Пространство и время в сто


Ещё очень давно один подписчик просил меня написать статью про основные положения теории относительности Эйнштейна, однако, времени не хватало и постепенно эта мысль отходила на второй план, но буквально недавно на днях в беседе нашего канала эта тема была поднята вновь, так что я решил, что пора бы уже написать)

Давненько дело было, хотя кажется, будто только вчера мне предложили написать статью 😀

Сначала давайте вообще разберёмся с самим принципом относительности. Для этого я приведу вам такой пример:


Пассажир едет в поезде и роняет телефон. Для него он упадёт вертикально вниз, но относительно человека, стоящего на улице, траектория падения мобильника будет соответствовать параболе. Очевидно, что системы отсчёта здесь меняются, и получаемые результаты (в данном случае траектория падения мобилы) зависят от этих СО. Однако, существуют и универсальные вещи, которые остаются неизменными (в научном языке их называют инвариантными). Для того чтобы понять это, нужно задаться вопросом не падения очков, а закона природы, который вызывает это падение. Для любого наблюдателя, независимо от СО, ответ на него остаётся неизменным. Этот закон называется законом распределённого движения. Он одинаково действует и в поезде, и на улице. Иными словами, если описание событий всегда зависит от того, кто их наблюдает, то это не относится к законам природы. Вот в этом и состоит принцип относительности.


Итак, для начала мне нужно отметить, что существует 2 теории относительности Эйнштейна: СТО и ОТО. Расшифровываются они следующим образом:

СТО — специальная теория относительности

ОТО — общая теория относительности

Незнакомому с данными понятиями человеку может показаться, что эти понятия весомой разницы не имеют, однако это не так, поэтому разберёмся с ними поочерёдно, а для этого начнём с СТО.

СТО основывается на том, что для всевозможных систем отсчета, скорость движения которых постоянна, законы природы остаются одними и теми же. Но всё же в чём её суть?

Именно этой теорией предсказывается множество парадоксальных эффектов, противоречащих нашим интуитивным представлениям об устройстве мира. Речь идет о тех эффектах, которые наблюдаются при достижении скорости движения, сравнимой со световой. Наиболее известным среди них является эффект замедления времени (хода часов). Часы, которые движутся относительно наблюдателя, для него идут медленнее, нежели те, которые находятся у него в руках.

Этот эффект, кстати, был уже подтверждён экспериментально (при чём несколько раз). Вот один из примеров:


Учёные из Мичиганского университета поместили на борт авиалайнера, который регулярно совершал трансатлантические рейсы, сверхточные атомные (квантовые) часы (что это такое — уже рассказывал на канале, но если вы не видели, то я прикреплю картинку чуть ниже). Каждый раз после возвращения его в аэропорт показания этих часов сверялись с контрольными. Оказалось, что часы на самолете каждый раз все больше отставали от контрольных. Конечно, речь шла лишь о незначительных цифрах, долях секунды, но сам факт весьма показателен.

Также не стоит забывать, что благодаря той же СТО Эйнштейна мы можем позволить себе такую замечательную вещь, как GPS-навигаторы, ведь в космосе объекты перемещаются гораздо быстрее, поэтому для них время течёт чуть-чуть, но всё же по-другому (медленнее). Про это я тоже рассказывал в одном из своих постов. Его, кстати, вы можете видеть ниже:


Кстати, многие могут посчитать, что СТО Эйнштейна противоречит законам Ньютона, однако, формулы теории относительности воспроизводят уравнения Ньютоновских законов практически в точности, если их использовать для описания тел, скорость движения которых намного меньше скорости света. Другими словами, если применяется СТО, физика Ньютона вовсе не отменяется. Эта теория, напротив, дополняет и расширяет ее.

Исаак Ньютон

Итак, думаю вам уже надоело разжёвывание одной лишь теории относительности, ведь их ДВЕ! 😀 Поэтому теперь мы переходим к общей теории относительности!


Для начала хотелось бы теперь уточнить, что между публикациями СТО и ОТО Эйнштейна прошло 11 лет! Столько времени ушло, на то, чтобы доработать общую ТО, которая включала бы в себя специальную и дополняла её.

Но что же в ней такого особенного? Почему разница в публикации этих двух статей равняется довольно большому отрезку времени в 11 лет?

Напомню, что ОТО включает в себя СТО, которая является здесь частным случаем.

Ну так вот, общая теория относительности позволяет нам взглянуть на мир совершенно по-иному. Для начала советую вам осознать, что наш мир — четырёхмерный. Да, все мы знаем из стереометрии, что существуют оси x, y и z, но ОТО добавляет новую ось — ось времени t.

Однако мы не можем видеть четвёртое измерение ровно так же, как и, допустим, Санёк из 2D-мира не может посмотреть вверх


Тогда возникает вопрос: так какого лешего мы находимся в четырёхмерном измерении, но мы не можем этого увидеть?! Всё просто: наш мир (ну т.е. то, что мы понимаем под этим словом) — это всего лишь проекция четырёхмерного пространства в трёхмерное.

Также довольно интересным фактом является то, что в четырёхмерном пространстве объекты ВСЕГДА неизменны, т.е., опять же, такие явления, как замедление времени, изменение размеров объектов — всего лишь изменение ПРОЕКЦИЙ этих объектов, а не их самих.

С появлением ОТО Эйнштейна, кстати, позволяет по-другому взглянуть на гравитацию. Согласно закону всемирного тяготения, открытому Ньютоном, сила взаимного притяжения существует во Вселенной между любыми двумя телами. Земля, с этой позиции, вращается вокруг Солнца, т.к. между ними имеются силы взаимного притяжения. ОТО же, как я говорил, показывает нам гравитацию с другой стороны. Это явление — следствие "искривления" (тобишь деформации) пространства-времени под массивными объектами. Т.е. чем тело тяжелее — тем сильнее пространство-время под ним "прогибается", из-за чего и возрастает гравитация около него.


Для того чтобы лучше это понять, обратимся к сравнению. Земля, согласно ОТО, вращается вокруг Солнца, как маленький шарик, который катится вокруг конуса воронки, созданной в результате "продавливания" Солнцем пространства-времени. А то, что мы привыкли считать силой тяжести, является на самом деле внешним проявлением данного искривления, а не силой, в понимании Ньютона. Лучшего объяснения феномена гравитации, чем предложенное в ОТО, на сегодняшний день не найдено.

Пример искривления пространства-времени

Спасибо всем за прочтение этой статьи) Надеюсь, кто не был знаком с понятиями СТО и ОТО Эйнштейна — разобрались с ними, а те, кто уже с ними сталкивался — напомнили себе что к чему)

Альбер Эйнштейн — создатель специальной и общей теорий относительности

Источник: zen.yandex.ru

Физика, 11 класс

Урок №20. Постулаты специальной теории относи-тельности (СТО)

Основные вопросы, рассматриваемые в теме: событие, постулат, собственная инерциальная система отсчёта, собственное время, собственная длина тела, масса покоя, инвариант; причины появления СТО; постулаты СТО: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Глоссарий:

Специальная теория относительности (СТО) – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.

Событие — физическое явление, которое происходит в определённый момент времени в данной точке пространства.

События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными.


Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции.

Два постулата теории:

1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта.

2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта.

Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов.

Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем.

Длину тела L0, относительно которого оно в ИСО находится в покое называют собственной длиной.

Массой покоя m0, называют массу тела в состоянии покоя относительно ИСО.

Скорость света c и собственное время Δτ инвариантны в любых ИСО.

Список основной и дополнительной литературы по теме:

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 229 – 238.
  2. Рымкевич А.П. Физика. Задачник. 10-11 классы. – М.: Дрофа, 2013. — С. 147 – 148
  3. Анциферов Л.И., Физика: электродинамика и квантовая физика. 11кл. Учебник для общеобразовательных учреждений – М.: Мнемозина, 2001. – С. 242-253.
  4. Айзексон У., Эйнштейн. Жизнь гения; пер. с анг. А.Ю. Каннуниковой. – М: АСТ, 2016 – С.16-25

Теоретический материал для самостоятельного изучения

Человек, открывший новый взгляд на пространство и время мыслил образами. Альберт Эйнштейн всегда твёрдо верил, что именно воображение способно проникнуть в суть, в глубину, в основу сущего. Он никогда не заучивал теорию, он представлял её образами. В детстве Эйнштейну привили интерес к математике, естествознанию. Одной из любимых книг Альберта была книга Аарона Бернштейна «Популярные книги по естественной истории». От описаний научных историй у 12 летнего Эйнштейна захватывало дух. Мысленные эксперименты были самым занимательным в книгах Бернштейна.

В 1895 году Эйнштейну повезло, в 16-летнем возрасте, провалив экзамены в Цюрихский политехникум по французскому языку, литературе, политике и зоологии, но легко справившись с математикой и естествознанием, он поступил в сельскую школу Арау. Образование здесь строилось на методах, разработанных Иоганном Песталоцци, на проведении мысленных экспериментов, на более глубоком понимании явлений и ситуаций. Это были первые шаги на пути формирования специальной теории относительности (СТО).

Теория относительности – физическая теория, рассматривающая пространственно-временные закономерности, справедливые для любых физических процессов.

В теории относительности часто будет использовано понятие «событие». Событием будем называть физическое явление, которое происходит в определённый момент времени в данной точке пространства.

В движущемся поезде, вывешенная в центре, вспыхивает лампочка в точке О – это одно событие. Свет от лампочки достигает точку А в одном конце помещения – это другое событие, а также достигает противоположного конца помещения в точке В – то третье событие.

Пространство и время в сто

События могут происходить в одно и тоже время и их называют одновременными. Если координаты событий совпадают, то события называют одноместными. При этом учитываем, что реальные тела имеют размеры и события разворачиваются во времени.

Одновременно ли достигнет свет две противолежащие точки А и В? Ведь корабль движется со скоростью в одном направлении и одна стенка приближается к летящему свету, а другая отдаляется.

Классический закон сложения скоростей не работает в описании распространения электромагнитного излучения от источника света.

Чтобы ответить на эти вопросы, необходимо выяснить, меняются ли основные законы электродинамики при переходе одной инерциальной системы отсчёта к другой, или же подобно принципам относительности Галилея и законам Ньютона, они остаются неизменными.

Принцип относительности Галилея.

Инерциальные системы отсчёта (ИСО) – это системы отсчёта, в которых выполняется первый закон Ньютона – закон инерции. Системы, которые ускоряются или вращаются называют неинерциальными. Система отсчёта, движущаяся равномерно и прямолинейна относительно ИСО, также инерциальная. Земля не совсем инерциальная система отсчёта, так как она вращается, но для большинства наших примеров, будем считать её инерциальной.

К началу XX века в физике накопилось много наблюдений и опытов, которые не могли быть объяснены классическими теориями. В XVII – XIX веках большое место в теории отводилось гипотезе о существовании эфира. Эфир представляли себе, как занимающая всё пространство упругая среда, с помощью которой осуществляется взаимодействие между телами, благодаря которой распространяются волны звуковые, световые, электромагнитные. Считалось естественным связывать абсолютную систему отсчёта с мировым эфиром. Этой теории придерживался и основатель электронной теории Х. Лоренц и Г.Герц. Однако эксперименты, поставленные в 1881 году учёными А. Майкельсоном, Э.Морли и А.Физо об изотропности света, приводили к противоположным результатам. В опытах по изучению распространения света, А.Физо с помощью оптических приборов находил подтверждение, существования эфира. Опыты Майкельсона существование «эфирного ветра», то есть преимущественной системы отсчёта или «светового эфира» не подтверждали, за что подверглись критике со стороны прославленного учёного Х.Лоренца.

Но противоречия в опытах классическими законами уже невозможно было объяснить. Эйнштейн, изменяя классические законы механики, а не законы электродинамики Максвелла, предложил наиболее революционный способ описания явлений в пространстве и времени. Из теории Максвелла следовало, что электромагнитные волны, в отличие от механических волн, могут распространяться в вакууме и подчиняются законам электромагнетизма, что свет – это электромагнитная волна и скорость света:

Пространство и время в сто

У Максвелла не было оговорок по поводу относительности скорости света.

И в 1905 году появилась работа А. Эйнштейна «К электродинамике движущихся сред», в которой излагались идеи новой теории – специальной теории относительности.

Пространство и время в сто

В основу теории были положены два постулата*:

  1. Все физические явления протекают одинаково во всех инерциальных системах отсчёта, или никакими опытами, проводимыми в инерциальной системе отсчёта, невозможно установить её движение относительно других инерциальных систем.
  2. Скорость света в вакууме одинакова во всех инерциальных системах отсчёта. Она не зависит от ни от скорости источника света, ни от скорости светового приёмника сигнала.

Постулат – это основное положение, которое не может быть логически доказано, а является результатом обобщения всех опытов. В физической теории выполняет ту же роль, что и аксиома в математике.

Скорость света занимает особое положение в этой теории, распространение света в вакууме является максимально возможной скоростью передачи взаимодействий в природе.

Пространство и время в сто

С точки зрения классической физики первый и второй постулаты входят в противоречия друг с другом. По первому постулату законы механики (как частный случай законов физики) справедливы во всех ИСО. Следовательно, справедлив и закон сложения скоростей. Однако второй постулат противоречит классическому закону сложения скоростей. Значит, в СТО нельзя пользоваться преобразованиями Галилея. Заменив преобразования Галилея на преобразования Лоренца, Эйнштейн устранил кажущееся противоречие между постулатами, что позволило объяснить многие опыты по электродинамике и оптике.

Независимость скорости света от источника много раз проверялись на опытах. Советские учёные А.М. Бонч-Бруевич и В.А. Молчанов в 1955 году проводили опыты, измеряя скорости света от правого и левого краёв Солнца (один из которых из-за осевого вращения Солнца приближается к нам со скоростью 2,3 км/с, а другой с такой же скоростью удаляется). Учёные, проведя расчёты, пришли к выводу, что скорости распространения света с обоих концов одинаковы.

Преобразования Лоренца, которые использовал Эйнштейн, заменив преобразования Галилея, для описания распространения света в системе координат:

Пространство и время в сто

Пространство и время в сто

Пространство и время в сто

Пространство и время в сто

Если скорость намного меньше скорости света Пространство и время в сто, то отношение квадратичной скорости движения системы к квадрату скорости света намного меньше 1 Пространство и время в сто и величиной Пространство и время в сто можно пренебречь. Тогда мы переходи к преобразованиям Галилея:

Пространство и время в сто

Пространство и время в сто

Пространство и время в сто

Новая теория раскрыла более глубокую физическую реальность и включает старую как предельный (частный) случай, который называют принципом соответствия.

Иначе это можно объяснить так: классическая механика (механика Ньютона) является частным случаем более общей механики, описывающих процессы в разных инерциальных системах отсчёта с учётом преобразований Лоренца.

Мы ещё неоднократно убедимся, что при малых скоростях, намного меньших, чем скорость света законы СТО переходят в законы классической механики.

Существование предельной конечной скорости изменяет наши привычные представления о пространстве и времени. Представление об абсолютном времени, которое течёт с навсегда заданным темпом, оказывается неверным.

Следствия постулатов относительности:

  1. Относительность одновременности

Рассмотрим простой метод синхронизации часов. Допустим, что космонавт хочет узнать, одинаково ли идут часы в разных концах корабля в точках А и В. С помощью источника света в центре корабля производят вспышку света, если часы идут синхронно, по показания на часах будут одинаковы при приёме света. Но так будет только в движущейся системе отсчёта К1, связанной с кораблём. И так же, как и в первом случае, вспышка для наблюдателя, находящегося в системе отсчёта К (неподвижная система), часы будут удалятся от вспышки света, и излучению нужно пройти большее расстояние, значит и время должно зафиксироваться отличное от часов в точке В. Вывод наблюдателя в системе отсчёта К: сигналы достигают часов не одновременно.

Пространство и время в сто

Пространство и время в сто

Время, отсчитываемое покоящимися в ИСО часами, называется собственным временем и обозначают буквой τ (тау). Промежуток времени Пространство и время в сто между событиями по часам наблюдателя, находящегося внутри объекта (ИСО К1). Промежуток времени между теми же событиями по часам наблюдателя относительно которой удаляется обозначим Δt. Между этими промежутками существует соотношение:

Пространство и время в сто

Это означает, что часы, движущиеся относительно ИСО идут медленнее, неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).

Преобразовав выражение Δt, получим:

Пространство и время в сто

А так как скорость света c постоянна и собственное время Δτ неизменно для данного события, то есть инвариантны, то получим:

Пространство и время в сто

Наряду с протонами и нейтронами в природе существуют мюоны – элементарные частицы. Мюоны могут образовываться в атмосфере Земли. Но мюоны не стабильны и довольно быстро распадаются, превращаясь в другие элементарные частицы. В лаборатории, где мюоны практически покоятся, среднее время их жизни Δτ =2·10-6с. Вычисляя скорость и другие параметры мюонов, физики обнаружили, что мюоны в атмосфере Земли (без распада) могут пройти расстояние 6 км за время Δt =2·10-5с. Это означает, что время жизни движущегося мюона в системе «Земля» в 10 раз больше собственного времени жизни Δτ.

Рассмотрим ещё один парадокс: относительность расстояний или размеров тела. Допустим, что в космическом корабле измеряют длину стержня, расположенного вдоль направления скорости. Длину стержня внутри корабля, относительно которого он находится в покое обозначим L0 и назовём собственной длиной. При этом расчёты показывают, что линейный размер тела, движущегося относительно ИСО уменьшается в направлении движения.

Пространство и время в сто

Закон сложения скоростей в СТО записывается так:

Пространство и время в сто

𝟅 – скорость тела, относительно неподвижной системы отсчёта,

𝟅´ — скорость относительно подвижной системы отсчёта,

v – скорость подвижной системы отсчёта относительно неподвижной,

c – скорость света.

При скоростях движения намного меньших, чем скорость света закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчёта.

Даже масса, такое непоколебимое в нашем представлении значение, меняет свои параметры в движущейся системе относительно неподвижной ИСО. Собственную массу тела, находящегося в состоянии покоя, относительно ИСО, называют m0 массой покоя.

Пространство и время в сто

Сам А. Эйнштейн говорил о том, что правильнее было бы называть его теорию относительности теорией абсолютности, так как в основе её заложена идея абсолютности во всех инерциальных системах отсчёта.

Примеры и разбор заданий

1. Две частицы удаляются друг от друга, имея скорость 0,6с каждая, относительно земного наблюдателя. Относительная скорость частиц составляет ______скорости света.

Решение:

Дано: 𝟅´ = 0,6 с, v = — 0,6 с.

Найти: 𝟅.

Решение:

Для решения задачи, необходимо перейти в ИСО, связанную с одной из частиц. Пусть частицы движутся вдоль одной прямой, в противоположные стороны. Используем закон сложения скоростей СТО:

Пространство и время в сто

𝟅 – скорость частицы, относительно неподвижной системы отсчёта,

𝟅´ — скорость частицы относительно подвижной системы отсчёта,

v – скорость подвижной системы отсчёта относительно неподвижной,

c – скорость света.

Примем скорость v = — 0,6с одной частицы за положительное значение, скорость 𝟅´ = 0,6с. Тогда формула примет вид:

Пространство и время в сто

Пространство и время в сто

Ответ значения скорости частицы будет корректен относительно скорости света, а не в м/с или км/с.

Ответ: 0,882 с.

1. Масса протона, летящего со скоростью 1,3·108 м/с, составляет_____ а.е.м. Массу покоя протона считать равной 1 а.е.м.

Решение:

Дано:

𝟅 = 1,3·108 м/с,

m0 = 1а.е.м.

Найти: m.

Решение:

В атомной и ядерной физике для выражения массы пользуются специальной внесистемной единицей – атомной единицей массы (а.е.м.), равной 1/12 массы атома углерода.

1 а.е.м. = 1,66057·10-27кг.

Пространство и время в сто

Подставим числовые значения в формулу определения массы частицы, движущейся относительно неподвижной ИСО:

Пространство и время в сто

Ответ: 1,11 а.е.м.

Источник: resh.edu.ru

Однородность пространства и времени

В Специальной теории относительности Эйнштейна постулируется фундаментальная связь между пространством и временем. Материальная Вселенная, как известно, имеет три пространственных измерения: вверх-вниз, направо-налево и вперед-назад. К нему добавляется еще одно измерение – временное. Вместе эти четыре измерения составляют пространственно-временной континуум.

Если вы двигаетесь с большой скоростью, ваши наблюдения относительно пространства и времени будут отличаться от наблюдений других людей, движущихся с меньшей скоростью.

На картинке ниже представлен мысленный эксперимент, который поможет понять эту идею. Представьте себе, что вы находитесь на космическом корабле, в руках у вас лазер, с помощью которого вы посылаете лучи света в потолок, на котором закреплено зеркало. Свет, отражаясь, падает на детектор, который их регистрирует. 

Пространство и время в сто
Сверху – вы послали луч света в потолок, он отразился и вертикально упал на детектор. Снизу – для Германа ваш луч света двигается по диагонали к потолку, а затем – по диагонали к детектору

Допустим, ваш корабль двигается с постоянной скоростью, равной половине скорости света (0.5c). Согласно СТО Эйнштейна, для вас это не имеет значения, вы даже не замечаете своего движения.

Однако Герман, наблюдающий за вами с покоящегося звездолета, увидит совершенно другую картину. С его точки зрения, луч света пройдет по диагонали к зеркалу на потолке, отразится от него и по диагонали упадет на детектор.

Другими словами, траектория луча света для вас и для Германа будет выглядеть по-разному и длина его будет различной. А стало быть и длительность времени, которое требуется лазерному лучу для прохождения расстояния к зеркалу и к детектору, будет вам казаться различным. 

Это явление называется замедлением времени: время на звездолете, движущимся с большой скоростью, с точки зрения наблюдателя на Земле течет значительно медленнее. 

Этот пример, равно как и множество других, наглядно демонстрирует неразрывную связь между пространством и временем. Эта связь явно проявляется для наблюдателя, только когда речь идет о больших скоростях, близких к скорости света.

Эксперименты, проведенные со времени публикации Эйнштейном своей великой теории, подтвердили, что пространство и время действительно воспринимаются по-разному в зависимости от скорости движения объектов.

Объединение массы и энергии

В своей знаменитой статье, опубликованной в 1905 году, Эйнштейн объединил массу и энергию в простой формуле, которая с тех пор известна каждому школьнику: E=mc^2.

Пространство и время в сто
©deviantART/ RowanPhoenix

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

До Эйнштейна концепции массы и энергии в физике рассматривались по отдельности. Гениальный ученый доказал, что закон сохранения массы, как и закон сохранения энергии, являются частями более общего закона массы-энергии.

Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Источник: naked-science.ru

 

В ходе разработки своей теории Эйнштейну пришлось пересмотреть прежние представления классической механики о пространстве и времени. Прежде всего, он отказался от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

 

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы. и законы должны формулироваться т отношению к точно указанной системе отсчета или координат. ‘Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

 

Отсюда становится также ясным, что для Эйнштейна основные физические понятия, такие, как пространство и время, приобретают ясный смысл только после указания тех экспериментальных процедур, с помощью которых можно их проверить. "Понятие, — пишет он, — существует для физики постольку, поскольку есть возможность в конкретном случае найти, верно оно или нет". Тот факт, что расстояние и время в теории относительности определяются наблюдателем по отношению к определенной системе отсчета, отнюдь не свидетельствует о том, что эти понятия имеют произвольный характер, устанавливаемый субъектом. Субъект лишь фиксирует и точно определяет объективное отношение, существующее между процессами, совершающимися в разных системах отсчета. Таким образом, вместо абстрактных рассуждении об абсолютном движении в теории относительности рассматривают конкретные движения тел по отношению к конкретным системам отсчета, связанным с конкретными телами.

Другой важный результат теории относительности:

 

Связь обособленных в классической механике понятий пространства и времени в единое понятие пространственно-временной непрерывности, или континуума.

 

Как мы уже знаем, положение тела в пространстве определяется тремя его координатами x, у, z но для описания его движения необходимо ввести еще четвертую координату — время t. Таим образом, вместо разобщенных координат пространства и времени теория относительности рассматривай взаимосвязанный мир физических событий, который часто называют четырехмерным миром Германа Минковского (1864-1909), немецкого математика и физика, первые предложившего такую трактовку. В этом мире положение каждого события определяется четырьмя числами: тремя пространственными координатами движущегося тела x, у, z и четвертой координатой – временем t.

Главная заслуга Минковского по мнению Эйнштейна, состоит в том, что он впервые указал на формальное сходство пространственно-временной непрерывности специальной теорий относительности с непрерывностью геометрического пространства Евклида. Чтобы яснее представить это сходство, необходимо вместо обычной координаты времени ввести пропорциональную ей мнимую величину ict, где i обозначает мнимую единицу Пространство и время в сто .



Новые понятия и принципы теории относительности существенно изменили не только физические, но и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет. Особенно резкое сопротивление они встретили со стороны так называемого здравого смысла, который в конечном итоге также ориентируется на доминирующие в обществе научные взгляды, почерпнутые из классически науки. Действительно всякий, кто впервые знакомится с теорией относительности, нелегко соглашается с ее выводами. Опираясь на повседневный опыт, трудно представить, сто длина линейки или твердого тела в движущейся инерциальной системе сокращается в направлении их движений, а временной интервал увеличивается.

В связи с этим представляет интерес парадокс близнецов, который нередко приводят для иллюстрации теории относительности. Пусть один из близнецов отправляется в космическое путешествие, а другой — остается на Земле. Поскольку в равномерно движущемся с огромной скоростью космическом корабле темп времени замедляется и все процессы происходят медленнее, чем на Земле, то космонавт, вернувшись на нее, окажется моложе своего брата. Такой результат кажется парадоксальным с точки зрения привычных представлений, но вполне объяснимым с позиций теории относительности. В его пользу говорят наблюдения над элементарными частицами, названными мю-мезонами, или мюонами. Средняя продолжительность существования таких частиц около 2 мкс, но тем не менее некоторые из них, образующиеся на высоте 10 км, долетают до поверхности земли. Как объяснить этот факт? Ведь при средней "жизни" в 2 мкс эти частицы могут проделать путь только 600 м. Все дело в том, что продолжительность существования мюонов определяется по-разному для разных систем отсчета. С "их" точки отсчета, они живут 2 мкс, с нашей же, земной — значительно больше, так что некоторые из них, движущиеся со скоростью, близкой к скорости света, достигают поверхности Земли.

Необычность результатов, которые дает теория относительности, сразу же поставили вопрос об их опытной проверке. Предварительно, однако, заметим, что сама эта теория возникла из электродинамики и поэтому все эксперименты, которые подтверждают электродинамику, косвенно подтверждают также теорию относительности. Но кроме подобных косвенных свидетельств существуют эксперименты, которые непосредственно подтверждают выводы теории относительности. Одним из таких экспериментов является опыт, поставленный французским физиком Арманом Физо (1819-1896) еще до открытия теории относительности. Он задался целью определить, с какой скоростью распространяется свет в неподвижной жидкости и жидкости, протекающей по трубке с некоторой скоростью. Если в покоящейся жидкости скорость света равна w, то скорость v в движущейся жидкости можно определить тем же способом, каким мы определяли скорость движущегося человека в вагоне по отношению к полотну дороги. Трубка играет здесь роль полотна дороги, жидкость — роль вагона, а свет — бегущего по вагону человека. С помощью тщательных измерений, многократно повторенных разными исследователями, было установлено, что результат сложения скоростей соответствует здесь преобразованию Лоренца и, следовательно, подтверждает выводы специальной теории относительности.

Наиболее выдающимся подтверждением этой теории был отрицательный результат опыта американского физика Альберта Майкельсона (1852-1931), предпринятый для проверки гипотезы о световом эфире. Согласно господствовавшим в то время воззрениям, все мировое пространство заполнено эфиром — особым веществом, являющимся носителем световых волн. Вначале эфир уподоблялся механической упругой среде, а световые волны рассматривались как колебания этой среды, сходные с колебаниями воздуха при звуковых волнах. Но эта механическая модель эфира в дальнейшем встретилась с серьезными трудностями, так как, будучи твердой упругой средой, она должна оказывать сопротивление движению небесных тел, но ничего этого в действительности не наблюдалось. В связи с этим пришлось отказаться от механической модели, но существование эфира как особой всепроникающей среды по-прежнему признавалось. Для того чтобы обнаружить движение Земли относительно неподвижного эфира, Майкельсон решил измерить время прохождения светового луча по горизонтальному направлению движения Земли и направлению, перпендикулярному к этому движению. Если существует эфир, то время прохождения светового луча по горизонтальному и перпендикулярному направлениям должно быть неодинаковым, но. никакой разницы Майкельсон не обнаружил. Тогда для спасения гипотезы об эфире Лоренц предположил, что в горизонтальном направлении происходит сокращение тела в направлении движения.

Чисто отрицательный результат опыта Майкельсона стал для Эйнштейна 18 лет спустя решающим экспериментом для доказательства того, что никакого эфира как абсолютной системы отсчета не существует. Сокращение же тела объясняется таким же способом, как при относительном движении инерциальных систем отсчета (см. выше).

 

Источник: studopedia.su


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.