Теории возникновения вселенной кратко


Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.

Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.


Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.

Хронология событий в теории Большого Взрыва

Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.


Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10-43 до 10-11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

Тайны сингулярности

Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

Ученые обнаружили неизвестный источник гравитационных волн

Планковская эра предположительно длилась от 0 до 10-43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

Приблизительно в период с 10-43 до 10-36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

В период примерно с 10-36 до 10-32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).

Эпоха инфляции

С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10-32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.


Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Это началось на 10-37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.

Охлаждение Вселенной

Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Как думаете, как как космос изменит человечество в будущем?

Например, ученые считают, что на 10-11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10-6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.


Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10-14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

Структурирование Вселенной

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время.


trong>Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Что будет со Вселенной


Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

Разгадка у нас в руках? Исследователи нашли возможную причину Большого Взрыва

Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10-26 кг материи на м³), Вселенная начнет сжиматься.

Большой взрыв — в таком виде


Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.

Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.

Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

Источник: Hi-News.ru

Космологи продолжают продвигаться к окончательному постижению процессов, сотворивших и сформировавших Вселенную.

Теории возникновения вселенной кратко

Вселенная настолько велика в пространстве и во времени, что в течение почти всей истории человечества она оставалась недоступной как для наших приборов, так и для нашего разума. Но все изменилось в XX в., когда появились новые идеи — от общей теории относительности Эйнштейна до современных теорий элементарных частиц. Успех был достигнут также благодаря мощным приборам — от 100- и 200-дюймовых рефлекторов, созданных Джорджем Эллери Хейлом (George Ellery Hale) и открыв- шем для нас галактики за пределами Млечного Пути, до космическо- го телескопа «Хаббл», перенесшего нас в эпоху рождения галактик. За последние 20 лет прогресс ускорился. Стало ясно, что темная материя состоит не из обычных атомов, что существует темная энергия. Роди- лись смелые идеи о космической инфляции и множественности все- ленных.

Сто лет назад Вселенная была проще: вечная и неизменная, состоящая из одной галактики, содер- жащей несколько миллионов видимых звезд. Современная картина намного сложнее и гораздо богаче. Космос возник 13,7 млрд лет назад в результате Большого взрыва. Через долю секунды после начала Вселенная была горячей бесформенной смесью элементарных частиц — кварков и лептонов. По мере расширения и охлаждения шаг за ша- гом возникали структуры: нейтроны и протоны, атомные ядра, атомы, звезды, галактики, скопления галактик и, наконец, сверхскопления. В наблюдаемой части Вселенной сейчас содержится 100 млрд галактик, в каждой из них около 100 млрд звезд и, вероятно, столько же планет. Сами галактики удерживаются от расширения гравита- цией загадочной темной материи. А Вселенная продолжает расширяться и даже делает это с ускоре- нием под действием темной энергии — еще более загадочной формы энергии, чья гравитационная сила не притягивает, а отталкивает.

Главная тема нашего рассказа о Вселенной — это эволюция от примитивного кваркового «супа» к нарастающей сложности галактик, звезд, планет и жизни, наблюдаемой сегодня. Эти структуры появлялись одна за другой в течение миллиардов лет, повинуясь основным законам физики. Путешествуя в прошлое, к эпохе зарождения, космологи сначала продвигаются через детально изученную историю Вселенной назад, к первой микросекунде, затем к $10^{–34}$ с от начала (об этом времени есть ясные идеи, но пока нет их четкого подтверждения) и, наконец, к самому моменту рождения (о котором существуют пока лишь догадки). Хотя мы еще не в силах до конца понять, как родилась Вселенная, у нас уже есть потрясающие гипотезы, такие как понятие о множественной вселенной, включающей в себя бесконечное число не связанных между собой субвселенных.

Расширяющаяся Вселенная

В 1924 г. с помощью 100-дюймового телескопа «Хукер» Маунт-Вилсоновской обсерватории Эдвин Хаббл обнаружил, что расплывчатые туман- ности, остававшиеся загадочными несколько столетий, — это такие же галактики, как наша. Тем самым Хаббл увеличил наше представ- ление о Вселенной в 100 млрд раз! А через несколько лет он доказал, что галактики удаляются друг от друга, подчиняясь математической закономерности, известной теперь как закон Хаббла: чем дальше галактика, тем быстрее она движется. Именно из этого закона следует, что Большой взрыв был 13,7 млрд лет назад.

Теории возникновения вселенной кратко
КОСМИЧЕСКОЕ РАСШИРЕНИЕ
Эволюция Вселенной происходит в резуль- тате расширения пространства. Поскольку пространство растягивается, как оболочка воздушного шарика, галактики удаляют- ся друг от друга, а световые волны удлиняются (краснеют).

В рамках общей теории относительности закон Хаббла толкуется так: само пространство расширяется, а галактики перемещаются вместе с ним (рис. вверху). Свет тоже растягивается, испытывая красное смещение, а значит, теряя энергию, поэтому Вселенная при расширении охлаждается. Космическое расширение помогает по- нять, как сформировалась современная Вселенная. Если мысленно устремиться в прошлое, то Вселенная будет становиться все плотнее, горячее, необычнее и проще. Приближаясь к самому началу, мы соприкасаемся с самыми глубинными механизмами природы, используя ускоритель мощнее любого из построенных на Земле — сам Большой взрыв.

Вглядываясь через телескоп в пространство, астрономы буквально попадают в прошлое — и чем больше телескоп, тем глубже проникает их взгляд. Свет, приходящий от далеких галактик, демонстрирует нам древние эпохи, а его крас- ное смещение показывает, насколько расширилась Вселенная за про- шедшее время. Наблюдаемое сейчас рекордное красное смещение около восьми, значит, этот свет был испущен, когда размер Вселенной был в девять раз меньше нынешнего, а возраст — всего лишь несколько сотен миллионов лет. Такие приборы, как космический телескоп «Хаббл» и десятиметровые телескопы «Кек» на Мауна-Кеа, запросто переносят нас в эпоху формирования галактик, подобных нашей — через несколько миллиардов лет после Большого взрыва. Свет из более ранних эпох настолько сильно смещен в красную часть спектра, что астрономы вынуждены принимать его в инфракрасном и радиодиапазонах. Строящиеся телескопы, такие как инфракрасный космический телескоп «Джеймс Уэбб» диаметром 6,5 м и Большой атакамский миллиметровый комплекс (Atacama Large Millimeter Array, ALMA) — сеть из 64 радиотелескопов на севере Чили, — перенесут нас в прошлое, к эпохе рождения самых первых звезд и галактик.

Компьютерное моделирование показывает, что эти звезды и галак- тики появились, когда возраст Вселенной был около 100 млн лет. Перед этим Вселенная прошла через период, называемый темной эрой, когда она была черной как смоль. Пространство заполняла бесформенная масса из пяти частей темной материи и одной части водорода с гелием, которая разрежалась по мере расширения Вселенной. Вещество было немного неоднородным по плотности, а гравитация действовала как усилитель этих неоднородностей: более плотные области расширялись медленнее, чем менее плотные. К моменту 100 млн лет наиболее плотные области не только замедлили свое расширение, но даже начали сжиматься. Каждая из таких зон содержала около 1 млн солнечных масс вещества; они-то и стали первыми гравитационно связанными объектами в космосе.

Основную часть их массы составляла темная материя, не способная, согласно своему названию, излучать или поглощать свет. Поэтому она образовывала весьма протяженные облака. С другой стороны, водород и гелий, излучая свет, теряли энергию и сжимались к центру каждого облака. В конце концов они съеживались настолько, что превращались в звезды. Эти первые объекты были значительно массивнее современных — сотни масс Солнца. Прожив очень короткую жизнь, они взрывались, выбрасывая в прост-ранство первые тяжелые элементы. Спустя несколько миллиардов лет эти облака с массами в миллионы солнечных под действием гравитации сгруппировались в первые галактики.

Излучение от самых первых водородных облаков, испытавшее сильное красное смещение из-за расширения, можно было бы зарегистрировать с помощью огромных комплексов радиоантенн с общей приемной площадью около квадратного километра. Когда эти радиотелескопы будут созданы, станет известно, как первое поколение звезд и галактик ионизовало водород и тем самым завершило темную эру (см.: Лоеб А. Темные века Вселенной // ВМН, № 3, 2007).

Теории возникновения вселенной кратко

Слабый отблеск горячего начала

Позади темной эры заметен отблеск горячего Большого взрыва при крас- ном смещении 1100. Это изначально видимое (красно-оранжевое) излуче- ние из-за красного смещения стало даже не инфракрасным, а микровол- новым. Заглядывая в ту эпоху, мы ви- дим лишь стену микроволнового из- лучения, заполняющего все небо — космическое микроволновое фоно- вое излучение, открытое в 1964 г. Арно Пензиасом (Arno Penzias) и Ро- бертом Уилсоном (Robert Wilson). Это слабый отсвет Вселенной, пре- бывавшей в младенческом возрас- те 380 тыс. лет, в эпоху формирова- ния атомов. До этого она была почти однородной смесью атомных ядер, электронов и фотонов. Когда Вселен- ная охладилась до температуры око- ло 3000 К, ядра и электроны начали объединяться в атомы. Фотоны пе- рестали рассеиваться на электронах и стали свободно двигаться сквозь пространство, демонстрируя, какой была Вселенная задолго до рождения звезд и галактик.

Теории возникновения вселенной кратко

В 1992 г. спутник NASA «Исследователь фонового излучения» (Cosmic Background Explorer, COBE) обнаружил, что интенсивность этого излучения немного меняется — пример но на 0,001%, указывая на слабую неоднородность в распределении вещества. Степень первичной неоднородности оказалась достаточной, чтобы малые уплотнения стали «затравкой» для будущих галактик и их скоплений, которые позже выросли под действием гравитации. Распределение неоднородностей фонового излучения по небу свидетельствует о важных свойствах Вселенной: о ее средней плотности и составе, о самых ранних этапах ее эволюции. Тщательное изучение этих неоднородностей поведало нам многое о Вселенной.

Теории возникновения вселенной кратко
КОСМИЧЕСКОЕ МИКРОВОЛНОВОЕ ФОНОВОЕ ИЗЛУЧЕНИЕ — это изображение Вселенной в младенческом возрасте 380 тыс. лет. Слабые вариации интенсивности этого излучения (отмечены цветом) служат космическим Розеттским камнем, дающим ключ к загадкам Вселенной — ее возрасту, плотности, составу и геометрии.

Теории возникновения вселенной кратко
СВЕРХГЛУБОКОЕ ПОЛЕ «ХАББЛА», самое чувствительное из когда-либо полученных изображений космоса, запечатлевшее более 1 тыс. галактик на ранней стадии их формирования.

Продвигаясь от этой точки назад, к началу эволюции Вселенной, мы увидим, как первичная плазма становится все более горячей и плотной. До возраста около 100 тыс. лет плотность энергии излучения была выше, чем у вещества, что и удерживало вещество от фрагментации. А в этот момент началось гравитационное скучивание всех структур, наблюдаемых сейчас во Вселенной. Еще ближе к началу, когда возраст Вселенной был менее одной секунды, не было атомных ядер, а только лишь их составляющие — протоны и нейтроны. Ядра возникли, когда Вселенной исполнилось несколько секунд, и температура и плотность стали подходящими для ядерных реакций. В этом нуклеосинтезе Большого взрыва родились только легкие химические элементы: много гелия (около 25% по массе от всех атомов Вселенной) и немного лития, дейтерия и гелия-3. Остальная плазма (около 75%) осталась в форме протонов, которые со временем стали атомами водорода. Все остальные элементы Периодической таблицы родились миллиарды лет спустя в недрах звезд и при их взрывах.

Теории возникновения вселенной кратко
ВСЕЛЕННАЯ СОСТОИТ в основном из темной энергии и темной материи; природа обеих неизвестна. Обычное вещество, из которого сформированы звезды, планеты и межзвездный газ, составляет лишь малую долю.

Теория нуклеосинтеза точно предсказывает содержание элементов и изотопов, измеренное в наиболее древних объектах Вселенной — в самых старых звездах и газовых облаках с большим красным смещением. Содержание дейтерия, очень чувствительное к средней плотности атомов во Вселенной, играет особую роль: его измеренное значение показывает, что обычное вещество составляет (4,5 ± 0,1)% от полной плотности энергии. Остальное — темная материя и темная энергия. Это в точности согласуется с данными о составе, полученными из анализа фонового излучения. Такое соответствие — огромное достижение. Ведь это два совершенно разных измерения: первое основано на ядерной физике и относится к Вселенной в возрасте 1 с, а второе — на атомной физике и свойствах Вселенной в возрасте 380 тыс. лет. Их согласованность — важный тест не только для наших моделей эволюции космоса, но и для всей современной физики.

Ответы в кварковом супе

До возраста в одну микросекунду не было даже протонов и нейтронов; Вселенная была похожа на суп из базовых элементов природы: кварков, лептонов и переносчиков сил (фотонов, W- и Z-бозонов и глюонов). Мы уверены, что этот «суп с кварками» действительно существовал, поскольку физические условия той эпохи воспроизводятся сейчас в экспериментах на ускорителях частиц (см.: Райордэн М., Зэйц У. Первые микросекунды // ВМН, № 8, 2006).

Изучить ту эпоху космологи надеются не с помощью больших и зорких телескопов, а опираясь на глубокие идеи физики элементарных частиц. Создание Стандартной модели физики частиц 30 лет назад привело к смелым гипотезам, включая теорию струн, пытающуюся объединить казалось бы не связанные между собой частицы и силы. В свою очередь, эти новые идеи нашли приложение в космологии, став такими же важными, как исходная идея горячего Большого взрыва. Они указали на глубокую и неожиданную связь между микромиром и большой Вселенной. Возможно, вскоре мы получим ответы на три ключевых вопроса: какова природа темной материи, в чем причина асимметрии между веществом и антивеществом и как возник комковатый кварковый суп.

Судя по всему, темная материя родилась в эпоху первичного кваркового супа. Природа темной материи пока не ясна, но ее существование не вызывает сомнений. Наша Галактика и все другие галактики, а также их скопления удерживаются тяготением невидимой темной материи. Чем бы она ни была, она должна слабо взаимодействовать с обычным веществом, иначе она как-то проявила бы себя помимо гравитации. Попытки описать единой теорией все наблюдаемые в природе силы и частицы приводят к предсказанию стабильных или долгоживущих частиц, из которых могла бы состоять темная материя. Эти частицы могут быть реликтом эпохи кваркового супа и очень слабо взаимодействовать с атомами. Один из кандидатов — нейтралино, легчайшая из частиц недавно предсказанного класса массивных копий известных частиц. Нейтралино должно иметь массу от 100 до 1000 масс протона, т.е. оно должно рождаться в экспериментах на Большом адронном коллайдере в ЦЕРНе вблизи Женевы. К тому же, пытаясь поймать эти частицы из космоса (или же продукты их взаимодействия), физики создали сверхчувствительные детекторы под землей, а также запускают их на аэростатах и спутниках.

Второй кандидат — аксион, сверхлегкая частица с массой примерно в триллион раз меньше, чем у электрона. На ее существование указывают тонкие различия, предсказанные Стандартной моделью в поведении кварков. Попытки зарегистрировать аксион опираются на тот факт, что в очень сильном маг-нитном поле он может превратиться в фотон. Как нейтралино, так и аксион обладают важным свойством: физики называют эти частицы «холодными». Несмотря на то что они рождаются при очень высокой температуре, движутся они медленно и поэтому легко группируются в галактики.

Вероятно, еще один секрет кроется в эпохе первичного кваркового супа: почему сейчас Вселенная содержит только вещество и почти не содержит антивещества. Физики считают, что вначале у Вселенной их было в равном количестве, но в некоторый момент возник маленький избыток вещества — примерно один лишний кварк на каждый миллиард антикварков. Благодаря этому дисбалансу при аннигиляции кварков с антикварками в процессе расширения и охлаждения Вселенной сохранилось достаточно кварков. Более 40 лет назад эксперименты на ускорителях показали, что законы физики устроены немного в пользу вещества; именно это малое предпочтение в процессе взаимодействия частиц на очень раннем этапе привело к рождению избытка кварков.

Вероятно, сам кварковый суп возник очень рано — примерно через $10^{-34}$ с после Большого взрыва, во всплеске космического расширения, известного как инфляция. Причиной этого всплеска стала энергия нового поля, напоминающего электромагнитное поле и на-званного инфлатоном. Именно инфляция должна объяснить такие фундаментальные свойства космоса, как его общую однородность и мелкие флуктуации плотности, породившие галактики и другие структуры во Вселенной. Когда инфлатон распался, он передал свою энергию кваркам и другим частицам, создав таким образом тепло Большого взрыва и сам кварковый суп.

Теория инфляции демонстрирует глубокую связь между кварками и космосом: квантовые флуктуации инфлатона, существовавшие на субатомном уровне, выросли до астрофизических размеров благодаря быстрому расширению и стали зародышем для всех наблюдаемых сегодня структур. Иными словами, картина микроволнового фонового излучения на небе — это гигантское изображение субатомного мира. Наблюдаемые свойства этого излучения согласуются с теоретическим прогнозом, доказывая, что инфляция или нечто ей подобное действительно произошло в очень ранней истории Вселенной.

Рождение Вселенной

Когда космологи пытаются продвинуться еще дальше и понять самое начало Вселенной, их суждения становятся менее уверенными. В течение века общая теория относительности Эйнштейна была основой изучения эволюции Вселенной. Но она не согласуется с другим столпом современной физики — квантовой теорией, поэтому важнейшая задача — примирить их друг с другом. Только с такой объединенной теорией мы сможем продвинуться к самым ранним моментам эволюции Вселенной, к так называемой эре Планка с возрастом $10^{–43}$ с, когда формировалось само пространство-время.

Пробные варианты единой теории предлагают нам удивительные картины самых первых мгновений. Например, теория струн предсказывает существование дополнительных измерений пространства и, возможно, наличие других вселенных в этом суперпространстве. То, что мы называем Большим взрывом, могло быть столкновением нашей Вселенной с другой (см.: Венециано Г. Миф о начале времен // ВМН, № 8, 2004). Сочетание теории струн с теорией инфляции приводит, возможно, к самой грандиозной идее — к представлению о множественной Вселенной (multiverse), состоящей из бесконечного числа несвязанных частей, в каждой из которых свои физические законы (см.: Буссо Р., Полчински Й. Ландшафт теории струн // ВМН, № 12, 2004).

Теории возникновения вселенной кратко

Идея множественной Вселенной еще находится в развитии и нацелена на две важнейшие теоретические проблемы. Во-первых, из уравнений, описывающих инфляцию, следует, что если она произошла один раз, то процесс будет происходить вновь и вновь, порождая бесконечное число «раздутых» областей. Они так велики, что не могут сообщаться друг с другом и поэтому не влияют друг на друга. Во-вторых, теория струн указывает, что эти области имеют разные физические параметры, такие как число пространственных измерений и семейства стабильных частиц.

Концепция множественной Вселенной позволяет по-новому взглянуть на две сложнейшие научные проблемы: что было до Большого взрыва и почему законы физики именно таковы? (Вопрос Эйнштейна: «Был ли у Бога выбор?» относился именно к таким законам.) Множественная Вселенная делает бессмысленным вопрос о том, что было до Большого взрыва, поскольку происходило бесконечное число больших взрывов, и каждый порождал свой всплеск инфляции. Вопрос Эйнштейна тоже теряет смысл: в бесконечном количестве вселенных реализуются все возможные варианты законов физики, поэтому законы, управляющие нашей Вселенной, не представляет собой что-то особенное.

Космологи неоднозначно относятся к идее множественной Вселенной. Если между отдельными субвселенными действительно нет связи, то мы не сможем убедиться в их существовании; фактически они находятся за пределами научных зна-ний. Часть меня хочет закричать: «Пожалуйста, не более одной Вселенной!» Но с другой стороны, идея множественной Вселенной решает ряд принципиальных проблем. Если она верна, то хаббловское расширение Вселенной всего лишь в 100 млрд раз и коперниковское изгнание Земли из центра Вселенной в XVI в. покажутся лишь малым дополнением к нашему осознанию своего места в космосе.

Современная космология по сути унижает нас. Мы состоим из протонов, нейтронов и электронов, которые в совокупности составляют всего 4,5% Вселенной; мы существуем лишь благодаря тончайшим связям между самым малым и самым большим. Законы микрофизики обеспечили доминирование вещества над антивеществом, появление флуктуаций, ставших затравкой для галактик, заполнение пространства частицами темной материи, обеспечившей гравитационную инфраструктуру, которая позволила сформироваться галактикам, прежде чем возобладала темная энергия, а расширение начало ускоряться (врезка вверху). В то же время космология по своей природе высокомерна. Мысль о том, что мы можем понять что-то в таком безбрежном океане пространства и времени, как наша Вселенная, на первый взгляд кажется абсурдной. Эта странная смесь скромности и самоуверенности позволила нам за прошедший век весьма далеко продвинуться в понимании строения современной Вселенной и ее эволюции. Я с оптимизмом жду дальнейшего прогресса в ближайшие годы и совершенно уверен, что мы живем в золотой век космологии.

Теории возникновения вселенной кратко
Если бы во Вселенной было еще больше темной энергии, она бы осталась почти бесформенной (слева), без тех крупных структур, которые мы видим (справа).

Перевод: В.Г. Сурдин

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

  • The Early Universe. Edward W. Kolb and Michael S. Turner. Westview Press, 1994.
  • The Inflationary Universe. Alan Guth. Basic, 1998.
  • Quarks and the Cosmos. Michael S. Turner in Science, Vol. 315, pages 59–61; January 5, 2007.
  • Dark Tnergy and the Accelerating Uni- verse. Joshua Frieman, Michael S. Turn- er and Dragan Huterer in Annual Reviews of Astronomy and Astrophysics, Vol. 46, pages 385–432; 2008. Доступно онлайн: arxiv.org.
  • Черепащук А.М., Чернин А.Д. Гори- зонты Вселенной. Новосибирск: Изд- во СО РАН, 2005.

ОБ АВТОРЕ

Майкл Тернер (Michael S. Turner) первым взялся за объединение физики частиц, астрофизики и космологии и в начале нынешнего десятилетия возглавил работу Национальной академии в этой новой области исследований. Он профессор Института космологической физики Фонда Кавли в Чикагском университете. С 2003 по 2006 г. он возглавлял отделение физико-математических наук Национального научного фонда. Среди его наград премия Уорнера Американского астрономического общества, премия Лилиенфельда Американского физического общества и премия Клопстега Американской ассоциации учителей физики.

Источник: www.modcos.com

Окружающий нас мир велик и многообразен. Все, что окружает нас, будь то другие люди, животные, растения, видимые только под микроскопом мельчайшие частички и гигантские скопления звезд, микроскопические атомы и огромные туманности, составляет то, что принято называть Вселенной.
С незапамятных времен человеческий разум интересует вопрос о возникновении мира. Еще не существовало таких понятий как религия и наука, а человек уже задумывался о мироустройстве и своем положении в окружавшем его пространстве.
Возникновение Вселенной и на данный момент остается одной из самых интересных и не изученных загадок современной космологии. Как появилась Вселенная, какие процессы способствовали возникновению звезд, солнечных систем, галактик, планет, что было до появления Вселенной, имеет ли она начало и конец? Вот лишь немногие вопросы, ответы на которые пытаются получить современные ученые.
Вопрос о происхождении Вселенной является своего рода основополагающим. Загадка возникновения жизни на Земле, а также возможности зарождения жизни на других планетах, так или иначе раскрывается, исходя из теорий о рождении Вселенной.
Итак, гипотез о возникновении Вселенной существует множество, это и научные концепции, и отдельные теории, и религиозные учения, и философские представления, и мифы о сотворении мира древних июлей. Однако все их можно условно разделить на две группы:
1. Теории возникновения Вселенной (в первую очередь религиозные), в которых в качестве созидающего фактора выступает Творец. Иными словами, согласно им, Вселенная представляет собой одухотворенное и осознанное творение, появившееся в результате воли Высшего разума;
2. Теории возникновения Вселенной, основывающиеся на научных факторах и отвергающие как само понятие Творца, так и его участие в создании мира. Они часто основываются на принципе заурядности, который рассматривает возможность существования жизни не только на нашей, но и на других планетах, находящихся в других солнечных системах или даже галактиках.
Различие этих концепций кроется, в первую очередь, в разных терминологиях, например, природа — творец, сотворение — происхождение. Зато в некоторых других вопросах отдельные научные и религиозные теории пересекаются или даже повтори ют друг друга.
Кроме различных концепций о происхождении Вселенной существуют также религиозные и научные датировки этого грандиозного события. Так, самая распространенная научная теория о возникновении Вселенной — теория Большого взрыва — утверждает, что Вселенная возникла примерно 13 млрд лет назад.
По различным христианским источникам, от сотворения мира Богом до рождения Иисуса Христа прошло от 3483 до 6984 лет. В индуизме с момента начала мироздания прошло примерно 155 трлн лет.
Однако рассмотрим некоторые концепции возникновения Вселенной подробнее.

Космологическая модель Канта

До начала XX в. среди ученых господствовала теория о том, что Вселенная бесконечна в пространстве и времени, статична и однородна. Еще Исаак Ньютон сделал предположение о том, что она безгранична в пространстве, а немецкий философ Эммануил Кант, основываясь на работах Ньютона и развивая его идеи, выдвинул теорию о том, что у Вселенной также нет начала и во времени. Он ссылался на законы механики и ими объяснял все происходящие во Вселенной процессы.
В своей теории Кант продвинулся еще дальше, распространив ее также и на биологию. Он утверждал, что в не имеющей начала и конца древней и огромной Вселенной существует бесконечное число возможностей, благодаря которым на свет может появиться любой биологический продукт. Эта теория о возможности возникновения жизни во Вселенной позднее легла в основу теории Дарвина.
Космологическая модель Канта нашла подтверждение благодаря наблюдениям астрономов XVIII— XIX вв. за движениями светил и планет. В скором времени его гипотеза стала теорией, которая к началу XX в. уже считалась единственно верной. Она не вызывала сомнений, даже несмотря на светометрический парадокс, или парадокс темного ночного неба, заключающийся в том, что в бесконечной Вселенной существует нескончаемое количество звезд, сумма яркостей которых должна образовывать бесконечную яркость. Иными словами, ночное небо было бы полностью покрыто яркими звездами, а в реальности оно тёмное, так как количество звезд и галактик исчислимо.

Модель Вселенной Эйнштейна (статическая Вселенная)

В 1916 г. увидел свет труд Альберта Эйнштейна Основы общей теории относительности», а уже и 1917 г. на основе уравнений этой теории он развил свою модель Вселенной.
Большинство ученых того времени сходилось но мнении, что Вселенная стационарна, и Эйнштейн также придерживался этого мнения, поэтому старался создать такую модель, в которой Вселенная не должна была расширяться или сжиматься. Это местами шло вразрез с его собственной теорией относительности, из уравнений которой следует, что Вселенная расширяется и одновременно происходи се торможение. Поэтому Эйнштейн ввел такое понятие, как космическая сила отталкивания, которая уравновешивает притяжение звезд и прекращает движение небесных тел, благодаря чему Вселенная остается статической.
Вселенная Эйнштейна имела конечные размеры, но вместе с тем у нее не было границ, что возможно только в том случае, когда пространство искривлено, как, например, в сфере.
Итак, пространство в модели Эйнштейна было трехмерным, оно замыкало само себя и было однородным, т.е. у него не было центра и краев, и в нем равномерно рас полагались галактики.

Модель расширяющейся Вселенной (Вселенная Фридмана, нестационарная Вселенная)

В 1922 г. советский ученый А. А. Фридман разработал первую нестационарную модель Вселенной, которая также была основана на уравнениях общей теории относительности. Работы Фридмана остались в то время незамеченными, а А. Эйнштейн отвергал возможность расширения Вселенной.
Тем не менее, уже в 1929 г. астроном Эдвин Хаббл открыл, что галактики, находящиеся рядом с Млечным путем, удаляются от него, а скорость их движения при этом все время остается пропорциональной расстоянию до нашей галактики. Согласно этому открытию, звезды и галактики постоянно «разбегаются» друг от друга, а следовательно, происходит расширение Вселенной. В итоге Эйнштейн согласился с выводами Фридмана, а позднее говорил, что именно советский ученый стал основателем теории расширяющейся Вселенной.
Эта теория не находится в противоречии с общей теорией относительности, но если Вселенная расширяется, то должно было произойти некое событие, приведшее к разбеганию звезд и галактик. Это явление очень напоминало взрыв, поэтому ученые и назвали его «Большим взрывом». Однако если Вселенная появилась в результате Большого взрыва, то должна существовать Высшая первопричина (или Конструктор), позволяющая этому взрыву произойти.

Теория Большого взрыва

Теория Большого взрыва строится на том, что материя и энергия, из которых состоит все сущее но Вселенной, ранее находились в сингулярном состоянии, т.е. в состоянии, характеризующемся бесконечной температурой, плотностью и давлением. В состоянии сингулярности не действует ни один закон физики, а все, из чего на данный момент состоит Вселенная, заключалось в микроскопически малой частичке, которая в какой-то момент времени пришла в нестабильное состояние, в результате чего и произошел Большой взрыв.
Изначально теория Большого взрыва носила название «динамическая эволюционирующая модель». Термин «Большой взрыв» получил широкое распространение в 1949 г. после публикации работ ученого Ф. Хойла.
На данный момент теория Большого взрыва разработана настолько хорошо, что ученые берутся описать процессы, которые начали происходить во Вселенной через 10—43 с после Большого взрыва.
Существует несколько доказательств теории Большого взрыва, одним из которых является реликтовое излучение, пронизывающее всю Вселенную и возникшее в результате Большого взрыва благодаря взаимодействию частиц. Реликтовое излучение может рассказать о первых микросекундах после рождения Вселенной, о тех временах, когда она находилась и горячем состоянии, а галактики, звезды и планеты еще не образовались.
Изначально реликтовое излучение также было только теорией, и вероятность его существования рассматривал Г. А. Гамов в 1948 г. Измерить реликтовое излучение и доказать действительность его существования смогли только в 1964 г. американские ученые благодаря новому прибору, который обладал необходимой точностью. После этого реликтовое излучение печально исследовали с помощью наземных и космических обсерваторий, что позволило увидеть, какой была Вселенная в момент своего рождения.
Еще одним подтверждением Большого взрыва является космологическое красное смещение, которое заключается в уменьшении частот излучения, что доказывает удаление звезд и галактик друг от друга вообще, и от Млечного пути в частности.
Теория Большого взрыва ответила на множество вопросов о возникновении нашей Вселенной, но и вместе с тем стала причиной появления новых загадок, которые остаются без ответов и сейчас. Например, что же стало причиной Большого взрыва, почему точка сингулярности стала нестабильной, что было до Большого взрыва, как появилось время и пространство?
Многие исследователи, например Р. Пенроуз и С. Хокинг, изучая общую теорию относительности, добавили в ее уравнения такие показатели, как пространство и время. По их мнению, эти параметры также появились в результате Большого взрыва вместе с материей и энергией. Следовательно, у времени тоже есть определенное начало. Однако из этого также следует, что должна существовать некая Сущность или Высший разум, который не зависит от времени и пространства, и присутствовал всегда. Именно этот Высший разум и стал причиной возникновения Вселенной.
Изучение того, что было до Большого взрыва — новый раздел в современной космологии. На вопрос о том, что же было до рождения нашей Вселенной и что ей предшествовало, пытаются ответить многие ученые.

Большой отскок

Эта интересная альтернативная Большому взрыву теория говорит о том, что до нашей Вселенной существовала другая. Таким образом, если рождение Вселенной, а именно Большой взрыв, рассматривали как уникальное явление, то в данной теории это лишь одно звено из цепи реакций, в результате которых Вселенная постоянно воспроизводит саму себя.
Из теории следует, что Большой взрыв не является точкой начала времени и пространства, а появился и результате предельного сжатия другой Вселенной, масса которой, по этой теории, не равна нулю, а лишь близка этому значению, при этом энергия Вселенной мс бесконечна. В момент предельного сжатия Вселенная имела максимальную энергию, заключенную в минимальный объем, в результате чего произошел большой отскок, и родилась новая Вселенная, которая также начала расширяться. Таким образом, квантовые состояния, существовавшие в старой Вселенной, просто изменились в результате Большого отскока и перешли в новую Вселенную.
В основе новой модели рождения Вселенной лежит теория петлевой квантовой гравитации, которая помогает заглянуть за Большой взрыв. До этого считалось, что все во Вселенной появилось в результате взрыва, поэтому вопрос о том, что же было до него, практически не ставился.
Данная теория принадлежит к числу теорий квантовой гравитации и объединяет в себе общую теорию относительности и уравнения квантовой механики. Предложили ее в 1980-х гг. такие ученые, как Э. Аштекар и Л. Смолин.
Теория петлевой квантовой гравитации говорит о том, что время и пространство дискретны, т.е. состоят из отдельных частей, или маленьких квантовых ячеек. На малых масштабах пространства и времени ни ячейки создают разделенную прерывистую структуру, а на больших — появляется гладкое и непрерывное пространство-время.
Рождение новой Вселенной происходило в экстремальных условиях, которые заставляли квантовые ячейки отделяться друг от друга, этот процесс и был назван Большим отскоком, т.е. Вселенная не появилась из ничего, как при Большом взрыве, а начала быстро расширяться из сжатого состояния.
М. Божовальд стремился получить сведения о Вселенной, предшествующей нашей, для чего несколько упростил некоторые квантово-гравитационные модели и уравнения теории петлевой квантовой гравитации. В данные уравнения входят несколько параметров состояния нашей Вселенной, которые необходимы для того, чтобы узнать, какой была предыдущая Вселенная.
Уравнения содержат взаимодополняемые параметры, позволяющие описать квантовую неопределенность об объеме Вселенной до и после Большого взрыва, и отражают тот факт, что ни один из параметров предшествующей Вселенной не сохранился после Большого отскока, поэтому в нашей Вселенной он отсутствует. Иными словами, в результате бесконечной цепи расширения, сжатия и взрыва, а затем нового расширения образуются не одинаковые, а разные Вселенные.

Теория струн и М-теория (то, чему я лично склонен доверять более всего)

Идея того, что Вселенная может постоянно воспроизводить себя, многим ученым кажется разумной. Некоторые полагают, что наша Вселенная возникла в результате квантовых флуктаций (колебаний) в предшествующей Вселенной, поэтому вполне вероятно, что в какой-то момент времени и в нашей Вселенной может возникнуть такая флуктация, и появится новая Вселенная, несколько отличная от настоящей.
Ученые идут в своих рассуждениях дальше и предполагают, что квантовые колебания могут произойти в любом количестве и в любом месте Вселенной, в результате чего появляется не одна новая Вселенная, а сразу несколько. На этом строится инфляционная теория возникновения Вселенной.
Образовавшиеся Вселенные отличны друг от друга, в них действуют разные физические законы, при этом все они находятся в одной огромной мегавселенной, но изолированы друг от друга. Сторонники данной теории утверждают, что время и пространство не появились в результате Большого взрыва, а существовали всегда в нескончаемой череде сжатия и расширения Вселенных.
Своего рода развитием инфляционной теории является теория струн и ее усовершенствованный вариант — М-теория, или теория мембран, которые строятся на цикличности мироздания. Согласно М-теории, физический мир состоит из десяти пространственных и одного временного измерения. В этом мире находятся пространства, так называемые браны, одной из которых и является наша Вселенная, состоящая из тpёx пространственных измерений.
Большой взрыв — результат столкновения бран, которые под воздействием огромного количества энергии разлетелись, затем началось расширение, постепенно замедлившееся. Выделенные в результате столкновения излучение и вещество остывали, появились галактики. Между бранами находится положительная по плотности энергия, вновь ускоряющая расширение, которое через некоторое время снова замедляется. Геометрия пространства становится плоской. Когда браны вновь притягиваются друг к другу, квантовые колебания становятся сильнее, геометрия пространства деформируется, а места таких деформаций в будущем становятся зародышами галактик. Когда браны сталкиваются друг с другом, цикл повторяется.
В перечисленных выше научных концепциях возникновения Вселенной отсутствует Творец как созидающая одухотворенная сила. Однако кроме них существуют иные теории появления мироздания, в которых в качестве созидающего фактора выступает Высший разум, названный в каждой из теорий по-разному.

Креационизм

Данная мировоззренческая теория происходит от латинского слова «creations» — «творение». Согласно этой концепции, наша Вселенная, планета и само человечество являются результатом творческой деятельности Бога или Творца. Термин «креационизм» возник в конце XIX в., а сторонники этой теории утверждают истинность истории о сотворении мира, изложенной в Ветхом Завете.
В конце XIX в. происходило быстрое накопление знаний в различных областях науки (биологии, астрономии, физики), широко распространенной стала теория эволюции. Все это привело к противоречию между научными знаниями и библейской картиной мира. Можно сказать, что креационизм появился как реакция консервативных христиан на научные открытия, в частности, на эволюционное развитие живой и неживой природы, которые в это время стали доминирующими и отвергали появление всего сущего из ничего.

Христианский креационизм

Креационизм в христианстве представлен несколькими течениями, которые отличаются степенью расхождения с научными воззрениями на происхождение Вселенной и Земли.
Согласно младоземельному, или буквалистскому, креационизму мир был создан Богом за 6 дней, как о том и говорится в Библии. При этом некоторые последователи (прежде всего протестанты) этой теории утверждают, что мир был создан примерно 6 тыс. лет назад. Это утверждение основано на Масоретском тексте Ветхого Завета. Другие (в основном православные исследователи) исходят из текста Септуагинты (самого старого перевода Библии) и верят, что мир появился 7,5 тыс. лет назад.
Последователи староземельного, или метафорического, креационизма считают, что 6 дней творения — это метафора, более понятная людям того времени. В Библии слово «день» подразумевает скорее не сутки, а неопределенный отрезок времени, следовательно, в один день творения могут входить миллионы земных лет.
При это метафорический креационизм делится на следующие подвиды:
— креационизм постепенного творения. Последователи этой концепции соглашаются с некоторыми научными открытиями, в частности, принимают астрофизические датировки рождения Вселенной, звезд и планет, но не приемлют теорию эволюции образования видов в процессе естественного отбора. Они утверждают, что именно Бог влияет на появление новых и изменение существующих биологических видов;
— эволюционный креационизм, или теистический эволюционизм. Представители данного направления соглашаются с теорий эволюции, но, по их мнению, именно Творец направляет эволюцию, и она является осуществлением его высшего замысла. Общепринятые научные идеи практически полностью признаются сторонниками этой концепции, а чудесное вмешательство Бога рассматривается ими, например, в проявлении божественного промысла или существовании бессмертной человеческой души, т.е. в тех вопросах, на которые наука ответить просто не может. Они рассматривают творение не как мгновенный законченный акт, а как эволюцию, из-за чего наиболее радикальные буквалисты не считают их не только креационистами, но даже христианами.

Креационизм в иудаизме

Так же, как и в христианском креационизме, среди приверженцев иудаизма есть те, кто приемлет современные взгляды науки, и те, кто их отрицает. Так, например, представители классического ортодоксального иудаизма не признают теорию эволюции, придерживаясь буквального толкования Торы.
Современные ортодоксальные иудаисты, к которым относятся религиозные сионисты и модернисты, признают возможным аллегорическое интерпретирование некоторых частей Торы и считают правильными некоторые моменты теории эволюции.
Существует также реформированный и консервативный иудаизм, последователи которого соглашаются с основными положениями теории эволюции.

Креационизм в исламе

Еще сильнее, чем христианство, теорию эволюции критикует ислам. Многие последователи этой религии считают идеи эволюционной теории близкими к атеизму, поэтому не могут поддерживать их, полностью выступая за божественное сотворение Вселенной и жизни на Земле.
С другой стороны, существуют ученые, которые отмечают, что эволюция — это научный факт, который никак не противоречит Корану. В отличие от Библии, в Коране нет детального описания сотворения мира, поэтому буквалистский креационизм распространен в исламе меньше.

Креационизм в индуизме

15 священных писаниях индуизма, Ведах, описано первичное и вторичное творение. В первичном творении участвовал верховный Господь, который создал материальную энергию. Также он создал первое живое существо — Брахму, осуществившего вторичное творение, заключавшееся в создании материальных тел для кухонных существ и условий, в которых эти существа могли бы контактировать друг с другом и предметами неживой природы.
Индуизм верит, что созданная Господом Вселенная очень древняя, и ее возраст составляет примерно 155 трлн земных лет. В Ведах эволюция человечества описывается как постепенная духовная деградация, в ходе которой сокращается продолжительность человеческой жизни, приходят в упадок его нравственные устои, появляются болезни, исчезает способность общаться с высшими разумными существами.
Развитие человечества и Вселенной в индуизме имеет циклический характер: после того как человечество полностью расходует отведенное ему на свободное развитие время, временное колесо останавливается, после чего цикл создания мироздания и человечества повторяется заново.

Мировые религии о сотворении мира и рождении Вселенной

Такой глобальный вопрос как «Откуда же произошла наша Вселенная?», интересовал человечество на протяжении всей истории его развития. Неудивительно, что практически в любой из мировых религий можно встретить мифы о сотворении мира. При этом только на первый взгляд может показаться, что они зачастую являются абсурдными с точки зрения современного человека, хоть немного разбирающегося в достижениях науки. На самом деле во многих из них повествуется о том, что сейчас пытаются доказать ученые, просто при толковании мифов следует делать скидки на иной уровень восприятия у древних людей и их меньшую научную подкованность.
Религиозно-философские теории также пытаются ответить на вопрос о происхождении Вселенной, но практически все они основаны на вере в то, что мир был создан в результате творческого акта Высшего Разума, Бога, Творца.
В христианстве Создателем всего сущего выступает Бог, а одной из основных христианских догм является «сотворение из ничего», т.е. наша Вселенная из состояния небытия была переведена в состояние бытия в результате Божественной воли. В первых трех главах Книги Бытия (первой книги Библии) описаны этапы сотворения всего сущего.
Большая часть христиан верит в то, что в акте творения мира были задействованы все три ипостаси Святой Троицы: Бог Отец, еще невоплотившийся Бог Сын и Бог Святой Дух. Некоторые христианские учителя, например, святой Иоанн Дамаскин, указывают, что сотворение есть безначальный и предвечный процесс, оно «исходит из самой сущности Бога» и не вызывает изменений в нем, т.е. нет Бога «до» и Бога «после» сотворения мира, он остается единым.
Все человечество появилось на свет от двух созданных Богом людей — Адама и Евы. Сотворенный мир был изначально идеальным, гармоничным и послушным человеку, а он сам был наделен свободой воли.
Научная теория о цикличности Вселенной в некотором роде повторяет представления о возникновении Вселенной в буддийской космологии, в которой представлено бесконечное чередование рождения и уничижения мироздания.
К данном случае высшее существо (Бог) не создал И( еденную как таковую. Каждый мировой цикл накапчивает общую карму всех живых существ, и в результате такого накопления возникает новая Вселенная. Каждому миру отпущен определенный срок существования, в течение которого человечество проходит путь «и расцвета до деградации. Происходит накопление плохой кармы живых существ, и Вселенная от этого разрушается. Через некоторое время космического покоя цикл начинается заново.
Кроме религиозной теории о сотворении мира из ничего, в христианской и иудейской традиции есть также теория о сотворении мира из материи. Ряд современных иудейских исследователей видят в этом возможную связь с теорией эволюции.
В каждом мировом цикле существует 4 периода:
— период пустоты, т. е. время, когда один мир разрушен, а другой еще не сформировался;
— период формирования, когда мир начинает возникать заново;
— период пребывания, когда Вселенная находится в стабильном состоянии;
— период разрушения, когда дурная карма приводит к гибели Вселенной.
На вопросы, было ли начало у самих мировых циклов, есть ли конец у Вселенной или она бесконечна, буддизм ответа не дает, так как подобные вопросы относятся к области неопределенного, на что просвещённый Будда «хранил благородное молчание».
Первым живым существом в каждой новой Вселенной является бог Брахма. При этом он не считается Творцом самой Вселенной, а лишь верховным божеством, которому все поклоняются. Хотя считается, что Брахма вечен и существовал всегда, при этом он не неизменен и на него так же, как и на остальных существ, действует причинно-следственный закон кармы, т.е. вместе с разрушающейся Вселенной пропадает и Брахма.
На теорию Большого взрыва очень похожа каббалистическая теория о «разбиении сосудов», которую создал в средние века каббалист и иудейский богослов Ицхак Луриа. В своем учении он говорил о том, что за попыткой творения последовала космическая катастрофа, в результате которой и возник мир. Божественные лучи, появившиеся в результате катастрофы, рассеялись и претерпели изменение.
В мифах многих народов существует такое понятие, как «хаос», т.е. изначальное состояние мироздания, в котором материя и пространство не имели формы. Элементы космоса (с греч. «порядок», «красота») были выделены из первоначального хаоса, и так появилась Вселенная, подчиненная определенным законам и противопоставленная хаосу. Первичный хаос также называют мировой бездной.
Так, в религиозных воззрениях древних скандинавов в начале существовала только мировая пустота, бездна, называемая Гинунгагап, которую наполняли лишь первобытные силы творения. В ней существовали Муспелль (огненная страна) и Нифель (страна мрака). Столкновение двух противоположностей — жара и холода — привело к появлению первого живого существа, великана Имира, из растерзанного тела которого в последствие и была создана Вселенная. По представлению древних скандинавов, все появилось из мировой бездны и в конце времен все в нее и вернется.
В китайской мифологии также существует миф о рождении Вселенной из мрачного хаоса. Главными космическими силами там выступают мужское начало (Ян, что означает «мрачный») и женское начало (Инь, что означает «светлый»). Эти два начала сами собой образовались в мировой бездне и установили главные направления мирового (вселенского) пространства которых по китайской мифологии насчитывается восемь. Начало Инь стало управлять землей, а начало Ни небом.
Похожее представление о рождении мира существует и в концепции даосизма. В начале существовала шип. пустота (У-цзи), вакуум, неизвестное, из которого (формировались две основные энергии: Ян и Инь. Благодаря их взаимодействию произошло образование энергии ци, а затем и всего сущего во Вселенной.

Бесконечна ли Вселенная?

При изучении Вселенной и ее строения нередко встаёт вопрос о том, есть ли у нее конец или она бесконечна. Понятие бесконечности является одним из самых интересных в науке, поскольку относится к области таинственного и необычного. Действительно, невозможно представить себе бесконечность, ведь у ною понятия нет наглядности, но оно вовсе не является придуманным математическим построением, а используется в науке для решения многих проблем.
Наиболее заинтересованы в изучении бесконечности астрономы и физики, так как им приходится иметь дело с пространством Вселенной и геометрией окружающего мира. Изучать бесконечность Вселенной и пространстве начали еще в глубокой древности. Великие философы предлагали простые и, казалось бы, неопровержимые рассуждения, не противоречащие, на первый взгляд, логике.
Так, Лукреций Кар в поэме «О природе вещей» писал: «Нет никакого конца ни с одной стороны у Вселенной, ибо иначе края непременно она бы имела». Многим ученым того времени было легче представить, что Вселенная не имеет конца и бесконечно долго простирается во все стороны, чем то, что у нее есть определенные границы, ведь тогда бы пришлось искать ответ на вопрос, что же лежит за этими границами.
Однако рассуждения Лукреция и его сторонников опирались, в первую очередь, на логику и привычные представления о земном пространстве, а в современном мире опираться на это при изучении проблемы бесконечности в масштабах Вселенной считается неразумным. В данном случае следует изучать реальные свойства мира и на их основе делать выводы.
В эпоху Возрождения Коперник разработал гелиоцентрическую модель мира, по которой в центре Вселенной находилось Солнце, а вокруг него вращалась Земля и другие планеты. По представлениям ученого, Вселенную ограничивала сфера из неподвижных звезд. Он считал, что все небесные тела вращаются вокруг Солнца с одинаковой скоростью, совершая один оборот в сутки. Следовательно, чем большее расстояние от Солнца до небесного тела, тем большая скорость обращения у последнего.
Таким образом, если есть звезды, расположенные на бесконечно больших расстояниях от Солнца, то они должны обладать бесконечно большой скоростью, что невозможно. Из этого следует, что Вселенная имеет конец, т. е. заключена в сферу звезд. Современникам Коперника такое доказательство казалось неопровержимым, ведь тогда еще не знали, что Солнце является не центром Вселенной, а центром Солнечной системы.
В выводах Коперника первым усомнился итальянский ученый Джордано Бруно. Он же первым предложил идею и бесконечной Вселенной. В своих рассуждениях ученый опирался на философские взгляды, а не на физические или астрономические исследования.
Исаак Ньютон впервые попытался дать естественно научное объяснение бесконечности Вселенной и в разработанных им законах механики. Согласно его положениям, если материальные частицы притягиваются друг к другу, то со временем они должны рассеяться в бескрайнем пространстве. Следовательно, не может существовать неизменная конечная Вселенная.
Долгое время считалось, что ответ на вопрос о бесконечности Вселенной получен и считается окончательным, но мнение оказалось ошибочным. Всегда считалось, что на вопрос о том, есть ли граница у Вселенной, должно быть только два ответа: «да» или нет». И только позднее оказалось, что может существовать несколько видов бесконечности. Например, в математике существует бесконечность ряда натуральных чисел и бесконечность всех точек, расположенных мм отрезке прямой.
В геометрии также могут существовать разные бесконечности. Например, есть такие понятия, как бесконечность и неограниченность пространства, которые не тождественны друг другу Неограниченным пространством является то, которое не имеет границы, по имеете с тем оно замкнуто в себе, или конечно. Примером такого пространства может служить сфера. У площади сферы есть конечная величина, но достичь её границы невозможно, поэтому она считается неограниченной. Пример со сферой служит примером пи о, что пространство может иметь конечный объем, но при этом у него отсутствуют границы.
В современной науке никто уже не сомневается в том, что пространство Вселенной неограниченно, т.е. достичь границы Вселенной невозможно. Но вопрос о ее бесконечности или конечности все еще остается открытым. Для того чтобы найти ответ на него, ученые изучают геометрию мира и пытаются выяснить расположение материи во Вселенной.
С помощью теоретических подсчетов проводится измерение критической плотности вещества, находящегося во Вселенной. Так, подсчитано, что на 13 см пространства приходится 1/100000 массы протона. Исходя из теории относительности, ученые говорят, что мировое пространство имеет конец, если средняя плотность вещества, находящегося во Вселенной, больше критической. И наоборот, Вселенная имеет бесконечный объем, если плотность вещества в ней ниже критической.
Происхождением, эволюцией и свойствами Вселенной занимается космология — специальный раздел астрономии. Она опирается на такие науки, как физика, математика, астрономия, а также на богословие и философию.
Основываясь на данном выводе, многие исследователи создали различные версии вычисления средней плотности материи в мире. Некоторые, основываясь на своих вычислениях, пришли к выводу о том, что Вселенная конечна, и делали попытки подсчитать ее радиус.
Однако подобные вычисления не могут ответить на вопрос о бесконечности Вселенной и рассказать о ее геометрических свойствах.
Общая теория относительности предоставляет физический критерий, на основании которого можно делать догадки о кривизне пространства, но о физической величине данной кривизны можно судить, скорее всего, только на основании наблюдений, указывающих на то, что средняя плотность вещества в мире приблизительно равна критической.
Все это говорит в пользу того, что современная наука пока не готова дать однозначного ответа на вопрос о конечности и бесконечности Вселенной и предпочесть одну из этих вероятностей.
Автор: А.В.Колпакова, Е.А.Власенко
Источник: "Загадки и тайны Вселенной"

От себя добавлю следующее: без "наблюдателя" Вселенная представляет собой волновую функцию — безвидную и безучастную. Для того, чтобы появилось "что-то" нужен "наблюдатель". "Высшее" это существо или нет — неважно. Важно чтобы "наблюдатель" был. А "наблюдатель" — он существо "живое"!

Источник: andergx.livejournal.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.