Параллельные миры во вселенной


"…Многие считают, что наш мир не является единственным. Об этом говорил еще Кастанеда в своих книгах. Об этом же заявляют различные экстрасенсы и мистики. Самое сложное в этом то, что нет никаких доказательств, кроме ощущений некоторых людей, заявляющих, что видят альтернативную реальность. Можно ли верить им, или же это психические отклонения, галлюцинации? Что говорит об этом наука, и можно ли ее подключить к изучению параллельных миров? Авторы фильма попытаются разобраться в таком явлении, как параллельный мир, и найти ответы на все эти вопросы. Фильм будет интересен всем, кто интересуется мистикой…" источник


"…Скрытые миры с альтернативной реальностью, возможно, кажутся фантастикой, но многие из ведущих ученых считают, что они действительно существуют…"

источник

Материал от Юлии Стасишиной.

Наш мир не единственный: теория параллельных вселенных.

"…Как часто вы задумываетесь о том, как бы был устроен наш мир сегодня, если бы результат каких-то ключевых исторических событий был другим? Какой была бы наша планета, если бы динозавры, например, не вымерли? Каждое наше действие, решение автоматически становится частью прошлого. По сути дела, настоящего нет: все, что мы делаем в данную минуту, уже не изменить, оно записано в памяти Вселенной.  Однако существует теория, согласно которой существует множество вселенных, где мы живем абсолютно другой жизнью: каждое наше действие связано с определенным выбором и, делая этот выбор на нашей Вселенной, в параллельной – «другой я» принимает противоположное решение. Насколько оправдана такая теория с научной точки зрения? Почему ученые прибегли к ней? Попробуем разобраться в нашей статье.  


Многомировая концепция Вселенной

Впервые теорию о вероятном множестве миров упомянул американский физик Хью Эверетт. Он предложил свою разгадку одной из главных квантовых загадок физики. Перед тем как перейти непосредственно к теории Хью Эверетта, необходимо разобраться, что это за тайна квантовых частиц, которая не дает покоя физикам всего мира уже не один десяток лет. Представим себе обычный электрон. Оказывается, в качестве квантового объекта он может находиться в двух местах одновременно. Это его свойство называют суперпозицией двух состояний. Но магия на этом не заканчивается. Как только мы захотим как-то конкретизировать местоположение электрона, например, попытаемся его сбить другим электроном, то из квантового он станет обычным. Как такое возможно: электрон был и в пункте А, и в пункте Б и вдруг в определенный момент перепрыгнул в Б? Хью Эверетт предложил свою интерпретацию этой квантовой загадки. Согласно его многомировой теории, электрон так и продолжает существовать в двух состояниях одновременно.
е дело в самом наблюдателе: теперь он превращается в квантовый объект и разделяется на два состояния. В одном из них он видит электрон в пункте А, в другом – в Б. Существуют две параллельные реальности, и в какой из них окажется наблюдатель – неизвестно. Деление на реальности не ограничено числом два: их ветвление зависит лишь от вариации событий. Однако все эти реальности существуют независимо друг от друга. Мы, как наблюдатели, попадаем в одну, выйти из которой, как и переместиться в параллельную, невозможно.

С точки зрения этой концепции легко объясняется и эксперимент с самым научным котом в истории физики – котом Шредингера.

( Кот Шрёдингера — мысленный эксперимент, предложенный австрийским физиком-теоретиком, одним из создателей квантовой механики, Эрвином Шрёдингером, которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим. ) источник

Согласно многомировой интерпретации квантовой механики, несчастный кот в стальной камере одновременно и жив, и мертв. Когда мы раскрываем эту камеру, то как бы сливаемся с котом и образуем два состояния – живое и мертвое, которые не пересекаются. Образуются две разные вселенные: в одной наблюдатель с мертвым котом, в другой – с живым. 


Стоит сразу отметить, что многомировая концепция не предполагает наличия множества вселенных: она одна, просто многослойная, и каждый объект в ней может находиться в разных состояниях.  Такую концепцию нельзя считать экспериментально подтвержденной теорией. Пока что это всего лишь математическое описание квантовой загадки. Теорию Хью Эверетта поддерживают физик, профессор австралийского университета Гриффита Говард Уайзман, доктор Майкл Холл из Центра квантовой динамики университета Гриффита и доктор Дирк-Андре Деккерт из Университета Калифорнии. По их мнению, параллельные  миры действительно есть и наделены разными характеристиками. Любые квантовые загадки и закономерности – это последствие «отталкивания» друг от друга миров-соседей. Возникают эти квантовые явления для того, чтобы каждый мир был не похож на другой.

Концепция параллельных вселенных и теория струн.


( Тео́рия струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяженных объектов, так называемых квантовых струн ) источник

Из школьных уроков мы хорошо помним, что в физике есть две главные теории: общая теория относительности и квантовая теория поля. Первая объясняет физические процессы в макромире, вторая – в микро. Если обе эти теории использовать на одном масштабе, они будут противоречить друг другу. Кажется логичным, что должна существовать некая общая теория, применимая к любым расстояниям и масштабам. В качестве таковой физики выдвинули теорию струн. Дело в том, что на очень мелких масштабах возникают некие колебания, которые похожи на колебания от обычной струны. Эти струны заряжены энергией. «Струны» – это не струны в прямом смысле. Это абстракция, которая объясняет взаимодействие частиц, физические постоянные величины, их характеристики. В 1970-х годах, когда теория зародилась, ученые считали, что она станет универсальной для описания всего нашего мира. Однако оказалось, что эта теория работает только в 10-мерном пространстве (а мы живем в четырехмерном).
тальные шесть измерений пространства просто сворачиваются. Но, как оказалось, сворачиваются не простым способом. В 2003 году ученые выяснили, что сворачиваться они могут огромным количеством методов, и в каждом новом способе получается своя вселенная с разными физическими константами. Как и в случае с многомировой концепцией, теорию струн достаточно трудно доказать экспериментально. Кроме того, математический аппарат теории настолько труден, что для каждой новой идеи математическое объяснение нужно искать буквально с нуля.

Гипотеза математической вселенной.

( Гипотеза математической вселенной (также известна как Конечный Ансамбль) — в физике и космологии, одна из гипотез «теории всего», предложенная физиком-теоретиком Максом Тегмарком. Согласно гипотезе, наша внешняя физическая реальность является математической структурой. ) источник


Космолог, профессор Массачусетского технологического института Макс Тегмарк в 1998 году выдвинул свою «теорию всего» и назвал ее гипотезой математической вселенной. Он по-своему решил проблему существования большого количества физических законов. По его мнению, каждому набору этих законов, которые непротиворечивы с точки зрения математики, соответствует независимая вселенная. Универсальность теории в том, что с ее помощью можно объяснить все разнообразие физических законов и значения физических постоянных. Тегмарк предложил все миры по его концепции разделить на четыре группы. К первой относятся миры, находящиеся за пределами нашего космического горизонта, так называемые внеметагалактические объекты. Во вторую группу входят миры с другими физическими константами, отличными от постоянных нашей Вселенной. В третью – миры, которые появляются в результате интерпретации законов квантовой механики. Четвертая группа – это некая совокупность всех вселенных, в которых проявляются те или иные математические структуры. Как отмечает исследователь, наша Вселенная не единственная, так как пространство безгранично. Наш мир, где мы живем, ограничен пространством, свет из которого дошел до нас за 13,8 миллиарда лет после Большого взрыва. Узнать о других вселенных достоверно мы сможем еще минимум через миллиард лет, пока свет от них достигнет нас.

Стивен Хокинг: черные дыры – путь в другую вселенную


( Чёрная дыра́ — область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. ) источник

Стивен Хокинг также является сторонником теории множества вселенных. Один из самых известных ученых современности в 1988 году впервые представил свое эссе «Черные дыры и молодые вселенные». Исследователь предполагает, что черные дыры – это дорога к  альтернативным мирам. Pixabay.com Благодаря Стивену Хокингу мы знаем, что черным дырам свойственно утрачивать энергию и испаряться, выпуская при этом излучение Хокинга, получившее имя самого исследователя. До того, как великий ученый сделал это открытие, научное сообщество полагало, что все, что каким-либо образом попадает в черную дыру, исчезает. Теория Хокинга опровергает это предположение. По мнению физика, гипотетически любая вещь, предмет, объект, попавший в черную дыру, вылетает из нее и попадает в иную вселенную.
нако такое путешествие является движением в один конец: обратно вернуться никак нельзя.

" Из всего этого следует, что прохождение через черную дыру вряд ли окажется популярным и надежным способом космических путешествий. Во-первых, вам придется попасть туда, перемещаясь во мнимом времени и не заботясь о том, что ваша история в реальном времени печально закончилась. Во-вторых, на самом деле вы не смогли бы выбрать место назначения. Это все равно, что лететь по какой-то авиалинии, что взбрела вам в голову," ­­­– пишет исследователь.

Параллельные вселенные и бритва Оккама

( Бри́тва О́ккама (иногда ле́звие О́ккама) — методологический принцип, в кратком виде гласящий: «Не следует множить сущее без необходимости» (либо «Не следует привлекать новые сущности без крайней на то необходимости»).) источник

Как мы видим, с полной уверенностью доказать теорию множественных вселенных пока остается невозможным.
отивники теории считают, что мы не имеем права говорить о бесконечном множестве вселенных хотя бы потому, что не можем объяснить постулаты квантовой механики. Такой подход идет вразрез с философским принципом Уильяма Оккама: «Не следует множить сущее без необходимости». Сторонники же теории заявляют: гораздо проще предположить существование множества вселенных, чем наличие одной идеальной. Чья аргументация (сторонников или противников теории мультивселенной) убедительнее – решать вам. Кто знает, может, именно вам удастся отгадать квантовую загадку физики и предложить новую универсальную «теорию всего».

Источник

По теме:

Что было до Большого взрыва?

Вадим Чернобров. «Машина Времени».

"Темная материя и черные дыры". Доступным языком.

Источник: zen.yandex.ru

Bill Saxton, NRAO/AUI/NSF; Hubble Legacy Archive, ESA, NASA

В этом посте речь идет об источнике FRB121102. Это пока единственный повторяющийся источник быстрых радиовсплесков.

Быстрые радиовсплески — новый загадочный астрофизический феномен (продвинутый читатель может посмотреть свежий небольшой обзор на английском языке). Их исследование началось всего лишь 10 лет назад, когда в 2007 году Дункан Лоример и его коллеги объявили об обнаружении первого очень мощного, но при этом короткого (несколько миллисекунд) радиовсплеска, пришедшего «из ниоткуда». То есть, как это было почти полвека назад с космическими гамма-всплесками, вспышка не наблюдалась больше ни в каком диапазоне спектра, а кроме того, не представлялось возможным точно локализовать, с чем она связана.

Первый всплеск, как и большинство последующих, был обнаружен при обработке архивных данных телескопа из обсерватории «Паркс» (Parkes Observatory) в Австралии. Эта 64-метровая антенна предназначена, в первую очередь, для исследования радиопульсаров. Всплеск получил обозначение FRB 010724, где FRB — Fast radio burst, а 010724 — дата: 24 июля 2001 года.

Если инструмент фиксирует короткий одиночный всплеск радиоизлучения, то его координаты можно определить лишь с точностью порядка 10 угловых минут. Это примерно треть лунного диска. С астрономической точки зрения — большая площадка, так как, например, крупный оптический телескоп увидит там большое количество объектов. Но при этом ничего выдающегося в области локализации первого всплеска не наблюдалось. Источник мог находиться или совсем близко (даже в магнитосфере Земли!), или очень далеко. Однако второе представлялось более вероятным, так как всплеск характеризовался большой мерой дисперсии.

Дело в том, что это только в вакууме скорость света одна и та же. Если же электромагнитное излучение распространяется в среде, то скорость волн разной длины будет отличаться. Именно поэтому призма дает радужную полоску спектра. Радиосигналы на двух разных частотах, распространяясь в космической плазме, имеют разные скорости. А потому сигнал на более высокой частоте приходит к нам раньше. Вот эта величина «сдвига» времени прихода сигнала в зависимости от частоты волны и характеризуется мерой дисперсии. Она тем больше, чем больше плотность зарядов в среде, в которой распространяется сигнал, и чем большее расстояние в этой среде сигнал проходит.

В случае лоримеровского всплеска FRB 010724 дисперсию нельзя было объяснить межзвездной средой нашей Галактики — ее не хватало. Значит, источник внегалактический, а мера дисперсии связана или с межгалактической средой, или со средой вокруг источника в другой галактике. Если дело в межгалактической среде, то расстояние до источника получалось порядка миллиардов световых лет! Тогда у источника колоссальная радиосветимость — миллиард светимостей Солнца. Такого никогда не видели, и это непросто объяснить.

Но это еще не все. Поскольку всплеск был открыт в рамках обработки архива обзорных наблюдений, то можно было оценить, как часто происходят такие события. Получалось, что на земном небе мы должны были бы видеть тысячи всплесков в день. Проблема, однако, в том, что радиотелескопы обычно смотрят лишь на маленький пятачок неба, да к тому же трудно выделить отдельную короткую вспышку, если она не повторяется, а точные координаты (и идентификация с известным источником) неизвестны. Вот и получалось, что до 2007 года мы не знали, что на небе все время виден радиофейерверк: яркая вспышка каждую минуту.

О втором событии отрапортовали лишь в 2012 году. Поэтому теоретики не бросились строить модели. Правда, еще в 2007 году Константин Постнов и я предложили модель, в которой вспышки были связаны с гипервспышками магнитаров — молодых активных нейтронных звезд с очень сильными магнитными полями. Кроме того, в нашей работе мы обратили внимание, что темп вспышек совпадает с темпом рождения магнитаров, а также что если пульсары с большими потерями энергии вращения могут давать вспышки, подобные гигантским импульсам пульсара в Крабовидной туманности, но только более мощные во столько же раз, во сколько раз больше энергопотери, то это тоже будет похоже на FRB. Были высказаны и другие предположения, в том числе довольно экзотические, в которых вспышки FRB связывались с космическими струнами.

Ситуация изменилась летом 2013 году, когда Торнтон и его соавторы сообщили сразу о четырех новых вспышкам. Все поняли, что дело серьезное.

За несколько месяцев теоретики предложили пару дюжин моделей для объяснения быстрых радиовсплесков. Там были и сливающиеся белые карлики, и испаряющиеся черные дыры, и необычные двойные системы, и одиночные компактные объекты, на которые падают астероиды. Не забыли, конечно, и инопланетян. «Все побывали тут», — сказал бы Михаил Юрьевич.

Но самые реалистичные модели были связаны с нейтронными звездами. Мы знаем, что эти объекты дают короткие радиоимпульсы. Мы знаем, что во вспышке нейтронные звезды могут за доли секунды выделять колоссальную энергию. Однако выбрать одну модель не получалось. И даже отбросить ряд моделей было непросто.

Появлялись новые данные наблюдений. За несколько лет было открыто около 30 источников (их каталог можно найти здесь). Для них измерялись различные параметры. Ввиду большой значимости проблемы статьи нередко публиковались в Science и Nature. Но ясности не было.

Важной вехой стало открытие источника FRB121102 — героя новой публикации. Это был первый всплеск, открытый на 300-метровой антенне в Аресибо (Пуэрто-Рико). Дальнейшие наблюдения показали, что от источника приходят новые всплески. Причем много — сотни! Стало ясно, что FRB — это не катастрофа. То есть, это не испарение черной дыры, не образование кварковой звезды, не какой-то вид сверхновой, не слияние нейтронных звезд и так далее. На первый план окончательно вышли модели с молодыми нейтронными звездами.

Источник: pikabu.ru

Грань между фантастикой и наукой стирается, когда из-за кулис выглядывает теория о параллельных Вселенных. Все, что случается в вашей жизни и в мире в целом — результат предыдущих событий и действий. Причинно-следственная связь захватила аппарат управления миром.

Представьте мир, который есть сейчас. Что было бы, если Джордано Бруно не сожгли на костре? Если бы Гитлер не родился? Если бы Титаник не утонул?Ну или в конце концов если бы вы сейчас не читали эту статью, а смотрели Дом 2? История сложилась бы иначе, и мы бы жили совершенно в другом мире.

А теперь представьте, что есть бесчисленное количество миров, в которых что-то пошло не так, как в нашем. В одном мире сейчас динозавры загорают на солнышке в очках от Gucci, в другом — вообще нет Земли и Солнечной системы, а в третьем — время идет вспять. Это и есть параллельные миры или Вселенные.

Визуализация параллельных миров. Источник: https://on-space.ru/

Начало и конец Вселенной

Для нас Вселенная бесконечна. То, как мы её видим зависит от «угла зрения». Находясь на периферии галактики Млечный путь, в Солнечной системе, на планете Земля мы видим Вселенную определенным образом. Если бы мы поселились в другой галактике и на другой планете, Вселенная была бы для нас другой.

Все дело в свете. Мы видим только те вещи, свет которых до нас дошел. Если мы чего-то не видим, это не значит, что этого не существует. Свет всяких космических штук продолжает нас достигать и ломать привычный взгляд на мир. Нам думается, что Вселенная началась с Большого взрыва, но границ Вселенной мы не видим, как и параллельных миров. Получается, это ничего не значит. Возможно, параллельные миры как черные лебеди. Люди раньше думали, что существуют только белые лебеди, но это никак н повлияло на существование черных.

Источник: https://www.popmech.ru/

Наука и параллельные миры

В науке эта теория вызывает множество противоречий. Пока ученые не на жизнь, а на смерть бьются за истину, давайте посмотрим, как могли возникнуть параллельные миры и идеи о них.

Теорией праллельных миров мы обязаны Хью Эверетту, а он — вину. Он выдвинул по-настоящему мозгорастворяющую теорию. Параллельные миры порождает видимость, то есть кто-то должен что-то наблюдать. В таком случае эта видимость раскалывается и появляется куча других вариантов, которые существуют в других вселенных. Не знаю, как у вас, но у меня уже закружилась голова.

Получается, если сейчас на что-то посмотреть, например на пирожок, то взглядом можно создать кучу миров, где этот пирожок имеет разное воплощение? В одном мире — он дерево, в другом — конфета. И каждый мир действительно существует. Одна реальность раскалывается, и из нее начинают ветвиться другие реальность. Все сводится к особой квантовой системе, которая предлагает нам каталог из всевозможных состояний. В нашем мире появляется то состояние, которое соответствует нашей картине мира.

Физик Хью Эверетт и его параллельные миры. Источник: https://tass.ru/

Но тут пришел Стивен Хокинг, чтобы спасти нас от супергеройских взглядов, которые без перерывов на обед создают новые вселенные. Хокинг говорил, что параллельные миры появились в момент рождения Вселенной. Он полагал, что Большой взрыв мог породить не одну Вселенную, а вселенское множество разных Вселенных. Мы можем попасть в другой мир через черную дыру, но обратно вернуться не сможем.

Существование других миров не прошло бесследно для нашего, другие Вселенные могли оставить после себя следы на общем фоне микроволнового излучения. Но эти следы еще не нашлись. Кажется, именно в них спрятался ответ на вопрос, как зародилась жизнь. Параллельные миры могут влиять друг на друга на квантовом уровне, и они не кардинально отличаются друг от друга. В них те же мы, только немного другие. Если в этом мире вы не носите кепок, то в другом — без любимой голубой кепки никогда не выйдете за порог. Но даже одна маленькая кепочка можем перевернуть привычный мир с ног на голову.

Стивен Хокинг. Источник: http://2035.media/

«Как сказал бы Стивен, Вселенная даже теоретически должна была получиться именно такой, какой она получилась», — говорил ученый Томас Херток, соавтор Стивена Хокинга.

Хокинг считал наш мир особенным, где все сложилось именно так, чтобы зародилась жизнь. Иначе говоря, где все сложилось именно так, как сложилось. Можем ли мы тогда любой другой мир назвать особенным и идеальным?

Источник: zen.yandex.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.