ет ви­ди­мую вы­со­ту не­бес­но­го сво­да и го­лу­бой цвет не­ба. Даль­ность ви­ди­мо­сти пред­ме­тов оп­ре­де­ля­ет­ся ус­ло­вия­ми рас­про­стра­не­ния све­та в А. (см. Ат­мо­сфер­ная ви­ди­мость). От про­зрач­но­сти А. на разл. дли­нах волн за­ви­сят даль­ность свя­зи и воз­мож­ность об­на­ру­же­ния объ­ек­тов при­бо­ра­ми, в т. ч. воз­мож­ность ас­тро­но­мич. на­блю­де­ний с по­верх­но­сти Зем­ли. Для ис­сле­до­ва­ний оп­тич. не­од­но­род­но­стей стра­то­сфе­ры и ме­зо­сфе­ры важ­ную роль иг­ра­ет яв­ле­ние су­ме­рек. Напр., фо­то­гра­фи­ро­ва­ние су­ме­рек с кос­мич. ап­па­ра­тов по­зво­ля­ет об­на­ру­жи­вать аэ­ро­золь­ные слои. Осо­бен­но­сти рас­про­стра­не­ния элек­тро­маг­нит­но­го из­лу­че­ния в А. оп­ре­де­ля­ют точ­ность ме­то­дов дис­тан­ци­он­но­го зон­ди­ро­ва­ния её па­ра­мет­ров. Все эти во­про­сы, как и мн. дру­гие, изу­ча­ет ат­мо­сфер­ная оп­ти­ка. Реф­рак­ция и рас­сея­ние ра­дио­волн обу­слов­ли­ва­ют воз­мож­но­сти ра­дио­приё­ма (см. Рас­про­стра­не­ние ра­дио­волн).

Рас­про­стра­не­ние зву­ка в А. за­ви­сит от про­стран­ст­вен­но­го рас­пре­де­ле­ния темп-ры и ско­ро­сти вет­ра (см. Ат­мо­сфер­ная аку­сти­ка). Оно пред­став­ля­ет ин­те­рес для зон­ди­ро­ва­ния А. дис­танц. ме­то­да­ми. Взры­вы за­ря­дов, за­пус­кае­мых ра­ке­та­ми в верх­нюю А., да­ли бо­га­тую ин­фор­ма­цию о сис­те­мах вет­ров и хо­де темп-ры в стра­то­сфе­ре и ме­зо­сфе­ре. В ус­той­чи­во стра­ти­фи­ци­ро­ван­ной А., ко­гда темп-ра па­да­ет с вы­со­той мед­лен­нее адиа­ба­ти­че­ско­го гра­ди­ен­та (9,8 К/км), воз­ни­ка­ют т. н. внут­рен­ние вол­ны. Эти вол­ны мо­гут рас­про­стра­нять­ся вверх в стра­то­сфе­ру и да­же в ме­зо­сфе­ру, где они за­ту­ха­ют, спо­соб­ст­вуя уси­ле­нию вет­ра и тур­бу­лент­но­сти.

От­ри­ца­тель­ный за­ряд Зем­ли и обу­с­лов­лен­ное им элек­трич. по­ле А. вме­сте с элек­три­че­ски за­ря­жен­ны­ми ио­но­сфе­рой и маг­ни­то­сфе­рой соз­да­ют гло­баль­ную элек­трич. цепь. Важ­ную роль при этом иг­ра­ет об­ра­зо­ва­ние об­ла­ков и гро­зо­во­го элек­три­че­ст­ва. Опас­ность гро­зо­вых раз­ря­дов вы­зва­ла не­об­хо­ди­мость раз­ра­бот­ки ме­то­дов гро­зо­за­щи­ты зда­ний, со­ору­же­ний, ли­ний элек­тро­пе­ре­дач и свя­зи. Осо­бую опас­ность это яв­ле­ние пред­став­ля­ет для авиа­ции. Гро­зо­вые раз­ря­ды вы­зы­ва­ют ат­мо­сфер­ные ра­дио­по­ме­хи, по­лу­чив­шие назв. ат­мо­сфе­ри­ков (см. Сви­стя­щие ат­мо­сфе­ри­ки). Во вре­мя рез­ко­го уве­ли­че­ния на­пря­жён­но­сти элек­трич. по­ля на­блю­да­ют­ся све­тя­щие­ся раз­ря­ды, воз­ни­каю­щие на ост­ри­ях и ост­рых уг­лах пред­ме­тов, вы­сту­паю­щих над зем­ной по­верх­но­стью, на отд. вер­ши­нах в го­рах и др. (Эль­ма ог­ни). А. все­гда со­дер­жит силь­но ме­няю­ще­еся в за­ви­си­мо­сти от кон­крет­ных ус­ло­вий ко­ли­че­ст­во лёг­ких и тя­жё­лых ио­нов, ко­то­рые оп­ре­де­ля­ют элек­трич. про­во­ди­мость А. Глав­ные ио­ни­за­то­ры воз­ду­ха у зем­ной по­верх­но­сти – из­лу­че­ние ра­дио­ак­тив­ных ве­ществ, со­дер­жа­щих­ся в зем­ной ко­ре и в А., а так­же кос­мич. лу­чи. См. так­же Ат­мо­сфер­ное элек­три­чест­во.

Влияние человека на атмосферу

В те­че­ние по­след­них сто­ле­тий про­ис­хо­дил рост кон­цен­тра­ции пар­ни­ко­вых га­зов в А. вслед­ст­вие хо­зяйств. дея­тель­но­сти че­ло­ве­ка. Про­цент­ное со­дер­жа­ние уг­ле­ки­сло­го га­за воз­рос­ло с 2,86 10–2 две­сти лет на­зад до 3,8·10–2 в 2005, со­дер­жа­ние ме­та­на – с 0,7· 10–4 при­мер­но 300–400 лет на­зад до 1,8·10–4 в нач. 21 в.; ок. 20% в при­рост пар­ни­ко­во­го эф­фек­та за по­след­нее сто­ле­тие да­ли фре­о­ны, ко­то­рых прак­ти­че­ски не бы­ло в А. до сер. 20 в. Эти ве­ще­ст­ва при­зна­ны раз­ру­ши­те­ля­ми стра­то­сфер­но­го озо­на, и их про­изводство за­пре­ще­но Мон­ре­аль­ским про­то­ко­лом 1987. Рост кон­цен­тра­ции уг­ле­ки­сло­го га­за в А. вы­зван сжи­га­ни­ем всё воз­рас­таю­щих ко­ли­честв уг­ля, неф­ти, га­за и др. ви­дов уг­ле­род­но­го то­п­ли­ва, а так­же све­де́­ни­ем ле­сов, в ре­зуль­та­те че­го умень­ша­ет­ся по­гло­ще­ние уг­ле­ки­сло­го га­за пу­тём фо­то­син­те­за. Кон­цен­тра­ция ме­та­на уве­ли­чи­ва­ет­ся с рос­том до­бы­чи неф­ти и га­за (за счёт его по­терь), а так­же при рас­ши­ре­нии по­се­вов ри­са и уве­ли­че­нии по­го­ло­вья круп­но­го ро­га­то­го ско­та. Всё это спо­соб­ст­ву­ет по­те­п­ле­нию кли­ма­та.

Для из­ме­не­ния по­го­ды раз­ра­бо­та­ны ме­то­ды ак­тив­но­го воз­дей­ст­вия на ат­мо­сфер­ные про­цес­сы. Они при­ме­ня­ют­ся для за­щи­ты с.-х. рас­те­ний от гра­до­би­тия пу­тём рас­сеи­ва­ния в гро­зо­вых об­ла­ках спец. реа­ген­тов. Су­ще­ст­ву­ют так­же ме­то­ды рас­сея­ния ту­ма­нов в аэ­ро­пор­тах, за­щи­ты рас­те­ний от за­мо­роз­ков, воз­дей­ст­вия на об­ла­ка с це­лью уве­ли­че­ния осад­ков в нуж­ных мес­тах или для рас­сея­ния об­ла­ков в мо­мен­ты мас­со­вых ме­ро­прия­тий.

Изучение атмосферы

Све­де­ния о фи­зич. про­цес­сах в А. по­лу­ча­ют пре­ж­де все­го из ме­тео­ро­ло­гических на­блю­де­ний, ко­то­рые про­во­дят­ся гло­баль­ной се­тью по­сто­ян­но дей­ст­вую­щих ме­тео­ро­ло­гич. стан­ций и по­стов, рас­по­ло­жен­ных на всех кон­ти­нен­тах и на мн. ост­ро­вах. Еже­днев­ные на­блю­де­ния да­ют све­де­ния о темп-ре и влаж­но­сти воз­ду­ха, ат­мо­сфер­ном дав­ле­нии и осад­ках, об­лач­но­сти, вет­ре и др. На­блю­де­ния за сол­неч­ной ра­диа­ци­ей и её пре­об­ра­зо­ва­ния­ми про­во­дят­ся на ак­ти­но­мет­рич. стан­ци­ях. Боль­шое зна­че­ние для изу­че­ния А. име­ют се­ти аэ­ро­ло­гич. стан­ций, на ко­то­рых при по­мо­щи ра­дио­зон­дов вы­пол­ня­ют­ся ме­тео­ро­ло­гич. из­ме­ре­ния до выс. 30–35 км. На ря­де стан­ций про­во­дят­ся на­блю­де­ния за ат­мо­сфер­ным озо­ном, элек­трич. яв­ле­ния­ми в А., хи­мич. со­ста­вом воз­ду­ха.

Дан­ные на­зем­ных стан­ций до­пол­ня­ют­ся на­блю­де­ния­ми на океа­нах, где дей­ст­ву­ют «су­да по­го­ды», по­сто­ян­но на­хо­дя­щие­ся в оп­ре­де­лён­ных рай­онах Ми­ро­во­го ок., а так­же ме­тео­ро­ло­гич. све­де­ния­ми, по­лу­чае­мы­ми с н.-и. и др. су­дов.

Всё боль­ший объ­ём све­де­ний об А. в по­след­ние де­ся­ти­ле­тия по­лу­ча­ют с по­мо­щью ме­тео­ро­ло­гич. спут­ни­ков, на ко­то­рых ус­та­нов­ле­ны при­бо­ры для фо­тогра­фи­ро­ва­ния об­ла­ков и из­ме­ре­ния по­то­ков ульт­ра­фио­ле­то­вой, ин­фра­крас­ной и мик­ро­вол­но­вой ра­диа­ции Солн­ца. Спут­ни­ки по­зво­ля­ют по­лу­чать све­де­ния о вер­ти­каль­ных про­фи­лях темп-ры, об­лач­но­сти и её во­до­за­па­се, эле­мен­тах ра­ди­ац. ба­лан­са А., о темп-ре по­верх­но­сти океа­на и др. Ис­поль­зуя из­ме­ре­ния реф­рак­ции ра­дио­сиг­на­лов с сис­те­мы на­ви­гац. спут­ни­ков, уда­ёт­ся оп­ре­де­лять в А. вер­ти­каль­ные про­фи­ли плот­но­сти, дав­ле­ния и темп-ры, а так­же вла­го­со­дер­жа­ния. С по­мо­щью спут­ни­ков ста­ло воз­мож­ным уточ­нить ве­ли­чи­ну сол­неч­ной по­сто­ян­ной и пла­не­тар­но­го аль­бе­до Зем­ли, стро­ить кар­ты ра­ди­ац. ба­лан­са сис­те­мы Зем­ля – А., из­ме­рять со­дер­жа­ние и из­мен­чи­вость ма­лых ат­мо­сфер­ных при­ме­сей, ре­шать мн. др. за­да­чи фи­зи­ки ат­мо­сфе­ры и мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

Источник: bigenc.ru

Тропосфера

Тропосфера — это самый плотный слой атмосферы и, следовательно, самый близкий к Земной поверхности. Общая масса атмосферы оценивается в 5х1018 кг, и 75% этого количества находится в тропосфере.

Толщина тропосферы колеблется от 8 км до 14 км, в зависимости от региона Земли. Самые тонкие места (где толщина достигает 8 км) находятся на северном и южном полюсах.

Поскольку это самый нижний слой атмосферы, тропосфера ответственна за жизнь на планете, а также там, где происходят почти все климатические явления. Термин «тропосфера» происходит от греческого «tropos» (означает «изменение»), чтобы отразить динамический характер изменений климата и поведение этого слоя атмосферы.

Область тропосферы, которая ограничивает её конец и начало стратосферы, называется тропопаузой. Тропопауза легко идентифицируется по различным картинам распределения давления и температурам каждого слоя.

Состав тропосферы

По объёму тропосфера состоит из 78,08% азота, 20,95% кислорода, 0,93% аргона и 0,04% углекислого газа. Воздух также состоит из меняющихся процентных показателей водяного пара, который попадает в тропосферу через явление испарения.

Температура тропосферы

Как и давление, температура в тропосфере также уменьшается с увеличением высоты. Это связано с тем, что почва поглощает бóльшую часть солнечной энергии и нагревает нижние уровни тропосферы. Принимая во внимание, что испарение выше в более тёплых областях, водяные пары присутствуют чаще на уровне моря и реже на больших высотах.

Что встречается в тропосфере?

Некоторые примеры того, что можно найти в тропосфере:

  • климат;
  • осадки, такие как: дождь, снег и град;
  • газы, такие как: азот, кислород, аргон и углекислый газ;
  • облака;
  • птицы.

Стратосфера

Стратосфера является вторым по величине слоём атмосферы, а также вторым, ближайшим к Земной поверхности. По оценкам, он содержит около 15% от общей массы атмосферы Земли.

Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин «стратосфера» происходит от греческого strato (значит «слой») для обозначения того факта, что сама стратосфера подразделяется на другие более тонкие слои.

Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует чёткое разделение между холодным и тяжёлым воздухом внизу и тёплым, лёгким воздухом сверху. Таким образом, с точки зрения температуры стратосфера работает точно противоположно тропосфере.

Поскольку эта зона более высокой вертикальной стабильности (без перемещений воздуха), пилоты самолётов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолёты и воздушные шары достигают максимальной эффективности.

Стратосфера также содержит хорошо известный озоновый слой, который поглощает большую часть ультрафиолетового излучения солнца. Без озонового слоя жизнь на Земле, какой мы её знаем, была бы невозможна.

Подобно тропосфере, стратосфера также имеет область, которая ограничивает её конец и показывает начало мезосферы, которая называется стратопауза.

Состав стратосферы

Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:

  • разлагаются в тропосфере;
  • могут быть устранены солнечным светом;
  • могут переноситься на поверхность Земли через дождь или другие осадки.

Из-за инверсии в динамике температуры между тропосферой и стратосферой воздух практически не обменивается между двумя слоями, в результате чего испарения воды существуют в стратосфере только в незначительных количествах. По этой причине в этом слое чрезвычайно редко образование облаков.

Что касается газов, стратосфера образована преимущественно озоном, присутствующим в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этой области. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие, как оксиды азота, азотная кислота, галогены и т. д.

Температура стратосферы

Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).

Что встречается в стратосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • озоновый слой;
  • самолёты и метеозонды;
  • некоторые птицы.

Мезосфера

Мезосфера — это последний атмосферный слой, в котором газы всё ещё смешиваются в воздухе и не организованы их массой. Этот слой считается наукой самым сложным для изучения, поэтому о нём мало подтверждённой информации.

Толщина мезосферы также составляет 35 км от стратопаузы, что означает, что она расположена между стратосферой и термосферой. Термин «мезосфера» происходит от греческого mesos (означает «центр»), так как является третьим среди пяти слоёв Земной атмосферы.

Метеозонды и самолёты не могут достичь так высоко, чтобы достичь мезосферы. В то же время спутники могут вращаться только над ним, таким образом получается, что они не могут должным образом измерять характеристики этого слоя.

Единственный способ изучения мезосферы в наши дни — это использование ракет, которые собирают довольно мало информации в каждой миссии.

Именно в мезосфере происходит сгорание небесных тел, попадающих в Земную атмосферу, что приводит к таким явлениям, как звездопад (метеорные потоки).

Состав мезосферы

Процентное содержание кислорода, азота и углекислого газа в мезосфере, по существу, такое же, как и в слоях ниже. Испарения воды там реже, чем в стратосфере, что, в свою очередь, переносит часть озона в мезосферу.

В мезосфере также есть материал из метеоров, которые испаряются при попадании в атмосферу. Таким образом, мезосфера также состоит из относительно высокой доли железа и других металлов.

Температура мезосферы

Температура в мезосфере уменьшается с увеличением высоты, варьируя от -3° C в самой низкой точке (стратопауза) до -143° C в самой высокой точке (мезопауза — самая холодная область всей Земной атмосферы).

Что встречается в мезосфере?

Некоторые примеры того, что можно найти в стратосфере:

  • метеоры в сгорании;
  • серебристые облака (особый вид облаков, которые светятся ночью).

Термосфера

Термосфера расположена над мезосферой и ниже экзосферы. Толщина этого слоя составляет около 513 км, что намного больше, чем у всех нижних слоёв вместе взятых.

Хотя термосфера считается частью Земной атмосферы, плотность воздуха настолько низкая, что бóльшую часть слоя ошибочно рассматривают как космическое пространство. Эта идея подкрепляется тем фактом, что в слое недостаточно молекул для перемещения звуковых волн.

В термосфере ультрафиолетовое излучение вызывает явления фотоионизации молекул, т. е. образование ионов в результате контакта фотона с атомом. Это явление ответственно за создание ионосферы, расположенной внутри термосферы. Ионосфера играет важную роль в распространении радиоволн в отдалённые районы Земли.

Именно в термосфере спутники вращаются вокруг Международной космической станции (МКС). Кроме того, именно в термосфере происходит северное сияние.

Читайте подробнее про Северное сияние.

Слово «термосфера» происходит от греческого thermos (что значит «тепло»), что отражает тот факт, что температура в этом слое чрезвычайно высока.

Граница между термосферой и экзосферой называется термопаузой.

Состав термосферы

В отличие от слоёв ниже, где смешиваются газы, в термосфере частицы редко сталкиваются, что приводит к равномерному разделению элементов. Кроме этого, большинство молекул в термосфере разрушаются солнечным светом.

Верхние части термосферы состоят из атомарного кислорода, атомарного азота и гелия.

Температура термосферы

Температура в термосфере может варьироваться от 500º C до 2000º C. Это происходит потому, что большая часть солнечного света поглощается в этом слое.

Что встречается в термосфере?

Некоторые примеры того, что можно найти в термосфере:

  • спутники;
  • раньше, многоразовый транспортный космический корабль Спейс шаттл;
  • МКС;
  • северное сияние;
  • ионосфера.

Экзосфера

Экзосфера — это самый большой и крайний внешний слой Земной атмосферы. Он простирается на 600 км, пока плавно не перейдёт в межпланетное пространство. Это делает его толщиной в 10.000 км. Самая дальняя граница экзосферы достигает половины пути до Луны.

Термин «экзосфера» происходит от греческого exo (что значит «внешний»), обозначает тот факт, что это последний атмосферный слой перед космическим вакуумом.

Состав экзосферы

Частицы в экзосфере чрезвычайно далеки друг от друга и поэтому не классифицируются как газы, потому что плотность слишком низкая. Одна частица может пройти сотни километров до столкновения с другой. Они также не считаются плазмой, так как электрически они не заряжены.

В нижних областях экзосферы можно найти водород, гелий, углекислый газ и атомарный кислород, которые остаются минимально притянутыми к Земле гравитационным полем.

Температура экзосферы

Из-за того, что экзосфера находится почти в вакууме (из-за отсутствия взаимодействия между молекулами), температура в слое постоянная и холодная.

Что встречается в экзосфере?

Некоторые примеры того, что можно найти в экзосфере:

  • космический телескоп Хаббл;
  • спутники.

Атмосферы других планет

В Солнечной системе 8 планет и более 160 спутников. Из них, имеют значимые атмосферы:

  • Земля;
  • Венера;
  • Сатурн;
  • Марс;
  • Уран;
  • Юпитер;
  • Нептун;
  • Титан (спутник Сатурна);
  • Плутон (карликовая планета).

Атмосфера Венеры

Атмосфера Венеры составляет около 96% углекислого газа, а температура поверхности около 464° C. Облака из серной кислоты движутся со скоростью примерно 100 метров в секунду.

Атмосфера Марса

На Марсе есть тонкая атмосфера, состоящая примерно на 95% из углекислого газа, а остальная часть из азота и аргона. Средняя температура приземного воздуха на Марсе -63° C. На Марсе наблюдаются облака как из воды, так и из углекислого газа. Ещё там чётко определены времена года.

Смотрите также, что такое Сингулярность и Космология.

Источник: www.uznaychtotakoe.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.