Что было до большого взрыва во вселенной


Достаточно трудно представить себе время, примерно 13,7 миллиардов лет назад, когда вся Вселенная существовала в сингулярности. Теория Большого взрыва объясняет возникновение Вселенной, и вся материя в космосе, само пространство — существовали в форме, более мелкой, чем элементарные частицы. Еще более сложный вопрос: что существовало до большого взрыва? Сам вопрос предшествует современной космологии, по крайней мере, на 1600 лет. В IV веке богослов Святой Августин разбирался с природой бога до сотворения Вселенной. Его ответ? Время было частью Божьего творения, и в нем просто не было времени до сотворения.


Лучший физик XX века, Альберт Эйнштейн пришел к очень похожим выводам при построении теории относительности. Давайте рассмотрим влияние массы на время. Планеты огромной массы искривляют пространство-время меньше для человека на земной поверхности, чем для спутника на орбите. Разница слишком мала, чтобы ее заметить, но время течет более медленно для кого-то, стоящего рядом с массивным объектом. Перед большим взрывом сингулярность владела всей массой во Вселенной, эффективно сворачивая время в тупик. Следуя этой логике, название этой статьи является в корне ошибочным. Согласно теории относительности Эйнштейна, время пришло только после расширения первозданной сингулярности в сторону своего текущего размера и формы. Дело закрыто? Далеко нет. Через десятилетия после смерти Эйнштейна, активно развивается квантовая физика, и множество новых теорий воскрешает вопрос о состоянии до большого взрыва.

Вот мысль: что, если наша Вселенная является порождением другой, более старшей Вселенной? Некоторые астрофизики полагают, что эта история написана в реликтовом излучении, оставшимся от большого взрыва.


трономы впервые наблюдали реликтовое излучение в 1965 году, и оно быстро создало проблемы для теории большого взрыва — проблемы, которые были впоследствии устранены в 1981 году с инфляционной теорией. Эта теория предполагает очень быстрое расширение Вселенной в первые мгновения своего существования. При этом учитываются температура и колебания плотности в реликтовом излучении, но подсказывает, что эти колебания должны быть едиными.

Это не тот случай. Недавние попытки сопоставления фактов показывают неоднородность колебаний в некоторых областях Вселенной. Некоторые космологи видят в этом доказательства, что наша Вселенная образовалась из материнской Вселенной. В хаотической теории инфляции, это понятие идет еще глубже: бесконечное развитие инфляционных пузырей — каждый человек становится Вселенной, и каждый из них порождает еще больше инфляционных пузырьков в неизмеримой мульти вселенной.


Еще другие модели вращаются вокруг формирования сингулярности. Черные дыры работают, как поглотители космического мусора, поэтому они выступают в качестве главных кандидатов на причину изначального сжатия. Теоретически в нашей расширяющейся Вселенной могут быть белые дыры выхода из черной дыры в другой Вселенной. А белая дыра это гипотетическое тело, которое действует противоположно черной дыре — излучает много энергии и материи, а не всасывать его. Думайте о ней, как о космическом выпускном клапане. Некоторые ученые предполагают, что наша Вселенная родилась в черной дыре, и каждая черная дыра в нашей Вселенной может содержать также отдельные вселенные.

Другие ученые считают, что сингулярности возникают внутри цикла расширение – сжатие. Наша расширяющаяся Вселенная, в конце концов, рухнет сама на себя, то есть начнется большое сжатие. Сингулярность возникнет еще раз, Вселенная будет расширяться в очередном большом взрыве. Этот процесс будет вечным — большой взрыв и большое сжатие Вселенной — перерождение в другую фазу существования. Последнее объяснение также поддерживает идею теории струн. Она предполагает, что новая материя и энергия появляются каждый триллион лет, когда две экстра мембраны или браны, сталкиваются в зоне вне нашей Вселенной.


Что было до большого взрыва? Это все еще открытый вопрос. Пожалуй, ничего. Возможно, другая вселенная или другая версия нашей собственной. Возможно, море вселенных, каждая с разным набором законов, диктующих свою физическую реальность.

Источник: zen.yandex.ru

Мир не существует вечно. Он родился в пламени Большого взрыва. Но было ли это уникальным явлением в истории космоса? Или повторяющимся событием, вроде рождения звезд и планет? Что если Большой взрыв – лишь фаза перехода из одного состояния Вечности в другое?

Многие физики говорят о том, что изначально было Нечто, а не Ничто. Быть может, наша Вселенная, – как и другие, – родилась из элементарного квантового вакуума. Но как ни «минимально просто» подобное состояние, – а меньше, чем квантовый вакуум, не дозволяют быть законы физики, – его нельзя все же именовать «Ничто».


Может быть, видимая нами Вселенная – лишь очередное агрегатное состояние Вечности? А причудливое расположение галактик и галактических скоплений – что-то вроде кристаллической решетки, которая в n-мерном мире, существовавшем до рождения нашей Вселенной, имела совсем иную структуру и которая может быть предсказана «формулой всего», разыскивавшейся еще Эйнштейном? И будет ли она найдена в ближайшие десятилетия? Ученые напряженно вглядываются сквозь стену Неведомого, оградившего наше мироздание, пытаясь понять, что же было за мгновение до того, как, по привычным для нас представлениям, не было ровным счетом ничего. Какие формы Вечного космоса можно вообразить, наделив время и пространство теми качествами, которые немыслимы в нашем мироздании?

Большой взрыв?– лишь фаза перехода из одного состояния Вечности в другое

Среди самых многообещающих теорий, в которые физики пытаются втиснуть целую Вечность, можно назвать теорию квантовой геометрии, квантово-спиновую динамику или квантовую гравитацию. Наибольший вклад в их разработку внесли Абэй Аштекар, Тед Джекобсон, Ежи Левандовски, Карло Ровелли, Ли Смолин и Томас Тиманн. Все это – сложнейшие физические построения, целые дворцы, возведенные из формул и гипотез, – лишь бы скрыть таящуюся в их глубине и темноте прорву, сингулярность времени и пространства.

Окольные тропы новых теорий заставляют нас перешагивать через очевидные, на первый взгляд, истины.


к, в квантовой геометрии пространство и время, прежде дробимые бесконечно, вдруг разбиваются на отдельные островки – порции, кванты, меньше которых нет ничего. Все сингулярные точки могут быть вмурованы в эти «каменные глыбы». Само пространство-время превращается в переплетение одномерных структур – «сети спинов», то есть становится дискретной структурой, своего рода цепью, сплетенной из отдельных звеньев.

Объем минимально возможной петельки пространства составляет всего 10—99 кубического сантиметра. Эта величина настолько мала, что в одном кубическом сантиметре гораздо больше квантов пространства, чем тех самых кубических сантиметров в наблюдаемой нами Вселенной (ее объем составляет 1085 сантиметров в кубе). Внутри квантов пространства нет ничего, ни энергии, ни вещества – подобно тому, как внутри математической точки – по определению – не отыскать ни треугольника, ни икосаэдра. Однако если мы применим гипотезу о «субмикроскопической ткани Вселенной», дабы описать Большой взрыв, мы получим поразительные результаты, как показали несколько лет назад Абэй Аштекар и Мартин Боджовальд из Пенсильванского университета. Если заменить в Стандартной теории космологии дифференциальные уравнения, предполагающие непрерывное течение пространства, другими дифференциальными уравнениями, следующими из теории квантовой геометрии, то таинственная сингулярность исчезнет. Физика не заканчивается там, где начинается Большой взрыв, – таков первый обнадеживающий вывод космологов, отказавшихся принимать за истину в последней инстанции видимые нами свойства мироздания.


В теории квантовой гравитации предполагается, что наша Вселенная (как и все другие) родилась в результате случайной флуктуации квантового вакуума – глобальной макроскопической среды, в которой не было времени. Всякий раз, когда в квантовом вакууме возникает флуктуация определенных размеров, рождается и новая Вселенная. Она «отпочковывается» от той однородной среды, в которой образовалась, и начинает свою собственную жизнь. Теперь у нее – своя история, свое пространство, свое время, своя стрела времени.

В современной физике создан ряд теорий, которые показывают, как из вечно существующей среды, где нет Макровремени, но в отдельных точках которой течет свое микровремя, может возникнуть такой громадный мир, как наш.

Например, итальянские физики Габриэле Венециано и Маурицио Гасперини в рамках теории струн предполагают, что изначально существовал так называемый «струнный вакуум». Случайные квантовые флуктуации в нем привели к тому, что плотность энергии достигла критической величины, и это вызвало локальный коллапс. Он завершился рождением нашей Вселенной из вакуума.

В рамках теории квантовой геометрии Абэй Аштекар и Мартин Боджовальд показали, что пространство и время могут возникать из более примитивных фундаментальных структур, а именно «сетей спинов».


Экхард Ребхан из Дюссельдорфского университета и – независимо от него – Джордж Эллис и Рой Маартенс из Кейптаунского университета развивают идею «статической Вселенной», которую обдумывали еще Альберт Эйнштейн и британский астроном Артур Эддингтон. В своем стремлении обойтись без эффектов квантовой гравитации Ребхан и его коллеги придумали сферическое пространство, которое пребывает посреди вечной пустоты (или, если хотите, пустой вечности), где нет никакого времени. Ввиду некоторой нестабильности здесь развивается инфляционный процесс, что и приводит к горячему Большому взрыву.

Конечно, перечисленные модели умозрительны, но они принципиально соответствуют современному уровню развития физики и результатам астрономических наблюдений последних двух десятилетий. В любом случае, ясно одно. Большой взрыв был скорее рядовым, естественным событием, а не единственным в своем роде.

Помогут ли подобные теории понять, что же могло быть до Большого взрыва? Если Вселенная родилась, что ее породило? Где в современных теориях космологии проступает «генетический отпечаток» ее родительницы? В 2005 году Абэй Аштекар, например, обнародовал результаты своих новых расчетов (проделать их помогли Томаш Павловски и Парамприт Сингх). Из них явствовало, что если исходные посылки верны, то до Большого взрыва существовали то же самое пространство-время, что и после этого события. Физика нашего мироздания, словно в зеркале, отразилась в физике мира иного. В этих расчетах Большой взрыв, будто зеркальный экран, рассекал Вечность, располагая рядом несоединимое – естество и его отражение. И что подлинность здесь, что призрак?


Единственное, что можно разглядеть «с той стороны зеркального стекла», что Вселенная тогда не расширялась, а сжималась. Большой взрыв стал точкой ее коллапса. В этот момент пространство и время на мгновение пресеклись, чтобы вновь отразиться – продолжиться – фениксом восстать уже в знакомом нам мире, том мироздании, которое мы вымеряем нашими формулами, шифрами и числами. Вселенная буквально вывернула сама себя наизнанку, словно перчатку или рубашку, и с тех пор неуклонно расширяется. Большой взрыв не был, по Аштекару, «творением целой Вселенной из Ничто», а являлся всего лишь переходом из одной динамической формы Вечности в другую. Может быть, Вселенная переживает бесконечную череду «больших взрывов», и эти десятки миллиардов (или сколько там) лет, разделяющие ее отдельные фазы, – лишь периоды «космической синусоиды», по законам которой живет мироздание?

Данный текст является ознакомительным фрагментом.

Следующая глава >

Источник: info.wikireading.ru

Инфляционная космология


Непременной частью стандартной космологической теории служит концепция инфляции (см. врезку). После окончания инфляции в свои права вступило тяготение, и Вселенная продолжила расширяться, но уже с уменьшающейся скоростью. Такая эволюция растянулась на 9 млрд лет, после чего в дело вступило еще одно антигравитационное поле еще неизвестной природы, которое именуют темной энергией. Оно опять вывело Вселенную в режим экспоненциального расширения, который вроде бы должен сохраниться и в будущие времена. Следует отметить, что эти выводы базируются на астрофизических открытиях, сделанных в конце прошлого века, почти через 20 лет после появления инфляционной космологии.

Впервые инфляционная интерпретация Большого взрыва была предложена около 30 лет назад и с тех пор многократно шлифовалась. Эта теория позволила разрешить несколько фундаментальных проблем, с которыми не справилась предшествующая космология. Например, она объяснила, почему мы живем во Вселенной с плоской евклидовой геометрией — в соответствии с классическими уравнениями Фридмана, именно такой она и должна сделаться при экспоненциальном расширении. Инфляционная теория объяснила, почему космическая материя обладает зернистостью в масштабах, не превышающих сотен миллионов световых лет, а на больших дистанциях распределена равномерно. Она также дала истолкование неудачи любых попыток обнаружить магнитные монополи, очень массивные частицы с одиночным магнитным полюсом, которые, как считается, в изобилии рождались перед началом инфляции (инфляция так растянула космическое пространство, что первоначально высокая плотность монополей сократилась почти до нуля, и поэтому наши приборы не могут их обнаружить).

Что было до большого взрыва во вселенной

Вскоре после появления инфляционной модели несколько теоретиков поняли, что ее внутренняя логика не противоречит идее перманентного множественного рождения все новых и новых вселенных. В самом деле, квантовые флуктуации, подобные тем, которым мы обязаны существованием нашего мира, могут возникать в любом количестве, если для этого имеются подходящие условия. Не исключено, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода, также способную к космологическому «деторождению». Существуют модели, в которых такие дочерние вселенные возникают непрерывно, отпочковываются от своих родительниц и находят свое собственное место. При этом вовсе не обязательно, что в таких мирах устанавливаются одни и те же физические законы. Все эти миры «вложены» в единый пространственно-временной континуум, но разнесены в нем настолько, что никак не ощущают присутствия друг друга. В общем, концепция инфляции позволяет- более того, вынуждает!- считать, что в исполинском мегакосмосе существует множество изолированных друг от друга вселенных с различным устройством.

Альтернатива

Физики-теоретики любят придумывать альтернативы даже самым общепринятым теориям. Появились конкуренты и у инфляционной модели Большого взрыва. Они не получили широкой поддержки, но имели и имеют своих последователей. Теория Стейнхардта и Тьюрока среди них не первая и наверняка не последняя. Однако на сегодняшний день она разработана детальней остальных и лучше объясняет наблюдаемые свойства нашего мира. Она имеет несколько версий, из которых одни базируются на теории квантовых струн и многомерных пространств, а другие полагаются на традиционную квантовую теорию поля. Первый подход дает более наглядные картинки космологических процессов, так что на нем и остановимся.

Что было до большого взрыва во вселенной

Самый продвинутый вариант теории струн известен как М-теория. Она утверждает, что физический мир имеет 11 измерений — десять пространственных и одно временное. В нем плавают пространства меньших размерностей, так называемые браны. Наша Вселенная — просто одна из таких бран, обладающая тремя пространственными измерениями. Ее заполняют различные квантовые частицы (электроны, кварки, фотоны и т. д.), которые на самом деле явлются разомкнутыми вибрирующими струнами с единственным пространственным измерением — длиной. Концы каждой струны намертво закреплены внутри трехмерной браны, и покинуть брану струна не может. Но есть и замкнутые струны, которые могут мигрировать за пределы бран — это гравитоны, кванты поля тяготения.

Как же циклическая теория объясняет прошлое и будущее мироздания? Начнем с нынешней эпохи. Первое место сейчас принадлежит темной энергии, которая заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры. В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской. В течение следующего триллиона лет размеры Вселенной удвоятся около ста раз и она превратится в практически пустой мир, полностью лишенный материальных структур. Рядом с нами находится еще одна трехмерная брана, отделенная от нас на ничтожное расстояние в четвертом измерении, и она тоже претерпевает аналогичное экспоненциальное растяжение и уплощение. Все это время дистанция между бранами практически не меняется.

Что было до большого взрыва во вселенной

А потом эти параллельные браны начинают сближаться. Их толкает друг к другу силовое поле, энергия которого зависит от расстояния между бранами. Сейчас плотность энергии такого поля положительна, поэтому пространство обеих бран расширяется по экспоненте, — следовательно, именно это поле и обеспечивает эффект, который объясняют наличием темной энергии! Однако этот параметр постепенно уменьшается и через триллион лет упадет до нуля. Обе браны все равно продолжат расширяться, но уже не по экспоненте, а в очень медленном темпе. Следовательно, в нашем мире плотность частиц и излучения так и останется почти что нулевой, а геометрия — плоской.

Новый цикл

Но окончание старой истории — лишь прелюдия к очередному циклу. Браны перемещаются навстречу друг другу и в конце концов сталкиваются. На этой стадии плотность энергии межбранового поля опускается ниже нуля, и оно начинает действовать наподобие гравитации (напомню, что у тяготения потенциальная энергия отрицательна!). Когда браны оказываются совсем близко, межбрановое поле начинает усиливать квантовые флуктуации в каждой точке нашего мира и преобразует их в макроскопические деформации пространственной геометрии (например, за миллионную долю секунды до столкновения расчетный размер таких деформаций достигает нескольких метров). После столкновения именно в этих зонах выделяется львиная доля высвобождаемой при ударе кинетической энергии. В итоге именно там возникает больше всего горячей плазмы с температурой порядка 1023 градусов. Именно эти области становятся локальными узлами тяготения и превращаются в зародыши будущих галактик.

Такое столкновение заменяет Большой взрыв инфляционной космологии. Очень важно, что вся возникшая заново материя с положительной энергией появляется за счет накопленной отрицательной энергии межбранового поля, поэтому закон сохранения энергии не нарушается.

Что было до большого взрыва во вселенной Инфляционная теория допускает образование множественных дочерних вселенных, которые непрерывно отпочковываются от существующих.

А как ведет себя такое поле в этот решающий момент? До столкновения плотность его энергии достигает минимума (причем отрицательного), затем начинает возрастать, а при столкновении становится нулевой. Затем браны отталкиваются друг от друга и начинают расходиться. Плотность межбрановой энергии проходит обратную эволюцию — опять делается отрицательной, нулевой, положительной. Обогащенная материей и излучением брана сначала расширяется с падающей скоростью под тормозящим воздействием собственного тяготения, а потом вновь переходит к экспоненциальному расширению. Новый цикл заканчивается подобно прежнему — и так до бесконечности. Циклы, предшествующие нашему, происходили и в прошлом — в этой модели время непрерывно, поэтому прошлое существует и за пределами 13,7 млрд лет, прошедших после последнего обогащения нашей браны материей и излучением! Было ли у них вообще какое-то начало, теория умалчивает.

Циклическая теория по‑новому объясняет свойства нашего мира. Он обладает плоской геометрией, поскольку к концу каждого цикла непомерно растягивается и лишь немного деформируется перед началом нового цикла. Квантовые флуктуации, которые становятся предшественниками галактик, возникают хаотически, но в среднем равномерно — поэтому космическое пространство заполнено сгустками материи, но на очень больших дистанциях вполне однородно. Мы не можем обнаружить магнитные монополи просто потому, что максимальная температура новорожденной плазмы не превышала 1023 К, а для возникновения таких частиц потребны много большие энергии — порядка 1027 К.

Циклическое мироздание Циклическое мироздание Момент Большого Взрыва — это столкновение бран. Выделяется огромное количество энергии, браны разлетаются, происходит замедляющееся расширение, вещество и излучение остывают, образуются галактики. Расширение вновь ускоряется за счет положительной плотности межбрановой энергии, а затем замедляется, геометрия становится плоской. Браны притягиваются друг к другу, перед столкновением квантовые флуктуации усиливаются и преобразуются в деформации пространственной геометрии, которые в будущем станут зародышами галактик. Происходит столкновение, и цикл начинается сначала.

Мир без начала и конца

Циклическая теория существует в нескольких версиях, как и теория инфляции. Однако, по словам Пола Стейнхардта, различия между ними чисто технические и интересны лишь специалистам, общая концепция же остается неизменной: «Во-первых, в нашей теории нет никакого момента начала мира, никакой сингулярности. Есть периодические фазы интенсивного рождения вещества и излучения, каждую из которых при желании можно называть Большим взрывом. Но любая из этих фаз знаменует не возникновение новой вселенной, а лишь переход от одного цикла к другому. И пространство, и время существуют и до, и после любого из этих катаклизмов. Поэтому вполне закономерно спросить, каким было положение дел за 10 млрд лет до последнего Большого взрыва, от которого отсчитывают историю мироздания.

Второе ключевое отличие — природа и роль темной энергии. Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений. А наш подход гораздо лучше скреплен внутренней логикой, поскольку темная энергия у нас присутствует изначально и именно она обеспечивает чередование космологических циклов». Впрочем, как отмечает Пол Стейнхардт, есть у циклической теории и слабые места: «Нам пока не удалось убедительно описать процесс столкновения и отскока параллельных бран, имеющий место в начале каждого цикла. Прочие аспекты циклической теории разработаны куда лучше, а здесь предстоит устранить еще немало неясностей».

Что было до большого взрыва во вселенной

Проверка практикой

Но даже самые красивые теоретические модели нуждаются в опытной проверке. Можно ли подтвердить или опровергнуть циклическую космологию с помощью наблюдений? «Обе теории, и инфляционная, и циклическая, предсказывают существование реликтовых гравитационных волн, — объясняет Пол Стейнхардт. — В первом случае они возникают из первичных квантовых флуктуаций, которые в ходе инфляции размазываются по пространству и порождают периодические колебания его геометрии, — а это, согласно общей теории относительности, и есть волны тяготения. В нашем сценарии первопричиной таких волн также служат квантовые флуктуации — те самые, что усиливаются при столкновении бран. Вычисления показали, что каждый механизм порождает волны, обладающие специфическим спектром и специфической поляризацией. Эти волны обязаны были оставить отпечатки на космическом микроволновом излучении, которое служит бесценным источником сведений о раннем космосе. Пока такие следы обнаружить не удалось, но, скорее всего, это будет сделано в течение ближайшего десятилетия. Кроме того, физики уже думают о прямой регистрации реликтовых гравитационных волн с помощью космических аппаратов, которые появятся через два-три десятка лет».

Источник: www.PopMech.ru

Команда американских астрофизиков предложила новый способ проверки инфляционной модели Вселенной, заключающийся в поиске сигналов «стандартных часов», генерируемых любым типом тяжелых частиц в «первичной вселенной». Описание метода принято к публикации в журнале Physical Review Letters.

«Конечной целью нашей работы является получение ответа на вопрос: какой была Вселенная до Большого взрыва?» – пишут авторы исследования.

Инфляционная модель Вселенной, говорящая о стремительном расширении пространства за долю секунды сразу после Большого взрыва, помогает разрешить некоторые важные вопросы о структуре и эволюции космоса, однако другие, сильно отличающиеся от нее теории также могут объяснить эти загадки, хотя и иным способом.

«В некоторых неинфляционных теориях Вселенная, предшествующая Большому взрыву, так называемая «первичная вселенная», сокращалась, и, таким образом, Большой взрыв был частью Большого отскока. Чтобы разобраться в этом вопросе, необходимо в первую очередь доказать ложность инфляционной модели, однако ее кажущаяся бесконечная адаптивность к данным делает практически невозможным ее надлежащее тестирование», – отмечают исследователи.

В настоящее время ситуация с инфляцией такова, что это очень гибкая идея, которую нельзя опровергнуть экспериментально. Независимо от того, какие данные астрономы получают в рамках наблюдений и какие несоответствия находят, у теоретиков всегда есть некоторые модели инфляции, способные это объяснить.

Поэтому астрофизики из Гарвардского университета (США) решили пойти от обратного и разработали идею «первичных стандартных часов», применяемую к неинфляционным теориям, которая потенциально может привести к экспериментальному опровержению инфляции. Она опирается на основополагающее свойство различных моделей – эволюцию размера первичной вселенной.

«Например, во время инфляции вселенная растет в геометрической прогрессии. В некоторых альтернативных теориях она сокращается. В одних вселенная делает это очень медленно, а в других быстро. Параметры, которые ранее были предложены для измерения в пользу каждой из теорий, обычно свойственны нескольким из них и не позволяют сделать однозначный вывод, так как не имеют прямого отношения к изменению размера первичной вселенной. Мы же хотели понять, какие наблюдаемые характеристики можно напрямую связать с этим фундаментальным свойством», – рассказывает Синь Чен, ведущий автор исследования.

Сигналы, генерируемые первичными стандартными часами, должны стать ключом к разгадке. Этот хронометр может быть «создан» любым типом тяжелых элементарных частиц в первичной вселенной. Такие частицы присущи всем конкурирующим теориям, и их колебания с некоторой регулярной частотой во многом напоминают движение маятника.

Первичная вселенная не была полностью однородной и содержала крошечные неравномерности в плотности, ставшие в итоге семенами крупномасштабных структур в современной Вселенной. Это свойство, по мнению исследователей, является основным источником информации, который поможет узнать, что было до Большого взрыва, так как тиканье стандартных часов генерировало сигналы, отпечатавшиеся в этих сгустках, при этом разные теории первичной вселенной предсказывают индивидуальные для себя типы сигналов из-за различных эволюционных путей пространства.

«Если мы представим всю информацию о том, что произошло до Большого взрыва, в виде кадров фильма, то стандартные часы должны рассказать нам, как его смотреть. Без какой-либо информации о них мы не знаем, должен ли фильм воспроизводиться вперед или назад, быстро или медленно, точно также, как мы не можем сказать, расширялась или сжималась первичная вселенная, и как быстро она это делала. Стандартные часы ставят метки времени на каждом из этих кадров, отснятых до Большого взрыва, и говорят нам, как проигрывать фильм», – добавил Синь Чен.

Астрофизики рассчитали, как эти стандартные тактовые сигналы должны выглядеть в неинфляционных теориях, и предложили метод их поиска.

«Если мы сможем найти набор сигналов, указывающих на сжатие первичной вселенной, это уничтожит все инфляционные теории. Однако их будет очень трудно обнаружить, поэтому нам, возможно, придется заглянуть во многие отдаленные уголки космоса. Реликтовое излучение – одно из таких мест, распределение галактик во Вселенной – другое. Мы уже приступили к поискам, и у нас есть несколько интересных кандидатов, но нам нужно больше данных», – заключил Синь Чен.

Ученые отмечают, что будущие миссии, такие как телескоп «Large Synoptic Survey Telescope», космическая обсерватория «Euclid» и недавно одобренный проект «SphereX», предоставят высококачественные данные, которые могут быть использованы для экспериментальной проверки инфляционной модели Вселенной.

Источник: in-space.ru

Откуда взялась Вселенная? Кажется, что идея, будто все это получилось из ничего, противоречит логике и здравому смыслу. Возможно, когда-нибудь наука объяснит не только то, как мир устроен, но и почему он устроен именно так. По крайней мере, именно на это надеется, например, Ричард Докинз, который ищет ответ в теоретической физике, полагаясь на инфляционное расширение в первые доли секунды после Большого взрыва и на принцип космического отбора Вселенных, похожего на принцип естественного отбора Дарвина.

В начале 20 века считалось, что наша Вселенная состоит только из галактики Млечный путь, которая плывет сама по себе в бесконечном пространстве. С тех пор ученые установили, что Млечный путь является всего лишь одной из сотен миллиардов галактик – и это только в видимой нам части Вселенной. В настоящее время считается, что сам Большой взрыв лучше всего объясняет теория, названная «новая инфляционная космология». Согласно этой теории, взрывы, создающие вселенные, подобно Большому взрыву, случаются довольно часто. Инфляционная космология полагает, что наша Вселенная (которая возникла 14 миллиардов лет назад) появилась из пространства-времени уже существовавшей Вселенной и не является единственной физической реальностью, а представляет собой лишь невообразимо крохотную часть Мультивселенной. Хотя каждый из миров внутри Мультиверсума имеет определенное начало во времени, вся самовоспроизводящаяся структура в целом может быть вечной – таким образом, мы вновь будто возвращаемся к концепции статичной Вселенной, которая казалась навсегда отброшенной с открытием Большого взрыва.

Пока считалось, что Вселенная вечна, ее существование не слишком заботило ученых. Эйнштейн в своих гипотезах просто принял, что Вселенная вечна, и даже подправил уравнения теории относительности соответствующим образом. Однако с открытием Большого взрыва все изменилось. Эксперименты показывают, что мы живем в расширяющихся и охлаждающихся остатках космического комка, который взорвался около 14 миллиардов лет назад. Что могло вызвать этот первоначальный взрыв? И что ему предшествовало – и предшествовало ли что-нибудь вообще? Эти вопросы определенно входят в компетенцию науки, но любая попытка науки на них ответить натыкается на кажущееся непреодолимым препятствие, известное как «сингулярность».

Предположение, что Вселенная расширяется (вопреки прежней статичной модели) подтверждено в 1929 году астрономом Эдвином Хабблом на основании наблюдений за спектром звезд. Окончательным подтверждением инфляции Вселенной стало обнаруженное в 1965 году реликтовое излучение, которое осталось со времен Большого взрыва. Два исследователя из «Белл телефон лабораторис» случайно обнаружили вездесущее микроволновое излучение. Поначалу ученые подумали, что причиной постоянного шипения в микроволновом диапазоне является деятельность голубей. Если включить телевизор и настроиться между станциями на пустой канал, то примерно 10 процентов черно-белых крапинок на экране вызывается фотонами, которые остались с момента рождения Вселенной. Наглядней доказательство реальности Большого взрыва невозможно придумать – вы можете увидеть остывающие остатки Большого взрыва в собственном телевизоре.

В 1970 году Стивен Хокинг и Роджер Пенроуз показали, что эти попытки не могут увенчаться успехом. Хокинг и Пенроуз начали со вполне логичного предположения о том, что гравитация всегда притягивает, и приняли плотность материи во Вселенной примерно равной измеренной экспериментально. На основе этих двух допущений они с математической точностью доказали, что в начале Вселенной все-таки должна быть сингулярность.

Означает ли это, что тайна происхождения Вселенной останется навсегда неразгаданной? Не совсем так, скорее расчеты Хокинга и Пенроуза показывают, что Большой взрыв не может быть полностью понят «классической» космологией вроде теории относительности Эйнштейна, потребуются и другие теории.

Если проследить историю расширяющейся Вселенной вспять, Вселенная будет уменьшаться, пока в момент Большого взрыва не обратится в сингулярность. Здесь теория Эйнштейна прерывается и не может предсказать начало Вселенной и начало времени — только то, как она развивалась позже. В этой точке действуют исключительно законы квантовой механики: размытые по пространству волны-частицы движутся всеми возможными путями, и Вселенная может иметь бесконечное множество предысторий. Концептуальный тупик на Большом взрыве беспокоил космологов, и они стали искать сценарии, позволяющие избежать первоначальной сингулярности.

По словам Хокинга, одно из следствий теории квантовой механики заключается в том, что события, произошедшие в прошлом, не происходили каким-то определённым образом. Вместо этого они могли происходить всеми возможными способами. Это связано с вероятностным характером вещества и энергии согласно квантовой механике: до тех пор, пока не найдётся сторонний наблюдатель, материя будет находиться в неопределённости. Стивен Хокинг пишет: «Независимо от того, какие воспоминания вы храните о прошлом в настоящее время, прошлое, как и будущее, неопределённо и существует в виде спектра возможностей».

Тем не менее остается вопрос: почему же существуют вся эта материя и энергия? Почему пространство-время нашей Вселенной обладает определенной геометрической формой и имеет конечный возраст? Почему оно насыщено разнообразными физическими полями, частицами и силами? И почему эти поля, частицы и силы подчиняются определенному набору законов – причем довольно запутанному? Разве не проще было бы, если бы не было вообще ничего?

Для бесконечного во времени мира (неважно, соответствует ли он инфляционной или другой теории) не существует необъяснимого «момента творения», в нем нет места «первопричине», нет произвольных начальных условий. Поэтому кажется, что вечный мир удовлетворяет принципу достаточной причины: его состояние в любой момент времени можно объяснить его состоянием в предыдущий момент.

Так если в момент Большого взрыва не было никакого перехода от Ничто к Нечто, то нет надобности искать причину, божественную или какую-то иную, которая вызвала к жизни Вселенную? И также нет необходимости ломать голову над поставленным нами вопросом «Откуда взялись материя и энергия во Вселенной?»: внезапного и фантастического нарушения закона сохранения энергии-массы во время Большого взрыва не было. А Вселенная всегда обладала одинаковой энергией-массой, от нулевого момента и до настоящего времени.

В каком экстремуме квантовые законы и, как следствие, исчезновение измерения времени могут проявиться на уровне Вселенной? Очевидно, когда вселенная сравнима размерами с атомным ядром. Именно это подразумевает теория Большого взрыва: все начинается с сингулярности — точки, в которой температура, плотность и искривление Вселенной были бесконечны. Из этой точки Вселенная начинает расширяться, и расширение (в соответствии с инфляционной моделью) продолжается до сих пор. Обратив вспять расширение, мы увидим, как содержимое Вселенной сближается, все более сжимаясь в одну точку. В конце концов, в самом начале космической истории, весь мир находится в состоянии бесконечного сжатия и стянут в «сингулярность». Общая теория относительности Эйнштейна утверждает, что форма пространства-времени определяется распределением энергии и материи. И когда энергия и материя бесконечно сжаты, то и само пространство-время тоже сжато – и оно просто исчезает.

Как именно, можно понять, если учесть, что через долю секунды после рождения вся наблюдаемая Вселенная была не больше атома. В таких масштабах классическая физика неприменима: в микромире правят законы квантовой теории. Поэтому космологи (среди них и Стивен Хокинг) стали задаваться вопросом: «А что, если квантовую теорию, которая использовалась только для описания субатомных явлений, применить ко всей Вселенной в целом?». Так родилась инфляционнаяквантовая космология, названная физиком Джоном Гриббином «наиболее значительным шагом вперед в науке со времен Исаака Ньютона»[1].

Квантовая космология предлагает способ обойти проблему сингулярности. Классические космологи полагали, что сингулярность, притаившаяся за Большим взрывом – это что-то вроде точки с нулевым объемом. Однако квантовая теория запрещает столь точно определенное состояние, утверждая, что на самом фундаментальном уровне природа обладает неизбежной размытостью, поэтому невозможно указать точный момент возникновения Вселенной, ее начальное время.

То, что квантовая теория разрешает, еще более интересно, чем то, что она запрещает. А разрешает она спонтанное возникновение частиц из вакуума. Такой способ создания Нечто из Ничто дал квантовым космологам плодотворную идею: что, если сама Вселенная, по законам квантовой механики, возникла из случайной флуктуации? Тогда причина того, что существует Нечто, а не Ничто, состоит в неустойчивости вакуума.

Утверждение физиков «вакуум неустойчив» подчас подвергается нападкам философов. Но физический вакуум и полная пустота является названием разных объектов. Однако о пустоте можно думать не только как об объекте, но и как об описании определенного состояния. Для физика «пустота» описывает такое состояние, когда нет частиц и все математические поля равны нулю. Возможно ли такое состояние в действительности? То есть согласуется ли оно логически с наблюдаемыми физическими реалиями? Возможно ли создать в наполненной Вселенной полную пустоту?

Одним из наиболее глубоких принципов, лежащих в самой основе нашего квантового понимания природы, является принцип неопределенности Гейзенберга, утверждающий, что определенные пары свойств связаны друг с другом таким образом, что не могут быть точно измерены вместе. Одна такая пара переменных – координаты и импульс частицы: чем точнее вы установили положение частицы, тем менее точно вам известно значение ее импульса, и наоборот. Другой парой сопряженных переменных являются время и энергия: чем точнее вам известен промежуток времени, в течение которого произошло какое-то событие, тем меньше вы знаете об энергии, связанной с этим событием, и наоборот.

Квантовая неопределенность запрещает точное определение значений поля и скорости изменения этого значения. Пустота, или вакуум – это состояние, в котором все значения полей постоянно равны нулю, однако принцип неопределенности Гейзенберга говорит, что если мы точно знаем значение поля, то скорость его изменения совершенно случайна, то есть не может быть равна нулю. Таким образом, математическое описание неизменной пустоты несовместимо с квантовой механикой – точнее, пустота неустойчива, или же чистой пустоты попросту не существует.

Идея, что Вселенная, содержащая сотни миллиардов галактик, могла появиться из пустоты, выглядит невероятной. Как показал Эйнштейн, любая масса представляет собой застывшую энергию. Однако огромному количеству положительной энергии, запертой в звездах и галактиках, должна противостоять отрицательная энергия гравитационного притяжения между ними. В «закрытой» Вселенной (той, которая со временем снова сожмется) положительная и отрицательная энергии должны точно уравновешивать друг друга. Другими словами, общая энергия такой Вселенной равна нулю.

Возможность создания целой Вселенной из нулевой энергии поражает воображение. С точки зрения квантовой механики Вселенная с нулевой энергией представляет собой интересную возможность. Допустим, что полная энергия Вселенной точно равна нулю. Тогда, благодаря взаимосвязи в неопределенности между энергией и временем (как утверждает принцип Гейзенберга), неопределенность во времени становится бесконечной. Другими словами, как только такая Вселенная возникнет из пустоты, то сможет существовать вечно. Что же касается причины, по которой Вселенная возникла, то это просто квантовая вероятность. Стивен Хокинг в книге «Великий замысел» пишет: «Если полная энергия Вселенной должна всегда оставаться нулевой, и необходимо затратить энергию, чтобы создать тело, как может вся Вселенная быть создана из ничего? Вот почему должен существовать такой закон, как гравитация. Так как гравитация притягивает, то энергия гравитации является отрицательной. Необходимо произвести работу, чтобы разделить гравитационно связанную систему, такую как Земля и Луна. Эта отрицательная энергия может быть сбалансирована положительной энергией, необходимой чтобы создать материю, но все не так просто. Отрицательная гравитационная энергия земли, к примеру, меньше, чем положительная энергия миллиардов частиц, из которых она состоит. Тело, такое как звезда, будет иметь больше отрицательной гравитационной энергии, и чем меньше она (частицы, из которых она состоит, находятся ближе друг к другу), тем больше будет ее отрицательная гравитационная энергия. Но прежде, чем отрицательной гравитационной энергии может стать больше положительной энергии вещества, звезда сколлапсирует в черную дыру, и черная дыра будет иметь положительную энергию. Вот почему пустое пространство стабильно. Тела, такие как звезды или черные дыры, не могут так просто появляться из ничего. Но целая Вселенная может!»[2]

С выводами Стивена Хокинга согласна и квантовая механика. Американский ученый русского происхождения Алекс Виленкин в книге «Мир многих миров» показал, что из начального состояния пустоты может спонтанно появиться крохотный кусочек наполненного энергией вакуума. Под действием отрицательного давления «инфляции» этот кусочек энергетического вакуума испытает безудержное расширение. Через пару микросекунд он достигнет космических размеров, испустив поток света и материи, создав Большой взрыв.

Таким образом, по мнению Виленкина, переход от Пустоты к Бытию происходит в два этапа. На первом крохотный кусочек вакуума появляется из вакуума. На втором он раздувается в наполненную материей предшественницу той Вселенной, которую мы сейчас видим вокруг. На данный момент принципы квантовой механики, управляющие первым этапом, являются самыми надежными принципами в науке. Что касается теории инфляции, которая описывает второй этап, то с момента своего создания в начале 80-х годов она успешно подтверждена не только теоретически, но и эмпирически – в частности, распределением реликтового излучения, оставшегося после Большого взрыва.

Что же происходит в момент Большого взрыва со временем? Общая теория относительности объединяется с квантовой теорией: искривление времени-пространства настолько велико, что все четыре измерения ведут себя одинаково. Иными словами, времени как особого параметра нет. А если времени нет, то нет и возможности говорить о начале Вселенной во времени, что устраняет проблему творения из Ничего.

Таким образом, сингулярность в начале Вселенной является не событием во времени, а скорее временной границей или краем. До нее никакого времени не было. Поэтому не было и времени, когда преобладало Ничто. И не было никакого «возникновения» – по крайней мере, во времени. Вселенная имеет конечный возраст, хоть и существовала всегда, если под «всегда» подразумевать все моменты времени. Вековой парадокс разрешается.

 

[1]Gribbin J . Q Is for Quantum. Free Press, 1998.

 

[2] Stephen Hawking and Leonard Mlodinow «The Grand Design»

 

Источник: snob.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.