Критика теории тепловой смерти вселенной


Содержание

Введение

1. Понятие Вселенной

2. Проблема тепловой смерти Вселенной

2.1 Второй закон термодинамики

2.2 «За» и «против» теории тепловой смерти

Заключение

Введение

В данной работе мы поговорим о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.


Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти». В данной работе мы и рассмотрим его.

1. Понятие Вселенной

A что такое Вселенная? Ученые под этим термином понимают максимально большую область пространства, включающую в себя как все доступные для изучения небесные тела и их системы, т.е. как Метагалактику, так и возможное окружение, еще влияющее на характер распределения и движения тел в ее астрономической части.

Известно, что Метагалактика находится в состоянии приблизительно однородного и изотропного расширения. Все галактики удаляются друг от друга со скоростью тем большей, чем больше расстояние между ними. С течением времени скорость этого расширения уменьшается. На расстоянии 15-20 миллиардов световых лет удаление происходит со скоростью, близкой к скорости света. По этой и ряду других причин, мы не можем видеть более далекие объекты. Существует как бы некий «горизонт видимости». Вещество на этом горизонте находится в сверхплотном («сингулярном», т.е. особом) состоянии, в каком оно было в момент условного начала расширения, хотя на этот счет имеются и другие предположения. Из-за конечности скорости распространения света (300000 км/с) мы не можем знать, что происходит на горизонте сейчас, но некоторые теоретические расчеты позволяют думать, что за пределами горизонта видимости вещество распределено в пространстве примерно с той же плотностью, что и внутри него.


енно это и приводит как к однородному расширению, так и к наличию самого горизонта. Поэтому часто Метагалактику не ограничивают видимой частью, а рассматривают как сверхсистему, отождествленную со всей Вселенной в целом, считая ее плотность однородной. В простейших космологических построениях рассматривают два основных варианта поведения Вселенной – неограниченное расширение, при котором средняя плотность вещества с течением времени стремится к нулю, и расширение с остановкой, после которой Метагалактика должна начать сжиматься. В общей теории относительности показывается, что наличие вещества искривляет пространство. В модели, где расширение сменяется сжатием, плотность достаточно высока и кривизна оказывается такой, что пространство «замыкается на себя», подобно поверхности сферы, но в мире с большим, чем «у нас», числом измерений. Наличие горизонта приводит к тому, что даже этот пространственно конечный мир мы не можем видеть целиком. Поэтому с точки зрения наблюдений замкнутый и открытый мир различаются не очень сильно.

Скорее всего, реальный мир устроен сложнее. Многие космологи предполагают, что существует несколько, может быть, даже очень много метагалактик и все они вместе могут представлять какую-то новую систему, являющуюся частью некоторого еще более крупного образования (может быть, принципиально иной природы). Отдельные части этого гипермира (вселенные в узком смысле) могут иметь совершенно различные свойства, могут быть не связаны друг с другом известными нам физическими взаимодействиями (или быть слабо связанными, что имеет место в случае так называемого полузамкнутого мира).


этих частях гипермира могут проявляться иные законы природы, а фундаментальные константы типа скорости света могут иметь другие значения или вообще отсутствуют. Наконец, в таких вселенных может быть не такое, как у нас, число пространственных измерений.

2. Проблема тепловой смерти Вселенной

2.1 Второй закон термодинамики

Согласно второму закону (началу) термодинамики, процессы, происходящие в замкнутой системе, всегда стремятся к равновесному состоянию. Иными словами, если нет постоянного притока энергии в систему, идущие в системе процессы стремятся к затуханию и прекращению.

Идея о допустимости и даже необходимости применения второго закона термодинамики ко Вселенной как целому принадлежит В. Томсону (лорду Кельвину), который опубликовал ее еще в 1852 г. Несколько позже Р. Клаузиус сформулировал законы термодинамики в применении ко всему миру в следующем виде: 1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму.

Максимальная энтропия как термодинамическая характеристика состояния соответствует термодинамическому равновесию. Поэтому обычно интерпретация этого положения сводилась (часто сводится и сейчас) к тому, что все движения в мире должны превратиться в теплоту, все температуры выровняются, плотность в достаточно больших объемах должна стать всюду одинаковой. Это состояние и получило название тепловой смерти Вселенной.


Реальное разнообразие мира (кроме, разве что, распределения плотности на самых больших ныне наблюдаемых масштабах) далеко от нарисованной картины. Но если мир существует вечно, состояние тепловой смерти уже давно должно было бы наступить. Полученное противоречие получило название термодинамического парадокса космологии. Чтобы его ликвидировать, нужно было допустить, что мир существует недостаточно долго. Если говорить о наблюдаемой части Вселенной, а также о ее предполагаемом окружении, то это, по-видимому, так и есть. Мы уже говорили о том, что она находится в состоянии расширения. Возникла она скорее всего в результате взрывообразной флуктуации в первичном вакууме сложной природы (или, можно сказать, в гипермире) 15 или 20 миллиардов лет назад. Астрономические объекты – звезды, галактики – возникли на более поздней стадии расширения из первоначально почти строго однородной плазмы. Однако по отношению к далекому будущему вопрос остается. Что ждет нас или наш мир? Наступит рано или поздно тепловая смерть или же этот вывод теории по каким-то причинам неверен?

2.2 «За» и «против» теории тепловой смерти

Многие выдающиеся физики (Л. Больцман, С. Аррениус и др.) категорически отрицали возможность тепловой смерти. Вместе с тем даже и в наше время не менее крупные ученые уверены в ее неизбежности. Если говорить о противниках, то, за исключением Больцмана, обратившего внимание на роль флуктуаций, их аргументация была скорее эмоциональной. Лишь в тридцатые годы нашего столетия появились серьезные соображения относительно термодинамического будущего мира. Все попытки решения термодинамического парадокса можно сгруппировать в соответствии с тремя основными идеями, положенными в их основу:


1. Можно думать, что второй закон термодинамики неточен или же неверна его интерпретация.

2. Второй закон верен, но неверна или неполна система остальных физических законов.

3. Все законы верны, но неприменимы ко всей Вселенной из-за каких-то ее особенностей.

В той или иной мере все варианты могут быть использованы и действительно используются, хотя с разным успехом, для опровержения вывода о возможной тепловой смерти Вселенной в сколь угодно удаленном будущем. По поводу первого пункта заметим, что в «Термодинамике» К.А. Путилова (М., Наука, 1981) приводится 17 различных определений энтропии, не все из которых эквивалентны. Мы скажем лишь, что если иметь в виду статистическое определение, учитывающее наличие флуктуаций (Больцман), второй закон в формулировке Клаузиуса и Томсона действительно оказывается неточным.

Закон возрастания энтропии, оказывается, имеет не абсолютный характер. Стремление к равновесию подчинено вероятностным законам. Энтропия получила математическое выражение в виде вероятности состояния. Таким образом, после достижения конечного состояния, которое до сих пор предполагалось соответствующим максимальной энтропии Smax, система будет находиться в нем более продолжительное время, чем в других состояниях, хотя последние неизбежно будут наступать из-за случайных флуктуаций.


и этом крупные отклонения от термодинамического равновесия будут значительно более редкими, чем небольшие. На самом деле состояние с максимальной энтропией достижимо только в идеале. Эйнштейн отметил, что «термодинамическое равновесие, строго говоря, не существует». Из-за флуктуаций энтропия будет колебаться в каких-то небольших пределах, всегда ниже Smax. Ее среднее значение <S> будет соответствовать больцмановскому статистическому равновесию. Таким образом, вместо тепловой смерти можно было бы говорить о переходе системы в некоторое «наиболее вероятное», но все же конечное статистически равновесное состояние. Считается, что термодинамическое и статистическое равновесие – практически одно и то же. Это ошибочное мнение опроверг Ф.А. Цицин, показавший, что различие в действительности весьма велико, хотя о конкретных значениях разницы мы здесь говорить не можем. Важно, что любая система (например, идеальный газ в сосуде) рано или поздно будет иметь не максимальное значение энтропии, а скорее <S>, соответствующее, как будто, сравнительно малой вероятности. Но здесь дело в том, что энтропию <S> имеет не одно состояние, а громадная их совокупность, которую лишь по небрежности называют единым состоянием. Каждое из состояний с <S> имеет и в самом деле малую вероятность осуществления, и поэтому в каждом из них система не задерживается долго.

для их полного набора вероятность получается большой. Поэтому совокупность частиц газа, достигнув состояния с энтропией, близкой к <S>, должна довольно быстро перейти в какое-то другое состояние с примерно той же энтропией, затем в следующее и т.д. И хотя в состоянии, близком к Smax, газ будет проводить больше времени, чем в любом из состояний с <S>, последние вместе взятые становятся более предпочтительными.

Источник: mirznanii.com

Никто никогда раньше не видел, чтобы одна из огромных красных звезд меняла яркость с такой небольшой амплитудой. Это был признак того, что жизнь и смерть этих звезд сложнее, чем это утверждали наши простейшие теории. «Это не удивительно», — говорит Стэн Вусли из Калифорнийского Университета в Санта-Крусе. На самом деле, открытие может помочь объяснить, почему массивные звезды в компьютерных моделях часто не взрываются.

Расширение и падение

Традиционная теория гласит, что почти все звезды, родившиеся более чем в восемь раз массивнее Солнца, взрываются как сверхновые. В молодости массивная звезда ярко-синяя. Ядерные реакции в ее ядре генерируют огромное количество энергии. При этом звезда остается горячей, так что давление газа выталкивается наружу и частично противодействует внутреннему притяжению гравитации звезды; так же, как и давление множества фотонов, выходящих из ядра звезды. Пока она генерирует энергию, звезда может находится в стабильном состоянии.


В конце концов, однако, гравитация всегда побеждает. На конечной стадии, когда у массивной звезды начинает кончаться топливо, она расширяется. Звезды, рожденные от восьми до 25 или 30 масс Солнца, расширяются настолько, что их поверхности охлаждаются, и звезды становятся красными супергигантами. Если бы Солнце было таким же большим, как самый большой красный супергигант, оно поглотило бы каждую планету от Меркурия до Юпитера. На этом этапе, согласно стандартным теориям, звезда истощает свое топливо, и ее ядро разрушается. Коллапс вызывает волну нейтрино. Эти призрачные частицы обычно беспрепятственно проходят сквозь материю, но при коллапсе ядра образуется столько нейтрино, что они взрываются от внешних слоев звезды, вызывая титанический взрыв сверхновой.

Действительно, астрономы видят множество взрывов сверхновых в других галактиках, часто в спиральных рукавах, где обитают массивные звезды. Поэтому преобладает мнение, что почти все звезды, рожденные при более чем восьми массах Солнца, взрываются как сверхновые.

Однако в течение десятилетий теоретики, такие как Вусли, пытались заставить эти массивные звезды взрываться в компьютерных моделях; вместо этого модельные звезды часто разрушаются под собственным весом. Исследователи часто полагали, что знаменитые слова Шекспира звучали здесь правдиво: вина не в наших звездах, а в нас самих. Теоретические модели могут не подражать экстремальным условиям в этих экстремальных звездах.


Проблема супергиганта

Но в последние годы наблюдения также начали наводить на мысль о том, что некоторые красные супергиганты на самом деле не становятся сверхновыми. Начиная с 1987 года, когда наблюдатели увидели сверхновую в Большом Магеллановом Облаке, соседней галактике. Астрономы смогли исследовать предвзрывоопасные изображения галактик и определить, какая из звезд взорвалась.

К настоящему времени, говорит Стивен Смартт из Королевского университета в Белфасте, астрономы провели 25 таких исследований звезд. Как и ожидалось, большинство обреченных звезд были красными супергигантами. Но они не охватывали весь диапазон массы от восьми до 30 солнц. «Мы почти не обнаружили звезд выше массы 17 Солнца (с рождения), — говорит Смартт, — и эти звезды должны быть самыми яркими, их легче всего найти на снимках». Он называет эту неудачу проблемой красного супергиганта . Смартт подозревает, что взрываются только нижние красные супергиганты. Красные супергиганты более высокой массы, рожденные при более чем 17 солнечных массах — не взрываются, их ядра тихо рушатся, превращаясь черные дыры.

Исчезнувший супергигант 2008 года, вероятный пример подобных явлений, говорит Смартт. Дом звезды — гиперактивная спиральная галактика в 25 миллионах световых лет от Земли под названием NGC 6946, которая печально известна своими сверхновыми солнечной массы. С 1917 по 2017 год наблюдатели видели там 10 взрывов сверхновых, больше, чем в любой другой галактике.


В то время никто не заметил исчезновения звезды. Однако в 2014 году Кристофер Кочанек и аспирантка Джилл Герке, оба из Университета штата Огайо в Колумбусе, изучали изображения галактик в очень высоком разрешении, которое позволяло обнаружить их отдельные звезды. Эти астрономы знали о проблеме красных супергигантов и о трудностях, с которыми теоретики столкнулись при попытке смоделировать взрывы этих звезд. Снимки галактик запечатлели миллион красных супергигантов, каждая из которых — потенциальная будущая сверхновая. Сравнивая изображения разных лет, астрономы надеялись поймать прямо противоположное: как красный супергигант выпадал из поля зрения, превращаясь в черную дыру.

«Это было очень красиво и чисто», — говорит Герке о событии 2008 года. «Там можно было увидеть звезду, и тогда было ясно видно, что, по крайней мере, по нашим данным, она больше не видна». Это до сих пор единственный случай, когда кто-либо видел, как звезда исчезает минуя стадию сверхновой.

Вусли, который не участвовал в открытии, называет это утверждение правдоподобным. Хотя звезда, вероятно, все еще могла бы сиять за густым облаком пыли, а звездный свет должен нагревать эту пыль и заставлять ее сильно светиться в инфракрасных длинах волн. Но такое свечение не было никем зафиксировано. Убедительного подтверждения смерти звезды ждет космический телескоп Джеймса Вебба — большой инфракрасный прибор, который НАСА планирует запустить в 2021 году.

Противоуглеродный

В 2019 году Тугулдур Сухбольд (Tuguldur Sukhbold) из Университета штата Огайо предложил объяснить, почему красные супергиганты нижней массы взрываются, а красные супергиганты верхней массы — нет: «Это, в конечном счете, следствие того, что углерод сгорает в массивной звезде», — говорит он. Его работа основана на признании четверть века назад, того что углерод горит по-разному в зависимости от того, с какой массой родилась массивная звезда .

Большую часть своей жизни массивная звезда преобразует водород в гелий в своем ядре, как это делает Солнце. Когда водород заканчивается, гелий воспламеняется, создавая углерод и кислород. А когда заканчивается гелий, звезда, отчаянно пытаясь удержать большой вес, стучит по углероду, превращая его в неон, натрий и магний.

Он горит при такой высокой температуре, что интенсивное тепло вырабатывает высокоэнергетические фотоны, которые могут превращаться в пары электронов и антиэлектронов. Обычно они уничтожают друг друга и могут производить нейтрино и антинейтрино, которые вылетают из звезды и лишают ее энергии. А также никак не влияют на удержание гравитационной стабильности звезды. Из-за потерь нейтрино, когда загорается углерод, звезде остается жить не более нескольких тысяч лет. В этот период звезда будет гореть еще более тяжелым топливом, пока у нее не закончатся все ресурсы. Последние реакции куют железо, что является тупиком, так как звезда больше не может выжимать энергию ядерного синтеза из железного ядра звезды. Не имея ничего, что могло бы поддержать стабильность процессов внутри звезды, ядро разрушается.

Взорвется ли звезда или не взорвется, зависит, прежде всего, от того, как она сожгла свой углерод в ядре, предлагает Сухбольд. «То, как происходит горение, меняет конечную структуру ядра звезды, — говорит он, — и изучая структуру ядра, можно сказать о том, что произойдет в конце, жизненного пути звезды». В нижнемассовых красных супергигантах углерод горит конвективно: Область горения пузырится и кипит, как восходящие и нисходящие потоки тепла газовых слоев вдали от ядра. Конвекция также пополняет центральную область звезды свежим углеродным топливом, тем самым продлевая эту стадию эволюции звезды и вызывая большие нейтринные потери. Следовательно, эти нижнемассовые красные супергиганты рождаются с компактными ядрами. Когда ядра разрушаются, образуя плотные звездные объекты, называемые нейтронными звездами, они отрываются от внешних слоев звезды во время вспышки сверхновой.

Однако в сверхмассивных красных супергигантах углерод не горит конвективно. Что в свою очередь ограничивает нейтринные потери и приводит к более протяженному ядру с плотным материалом вокруг него. Когда ядро разрушается, взрывная волна захлопывается в этой плотной оболочке, что сдерживает взрыв. Вместо того, чтобы создать сверхновую, звезда взрывается, образуя черную дыру.

Разделительная линия между двумя путями эволюции — масса звезды с рождения около 19 масс Солнца, вычисленная Сухбольдом — недалеко от наблюдательного определения Смартта. Учитывая неопределенности как в наблюдении, так и в теории, Сухбольд не видит конфликта теории и наблюдательных фактов. Фактически, он считает, что истинная разделительная линия может находиться где угодно между 16 и 20 массами Солнца. Более того, теория утверждает, что из этого правила должны быть исключения. Несколько звезд ниже этой массы могут не взорваться, а несколько звезд выше этой массы могут взорваться.

Источник: pikabu.ru

Рассматривая Вселенную как изолированную систему, Клаузиус распространил и на нее представление о возрастании энтропии при самопроизвольных про­цессах. Как известно, при всех реальных процессах происходит хотя бы частичное преобразование любого вида энергии в теплоту и вместе с тем выравнивание тем­пературы всех взаимодействующих тел. Отсюда Клаузиус сделал вывод: энтропия Вселенной стремится к максимуму.

Это означает, что энергия в природе постоянно деградирует. Различные виды энергии могут переходить в тепловую энергию полностью, в то время как тепловая энергия в другие виды энергии переходит лишь частично. В результате энер­гия обесценивается, так как постепенно она вся превращается в теплоту, которая представляет собой хаотическое движение молекул. По истечении некоторого про­межутка времени во Вселенной, по Клаузиусу, будет существовать только один вид энергии — энергия беспорядочного движения частиц, равномерно распреде­лившихся между телами Вселенной и обладающими одинаковой температурой. Возможность самопроизвольного возникновения каких-либо процессов исчезнет, так как энергия при этом потеряет способность к превращениям. Наступит состоя­ние так называемой «тепловой смерти» Вселенной, т. е. состояние вечного равновесия.

Отсюда можно сделать далеко идущие выводы. В самом деле, если неизбежен конец Вселенной, значит, она имела и свое начало, а следовательно, существует какая-то сила, стоящая над природой, и способная вызвать ёе к жизни в результа­те какого-то первичного толчка… и т. п.

Эта теория от начала и до конца является сугубо идеалистической, ибо, по меткому замечанию Ф. Энгельса, исходит из молчаливого признания акта творе­ния и творца.

Современная наука начисто отвергает ложную концепцию о «тепловой смер­ти мира». Накопленный человечеством опыт убедительно доказывает, что мир бесконечен и развитие его происходило вечно и вечно будет продолжаться. Основа ошибки Клаузиуса заключается в том, что второе начало термодинамики в отли­чие от первого начала не является абсолютным законом природы, а имеет отно­сительный характер. Нельзя рассматривать Вселенную как замкнутую изолированную ко­нечную систему, а потому к ней неприменимо второе начало термодинамики. Есте­ственно считать, что при иных условиях существования материи, сильно отлича­ющихся от тех, которые имеют место на Земле, процессы могут протекать и в об­ратном направлении, т. е. с убыванием энтропии. Об этом свидетельствуют наблю­дения астрономов и астрофизиков за рождением новых звезд, новых миров.

С философских позиций ложность тезиса о «тепловой смерти» мира была вскрыта Ф. Энгельсом (1875—1876) в его классическом труде «Диалектика при­роды». Он отмечает, что закон возрастания энтропии (второе начало термодина­мики), распространенный на всю Вселенную, не совместим с законом сохранения и превращения энергии, так как, исходя из теории «тепловой смерти», мы непре­менно сталкиваемся с качественным уничтожением энергии, т. е. с преобразовани­ем ее в вид, в котором она становится не способной к обратным превращениям.

 

Источник: helpiks.org

13. КРИТИКА ТАК НАЗЫВАЕМОЙ «ТЕОРИИ ТЕПЛОВОЙ СМЕРТИ ВСЕЛЕННОЙ»

Примером неправильного применения второго начала термодинамики может служить так называемая «теория тепловой смерти Вселенной», особенно оживленно обсуждавшаяся в конце прошлого столетия.

Неправильно распространяя на Вселенную второе начало термодинамики, сторонники этой теории рассуждали приблизительно так: все виды энергии способны самопроизвольно превращаться в теплоту, а теплота самопроизвольно переходит от тел с большей температурой к телам с меньшей температурой.

В природе непрерывно происходит процесс выравнивания существующих разностей температур. Рано или поздно во всей Вселенной выравняются температура и давление. Вселенная достигнет состояния термодинамического равновесия, при котором исключается возможность каких-либо процессов, — это будет состояние тепловой смерти Вселенной.

Поскольку подобное состояние еще не достигнуто, следовательно, Вселенная не существует вечно, она была создана какое-то количество лет тому назад. Таким образом, делался вывод о возникновении (сотворении) мира.

Дальше ученые-идеалисты делали вывод о том, что для создания Вселенной необходима была деятельность сознательного существа. Необходимость творца Вселенной аргументировалась так: поскольку Вселенная развивается, переходя от состояний с меньшей энтропией к состояниям с большей энтропией, следовательно, она переходит от состояний менее вероятных к состояниям более вероятным. Двигаясь назад в глубь веков, мы встречаемся, согласно этим рассуждениям, с состояниями все менее и менее вероятными и, наконец, в пределе достигаем состояния, вероятность которого исчезающе мала.

Подобное состояние не может возникнуть случайно, но оно может быть создано сознательным существом, так же как практически не может нормальная игральная кость выпасть миллион раз подряд вверх шестеркой, но может быть таким образом сознательно положена человеком.

Подобные ошибочные с точки зрения физики, но имеющие видимость научной теории рассуждения представляли широкое поле деятельности различным представителям идеалистической философии.

Фундаментальная ошибка всех этих рассуждений заключалась в том, что опытный закон, установленный применительно к системе, содержащей конечное число частиц, необоснованно переносился на бесконечно протяженную систему. Подобного рода ошибки относятся к основным логическим ошибкам. Ведь ни у кого не возникает сомнения в невозможности применения второго начала

Источник: scask.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.