Mars curiosity


Москва! В четверг, 30 января, встречай космо-лекторий в Центре развития на Таганке! Тебя ждет кинопоказ научно-популярного фильма «Марс» с комментариями Виталия Егорова

Марс, так называемая «красная планета»… Что мы о ней знаем?Expand text… Сегодня — достаточно много, это самая подробно изученная планета Солнечной системы после Земли. Большая часть знаний о Марсе получена благодаря автоматическим космическим аппаратам, отправленным к планете с начала космической эры; всего разными странами было отправлено порядка 50 аппаратов.

Но давайте представим себя в 1968 году: космическая эра лишь начинается, лишь набирает обороты, миссии к Марсу терпят неудачи одна за одной. Что знали ученые тогда об условиях на Марсе? Как представляли себе условия обитания, и что думали о возможной жизни на планете? Фильм Павла Клушанцева «Марс» 1968 года позволит окунуться в атмосферу тех времен и живо представить себя на месте ученого того времени. После просмотра обсудим фильм, а также современные исследования Марса, с популяризатором космонавтики и блогером Виталием Егоровым, известным как Zelenyikot. Виталий с 2012 года ведет сообщество Curiosity-марсоход об исследовании Марса, а в 2013 году по его инициативе группа энтузиастов смогла обнаружить советский спускаемый аппарат "Марс-3" на поверхности Марса!


☞ Регистрация: https://your-sector-of-space.timepad.ru/event/1234714/
Вход свободный!

Мероприятие проходит в Центре развития: Москва, ул. Таганская, д. 40-42 (https://yandex.ru/maps/-/CGThNU5F)

При поддержке Госфильмофонда России и Министерства культуры Российской Федерации. Организатор космо-лектория — сообщество «Твой сектор космоса». Партнеры лектория — Открытый космос, Образование Будущего, Лаба.Медиа, Стратонавтика! Главный книжный партнер — Альпина нон-фикшн.

Источник: vk.com

Климат тяжелый

Климат на Марсе суровый. Температура в атмосфере при посадке марсохода варьировалась между минус 2 °С и минус 75 °С. При этом давление колебалось гораздо сильнее, чем на Земле, — на 10–12% за один сол (марсианские сутки, которые длятся 24 часа, 39 минут и 35,244 секунды) против менее чем 1,2% за сутки на Земле. Из-за этого на Марсе и происходят регулярные песчаные бури, которые могут охватывать планету целиком.

Одна такая буря, прошедшая в 2010 году, привела к гибели марсохода Spirit. Другая, бушевавшая в середине этого года, заставила близнеца Spirit, марсоход Opportunity, перейти в спящий режим. Пыль не давала заряжаться солнечным батареям на аппарате. Из сна Opportunity пока так и не вышел. И Curiosity остался единственным действующим земным аппаратом на Марсе. Еще один NASA планирует доставить на Марс только в 2020 году.


Геология пугает

В первый же год работы Curiosity нашла на Марсе русло древней реки. По тому, как были окатаны обломки пород, ученые даже выяснили, что вода в ней текла со скоростью 0,9 м/с, а глубина была примерно полметра.

Через год ученые сделали вывод, что весь кратер Гейла, где высадился и всё это время работал марсоход, когда-то был озером. Если точнее, пресноводным озером около 3,6 млрд лет назад. И в нем могли находиться микроорганизмы, соответствующие земным представлениям об органической жизни. Правда, с тех пор воды в грунте осталось немного — около 4%. Это меньше, чем где-либо на Земле, но хоть что-то. Да и сам минеральный состав марсианской почвы указывает на то, что она когда-то могла быть покрыта водой.

В марсианском грунте Curiosity обнаружила не только воду, но и кое-что опасное — до 5% перхлоратов кальция и магния. Это ядовитые и взрывчатые вещества, которые другие аппараты находили в разных частях планеты. Значит, они покрывают всю планету. Проблема с перхлоратами в том, что при нагреве, необходимом для анализа почвы, они быстро сгорают. Из-за этого следов органических соединений, если они и были в анализируемой породе, найти не удается. Но есть и хорошие новости — будущие колонисты смогут добывать из грунта, богатого перхлоратами, топливо. А могут и случайно подорваться на взрывоопасной почве.

Жизнь возможна


Несмотря на перхлораты, следы органики Curiosity несколько раз уже находила. В начале третьего года работы лаборатории об этом объявили представители NASA на пресс-конференции. И тут же оговорились. Возможно, бактерии были доставлены аппаратом с Земли.

Во-первых, некоторые земные бактерии выживают в условиях «чистых помещений» — это комнаты с многоступенчатой системой очистки, в которых, к примеру, собирают микросхемы. Во-вторых, бур марсохода не был должным образом стерилизован после модернизации, которая была проведена незадолго до запуска. Так что на нем могло остаться некоторое количество спор.

Также аккуратно высказывались ученые весной этого года по поводу загадочных микроскопических структур, похожих, по мнению британского планетолога Барри Дигрегорио (Barry DiGregorio), на следы жизнедеятельности колоний окаменевших микробов или тоннели микроскопических червей.

Руководитель миссии Curiosity Ашвин Васавада (Ashwin Vasavada) отметил, что структуры имеют угловатую форму и больше похожи на кристаллы, которые могли сформироваться на дне пересыхавших водоемов, как это происходит на Земле.


Максимум, что признали на одной из пресс-конференций NASA, касаясь вопроса о жизни на Марсе: несколько раз были зафиксированы скачки метана в атмосфере. А этот газ когда-то мог стать источником более сложных органических веществ.

Еще одно косвенное доказательство того, что на планете когда-то была жизнь, — обнаружение бора на поверхности планеты. Этот элемент входит во многие белковые молекулы, необходимые для синтеза ДНК и РНК. Это, в свою очередь, позволяет предположить, что вода на Марсе не просто была, а была «нейтральной по своим химическим свойствам и довольно теплой — от нуля до 60 градусов Цельсия», отмечал Патрик Гасда (Patrick Gasda) из Национальной лаборатории в Лос-Аламосе (США). Значит, вода могла быть пригодна для зарождения жизни. А могла и не быть. Кстати, обнаружение бора — еще одно открытие, сделанное Curiosity. Другим лабораториям его найти не удавалось.

Колонизация опасна

Кроме перхлоратов в марсианских породах, Curiosity нашла кое-что еще, что может испортить жизнь будущим колонизаторам. Данные, которые передавал установленный в лаборатории детектор космического излучения во время полета к Марсу и работы на планете, показали, что участники возможной марсианской экспедиции получат потенциально смертельную дозу космической радиации. И большую часть еще в космосе. Статья с такими выводами появилась в журнале Science весной 2013 года.


В конце 2013 года в том же журнале была опубликована другая статья на тему. В ней утверждалось, что за год на Марсе организм живого существа накопит около 15 рентген ионизирующего излучения. Это в 300 раз больше предельной годовой дозы для работников атомной промышленности. Если судить по этим данным, максимальный срок пребывания человека на Марсе без вреда для здоровья составляет 500 дней. Это может существенно сократить сроки проекта Mars One, если он когда-нибудь будет реализован. В 2013 году компания из Нидерландов предложила всем желающим улететь на Марс на всю жизнь. Откликнулись на это около 200 тыс. землян.

От космических лучей страдает и Curiosity без защиты густой атмосферой и магнитного поля. «Бомбардирующие» аппаратуру частицы высокой энергии могут приводить к поломкам.

За семь лет у марсохода отказывал датчик ветра — его функции взял на себя дублирующий. Ученые считают, что его повредили кусочки породы, поднятые при посадке. Выходил из строя один из двух компьютеров, следящих за температурой марсохода, отдающего команды на фотографирование, перемещение и отправляющего данные на Землю. Тут миссия винит аппаратные и программные проблемы. Еще падало напряжение в шасси из-за замыкания.


Причину самой серьезной аварии марсохода так и не выяснили. В декабре 2016 года механизм, который втягивал и вытягивал бур в «руку» Curiosity, перестал работать. Сверло, которое к тому моменту позволило взять семь образцов пород, заклинило. Почти через год, осенью 2017 года, инженеры придумали, что делать.

Они переложили задачу долбить породу на саму «руку», в которой установлено несколько мощных двигателей. Так химическая лаборатория марсохода, бездействовавшая без материала, вернулась в рабочее состояние лишь через 18 месяцев после поломки механизма. Первую лунку новым способом марсоход пробурил в мае этого года.

Несмотря на всё это, ученые NASA более чем довольны работой Curiosity. Изначально планировалось, что лаборатория будет действовать один год, так что она уже значительно превысила свой срок службы. И, вполне вероятно, если не будет фатальных поломок, прослужит весь срок, на который рассчитана емкость радиоактивной батареи — основного источника энергии Curiosity. Даже состояние колес, износ которых — одна из главных опасностей миссии — по состоянию на середину 2018 года не вышел за рамки расчетов.

Источник: iz.ru

Космический внедорожник


Одна из особенностей, которая отличает «Кьюриосити» от его собратьев, — его размер. Марсоход имеет габариты небольшого внедорожника. Это 3 метра 28 сантиметров в длину и около 2.1 метра в высоту. Вес «Curiosity» составляет около 900 килограммов. Колеса имеют диаметр 50,8 см.

Инженеры Лаборатории реактивного движения НАСА разработали марсоход, способный преодолевать препятствия высотой до 65 см и расстояния около 200 м. в день. Питание аппарата осуществляется от радиоизотопного термоэлектрического генератора (РИТЭГ), который производит электричество из тепла, выделяемого при радиоактивном распаде плутония-238.

Цели миссии

По утверждению НАСА, «Кьюриосити» имеет четыре основные научные цели:

  • Определить, существовала ли в прошлом жизнь на Марсе.
  • Охарактеризовать климат Марса.
  • Охарактеризовать геологию Марса.
  • Подготовиться к посещению Марса человеком.

Эти цели тесно взаимосвязаны. Например, понимание нынешнего климата Марса также поможет определить, смогут ли люди безопасно исследовать его поверхность. Изучение геологии Марса поможет ученым лучше понять, была ли область вблизи места посадки «Кьюриосити» в прошлом пригодной для жизни. Чтобы лучше справиться с этими глобальными целями, НАСА разбило научные задачи на восемь меньших целей: от изучения биологии до геологии планетарных процессов.

Для решения поставленных задач «Кьюриосити» располагает набором специальных инструментов.

Они включают в себя:


      • Камеры, которые могут фотографировать пейзаж или минералы крупным планом: мачтовая камера (Mastcam), Mars Hand Lens Imager (MAHLI) и Mars Descent Imager (MARDI).
      • Спектрометры, способные охарактеризовать состав минералов на поверхности Красной планеты: рентгеновский спектрометр альфа-частиц (APXS), комплекс химия и камера (ChemCam), химический и минералогический рентгеновский дифрактометр/рентгеновский флуоресцентный прибор (CheMin) и прибор для анализа проб в наборе инструментов Mars (SAM).
      • Радиационные детекторы, которые помогут выяснить, как много радиации попадает на поверхность Марса. Это поможет ученым понять, смогут ли люди работать на поверхности планеты — и могли ли микробы там выжить. Включают в себя детектор радиационной оценки (RAD) и детектор нейтронов (DAN).
      • Датчики окружающей среды, необходимые, чтобы наблюдать за погодой — станция мониторинга окружающей среды Rover (REMS).
      • Атмосферный датчик, который в основном использовался при посадке.

    Рискованная посадка

    Марсоход, запущенный с мыса Канаверал, штат Флорида, 26 ноября 2011 года, прибыл на Марс 6 августа 2012 года после рискованной и сложной посадки, которую НАСА окрестило «Семь минут террора». Из-за серьезного веса «Кьюриосити» НАСА пришло к выводу, что предыдущий метод, использовавшийся для посадки марсохода на Красную планету, вероятно, не сработает. Вместо этого аппарат прошел через чрезвычайно сложную последовательность маневров, прежде чем оказался на поверхности.


    После входа в атмосферу Марса и окончание «огненной» фазы посадки, был выпущен сверхзвуковой парашют, необходимый для замедления скорости космического аппарата. Представители НАСА заявили, что парашют должен был выдерживать усилие в 29 480 кг, чтобы снизить скорость падения космического аппарата на поверхность.

    Находясь под парашютом, MSL сбросил нижнюю часть теплозащитного экрана, чтобы получить возможность использовать радар с целью определения своей высоты. Парашют мог замедлить скорость MSL только до 322 км/ч, что было бы слишком много для успешной посадки. Чтобы решить эту проблему, инженеры спроектировали конструкцию, которая отстреливала парашют и использовала ракетные двигатели в заключительной части полета.

    На высоте около 18 метров над поверхностью Марса был развернут посадочный узел MSL. Он опустил марсоход на поверхность, поддерживая свое положение с помощью ракетных двигателей, используя 6 метровые тросы. Опускаясь со скоростью 2,4 км/ч, MSL осторожно коснулся поверхности в Кратере Гейл. Примерно в тот же самый момент посадочный узел разорвал связь и отлетел в сторону, врезавшись в поверхность.

    Инструменты для поиска признаков жизни

    У марсохода есть несколько инструментов для поиска жизни. Среди них — прибор, бомбардирующий поверхность планеты нейтронами, которые будут замедляться, если столкнутся с атомами водорода — одним из элементов составляющих воду.


    Двухметровый внешний манипулятор «Кьюриосити» может собирать образцы с поверхности для проведения их анализа, обнаружения газов, которые входят в их состав, и изучения их для получения информации о том, как образовались марсианские камни и почва.

    Инструмент по анализу проб, если он действительно обнаружит доказательства существования органического материала, сможет перепроверить находку. На лицевой стороне «Curiosity», под крышками из фольги, находятся несколько керамических блоков, наполненных искусственными органическими соединениями.

    «Кьюриосити» может просверлить любой из этих блоков и поместить образец в свою «печку» для измерения его состава. Таким образом исследователи поймут, соответствуют ли признаки наличия органики, обнаруженные на Марсе, тем признакам органики, которые получаются при нагревании образцов, заложенных на марсоходе на Земле. Если признаки совпадут, ученые, скорее всего, посчитают, что их вызвали организмы, прилетевшие на Марс с Земли без билета.

    Камеры с высоким разрешением, установленные на марсоходе, делают фотографии по мере перемещения аппарата, обеспечивая ученых визуальной информацией, которую дает возможность сравнить условия Марса с окружающей средой на Земле.

    В сентябре 2014 года марсоход прибыл к своей научной цели, Горе Шарп (Aeolis Mons). «Кьюриосити» начал тщательно изучать слои на склоне, когда приступил к движению вверх по горе. Цель его состояла в том, чтобы понять, как климат Марса изменился с влажного в далеком прошлом до более сухого и кислотного в наши дни.

    Доказательства жизни: органические молекулы и метан

    Основная задача миссии — определить, подходит ли Марс для жизни. Хотя марсоход и не предназначен для поиска самой жизни, он имеет на своем борту ряд инструментов, которые могут анализировать информацию об окружающей среде.

    Ученые были весьма озадачены в начале 2013 года, когда марсоход передал информацию, показывающую, что на Марсе были условия для существования жизни в прошлом.

    Порошок из первых образцов, которые были получены «Кьюриосити», содержал элементы серу, азот, водород, кислород, фосфор и углерод, которые считаются «строительными блоками» или фундаментальными элементами, необходимыми для поддержания жизни. Хотя их наличие и не свидетельствует о самой жизни, находка все равно была интересна ученым, участвовавшим в миссии.

    «Основной вопрос для этой миссии заключается в том, мог ли Марс поддерживать потенциально обитаемую среду в прошлом», — заявил Майкл Майер, ведущий научный сотрудник Исследовательской программы NASA «Марс». «Из того, что мы знаем сейчас, ответ — «да».

    Ученые также обнаружили огромный всплеск уровня метана на Марсе в конце 2013 года и в начале 2014 года на уровне около 7 частей на миллиард (по сравнению с обычным 0,3 ppb до 0,8 ppb). Это было важной находкой, поскольку в некоторых случаях метан является индикатором существования микробной жизни. Но его наличие также может указывать и на некоторые геологические процессы. В 2016 году команда определила, что выброс метана не был сезонным событием.

    «Кьюриосити» также выполнил первую окончательную идентификацию органических веществ на Марсе, об этом было объявлено в декабре 2014 года. Органические вещества считаются строительными блоками жизни, но не обязательно указывают на ее существование, поскольку они также могут быть созданы посредством химических реакций.

    Изучение окружающей среды

    Помимо выяснения пригодности Марса для проживания, у марсохода есть другие инструменты на борту, предназначенные для того, чтобы узнать больше об окружающей среде Марса. Среди целей для этих инструментов — постоянный мониторинг метеорологических и радиационных условий. Это позволит определить, насколько подходящим будет Марс для возможной пилотируемой миссии.

    Анализатор радиационной обстановки марсоход работает в течение 15 минут каждый час для измерения уровня излучения на поверхности планеты и в ее атмосфере. Ученые, в частности, заинтересованы в измерении «вторичных лучей» — излучения, которое могут генерировать частицы с низкой энергией после попадания в молекулы газа в атмосфере. Гамма-лучи или нейтроны, образующиеся в результате этого процесса, могут представлять риск для человека. Кроме того, ультрафиолетовый датчик, находящийся на «Кьюриосити», также непрерывно отслеживает уровень УФ излучения.

    В декабре 2013 года НАСА определило, что радиационные уровни, измеренные марсоходом, не будут препятствовать пилотируемой миссии на Марс в будущем.

    Станция мониторинга окружающей среды марсохода измеряет скорость ветра и диаграмму его направления, а также определяет температуру и влажность в окружающем воздухе. В 2016 году ученые смогли оценить долгосрочные тенденции изменения атмосферного давления и влажности воздуха на Марсе. Некоторые из этих изменений происходят, когда полярные шапки, состоящие из диоксида углерода, начинают таять весной, выбрасывая огромное количество влаги в атмосферу.

    В июне 2017 года НАСА объявила, что у «Кьюриосити» появилось новое обновление программного обеспечения, которое позволит ему самостоятельно выбирать цели для работы. Обновление, называемое AEGIS, представляет собой первый случай, когда искусственный интеллект был развернут на удаленном космическом аппарате.

    В начале 2018 года «Кьюриосити» отправил на Землю фотографии кристаллов, которые могли образоваться в древних озерах на Марсе. По этому поводу существует множество гипотез, и одна из них заключается в том, что эти кристаллы образуются после того, как соли концентрируются в испаряющемся водяном озере.

    Будущие миссии

    Следует отметить, что марсоход не в одиночку работает на Красной планете. Сопровождает его целая «команда» из других космических аппаратов, созданных разными странами, часто работающих совместно в целях развития науки. Космический орбитальный аппарат NASA «Mars Reconnaissance Orbiter» обеспечивает получение изображений с высоким разрешением поверхности. Еще один спутник NASA под названием MAVEN (миссия Mars Atmosphere и Volatile EvolutioN) исследует атмосферу Марса для изучения атмосферных потерь и других интересных явлений. Другие орбитальные миссии включают в себя «Марс-Экспресс», европейский орбитальный модуль «ExoMars», а также орбитальную миссию Индии.

    В отдаленной перспективе НАСА заявляет об отправке пилотируемой миссии на Марс — возможно, в 2030-х годах. Однако финансирования для проведения этих работ правительство США пока не предусмотрело. Вполне вероятно, что первыми на Марсе окажутся представители частных компаний, например «Space-X». Это означает, что первым общественно — политическим строем колонии на Марсе станет развитый капитализм. Хотя китайцы, учитывая огромное население и необходимость расширения своего жизненного пространства, вполне могут удивить. Как говорится — поживем, увидим…

Источник: alivespace.ru

As big as an SUV

One thing that makes Curiosity stand out is its sheer size: Curiosity is about the size of a small SUV. It is 9 feet 10 inches long by 9 feet 1 inch wide (3 m by 2.8 m) and about 7 feet high (2.1 m). It weighs 2,000 lbs. (900 kilograms). Curiosity’s wheels have a 20-inch (50.8 cm) diameter. 

Engineers at NASA’s Jet Propulsion Laboratory designed the rover to roll over obstacles up to 25 inches (65 centimeters) high and to travel about 660 feet (200 m) per day. The rover’s power comes from a multi-mission radioisotope thermoelectric generator, which produces electricity from the heat of plutonium-238’s radioactive decay. 

Related: How Long Does It Take to Get to Mars

Science goals

According to NASA, Curiosity has four main science goals in support of the agency’s Mars exploration program:

  • Determine whether life ever arose on Mars.
  • Characterize the climate of Mars.
  • Characterize the geology of Mars.
  • Prepare for human exploration.

The goals are closely interlinked. For example, understanding the current climate of Mars will also help determine whether humans can safely explore its surface. Studying the geology of Mars will help scientists better understand if the region near Curiosity’s landing site was habitable. To assist with better meeting these large goals, NASA broke down the science goals into eight smaller objectives, ranging from biology to geology to planetary processes.

In support of the science, Curiosity has a suite of instruments on board to better examine the environment. This includes:

  • Cameras that can take pictures of the landscape or of minerals close-up: Mast Camera (Mastcam), Mars Hand Lens Imager (MAHLI) and Mars Descent Imager (MARDI).
  • Spectrometers to better characterize the composition of minerals on the Martian surface: Alpha Particle X-Ray Spectrometer (APXS), Chemistry & Camera (ChemCam), Chemistry & Mineralogy X-Ray Diffraction/X-Ray Fluorescence Instrument (CheMin), and Sample Analysis at Mars (SAM) Instrument Suite.
  • Radiation detectors to get a sense of how much radiation bathes the surface, which helps scientists understand if humans can explore there – and if microbes could survive there. These are Radiation Assessment Detector (RAD) and Dynamic Albedo of Neutrons (DAN).
  • Environmental sensors to look at the current weather. This is the Rover Environmental Monitoring Station (REMS).
  • An atmospheric sensor that was primarily used during landing, called Mars Science Laboratory Entry Descent and Landing Instrument (MEDLI).

Mars curiosity

A complicated landing

The spacecraft launched from Cape Canaveral, Florida, on Nov. 26, 2011, and arrived on Mars on Aug. 6, 2012, after a daring landing sequence that NASA dubbed «Seven Minutes of Terror.» Because of Curiosity’s weight, NASA determined that the past method of using a rolling method with land bags would probably not work. Instead, the rover went through an extremely complicated sequence of maneuvers to land.

From a fiery entry into the atmosphere, a supersonic parachute needed to deploy to slow the spacecraft. NASA officials said the parachute would need to withstand 65,000 lbs. (29,480 kg) to break the spacecraft’s fall to the surface.

Under the parachute, MSL let go of the bottom of its heat shield so that it could get a radar fix on the surface and figure out its altitude. The parachute could only slow MSL to 200 mph (322 kph), far too fast for landing. To solve the problem, engineers designed the assembly to cut off the parachute, and use rockets for the final part of the landing sequence.

About 60 feet (18 m) above the surface, MSL’s «skycrane» deployed. The landing assembly dangled the rover below the rockets using a 20-foot (6 m) tether. Falling at 1.5 mph (2.4 kph), MSL gently touched the ground in Gale Crater about the same moment the skycrane severed the link and flew away, crashing into the surface.

NASA personnel tensely watched the rover’s descent on live television. When they received confirmation that Curiosity was safe, engineers pumped fists and jumped up and down in jubilation.

News of the landing spread through traditional outlets, such as newspapers and television, as well as social media, such as Twitter and Facebook. One engineer became famous because of the Mohawk he sported on landing day.

Tools for finding clues to life

The rover has a few tools to search for habitability. Among them is an experiment that bombards the surface with neutrons, which would slow down if they encountered hydrogen atoms: one of the elements of water.

Curiosity’s 7-foot arm can pick up samples from the surface and cook them inside the rover, sniffing the gases that come out of there and analyzing them for clues as to how the rocks and soil formed.

The Sample Analysis of Mars instrument, if it does pick up evidence of organic material, can double-check that. On Curiosity’s front, under foil covers, are several ceramic blocks infused with artificial organic compounds. [Related: Curiosity Rover Finds Methane on Mars]

Curiosity can drill into each of these blocks and place a sample into its oven to measure its composition. Researchers will then see if organics appear that were not supposed to be in the block. If so, scientists will likely determine these are organisms hitchhiking from Earth.

High-resolution cameras surrounding the rover take pictures as it moves, providing visual information that can be compared to environments on Earth. This was used when Curiosity found evidence of a streambed, for example.

In September 2014, Curiosity arrived at its science destination, Mount Sharp (Aeolis Mons) shortly after a NASA science review said the rover should do less driving and more searching for habitable destinations. It is now carefully evaluating the layers on the slope as it moves uphill. The goal is to see how the climate of Mars changed from a wet past to the drier, acidic conditions of today.

«I think the principal recommendation of the panel is that we drive less and drill more,» Curiosity project scientist John Grotzinger said during a news conference at the time. «The recommendations of the review and what we want to do as a science team are going to align because we have now arrived at Mount Sharp.»

Evidence for life: Organic molecules and methane

Curiosity’s prime mission is to determine if Mars is, or was, suitable for life. While it is not designed to find life itself, the rover carries a number of instruments on board that can bring back information about the surrounding environment.

Scientists hit something close to the jackpot in early 2013, when the rover beamed back information showing that Mars had habitable conditions in the past. 

Powder from the first drill samples that Curiosity obtained included the elements of sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon, which are all considered «building blocks» or fundamental elements that could support life. While this is not evidence of life itself, the find was still exciting to the scientists involved in the mission.

«A fundamental question for this mission is whether Mars could have supported a habitable environment,» stated Michael Meyer, lead scientist for NASA’s Mars Exploration Program. «From what we know now, the answer is yes.»

Scientists also detected a huge spike in methane levels on Mars in late 2013 and early 2014, at a level of about 7 parts per billion (compared to the usual 0.3 ppb to 0.8 ppb). This was a notable finding because in some circumstances, methane is an indicator of microbial life. But it can also point to geological processes. In 2016, however, the team determined the methane spike was not a seasonal event. There are smaller background changes in methane, however, that could be linked to the seasons.

Curiosity also made the first definitive identification of organics on Mars, as announced in December 2014. Organics are considered life’s building blocks, but do not necessarily point to the existence of life as they can also be created through chemical reactions. 

“While the team can’t conclude that there was life at Gale Crater, the discovery shows that the ancient environment offered a supply of reduced organic molecules for use as building blocks for life and an energy source for life,” NASA stated at the time.

Initial results released at the Lunar and Planetary Science conference in 2015 showed scientists found complex organic molecules in Martian samples stored inside the Curiosity rover, but using an unexpected method. In 2018, results based on Curiosity’s work added more evidence that life was possible on Mars. One study described the discovery of more organic molecules in 3.5-billion-year-old rocks, while the other showed that methane concentrations in the atmosphere change seasonally. (The seasonal changes could mean that the gas is produced from living organisms, but there’s no definitive proof of that yet.)

Checking out the environment

Besides hunting for habitability, Curiosity has other instruments on board that are designed to learn more about the environment surrounding it. Among those goals is to have a continuous record of weather and radiation observations to determine how suitable the site would be for an eventual human mission.

Curiosity’s Radiation Assessment Detector runs for 15 minutes every hour to measure a swath of radiation on the ground and in the atmosphere. Scientists in particular are interested in measuring «secondary rays» or radiation that can generate lower-energy particles after it hits the gas molecules in the atmosphere. Gamma-rays or neutrons generated by this process can cause a risk to humans. Additionally, an ultraviolet sensor stuck on Curiosity’s deck tracks radiation continuously.

In December 2013, NASA determined the radiation levels measured by Curiosity were manageable for a crewed Mars mission in the future. A mission with 180 days flying to Mars, 500 days on the surface and 180 days heading back to Earth would create a dose of 1.01 sieverts, Curiosity’s Radiation Assessment Detector determined. The total lifetime limit for European Space Agency astronauts is 1 sievert, which is associated with a 5-percent increase in fatal cancer risk over a person’s lifetime.

The Rover Environmental Monitoring Station measures the wind’s speed and chart its direction, as well as determining temperature and humidity in the surrounding air. By 2016, scientists were able to see long-term trends in atmospheric pressure and air humidity. Some of these changes occur when the winter carbon-dioxide polar caps melt in the spring, dumping huge amounts of moisture into the air.

In June 2017, NASA announced Curiosity had a new software upgrade that would allow it to pick targets by itself. The update, called Autonomous Exploration for Gathering Increased Science (AEGIS), represented the first time artificial intelligence was deployed on a faraway spacecraft.

In early 2018, Curiosity sent back pictures of crystals that could have formed from ancient lakes on Mars. There are multiple hypotheses for these features, but one possibility is they formed after salts concentrated in an evaporating water lake. (Some Internet rumors speculated the features were actually signs of burrowing life, but NASA quickly discounted that hypothesis based on their linear angles – a feature that is very similar to crystalline growth.)

Issues with the rover

Vapors from a «wet chemistry» experiment filled with a fluid called MTBSTFA (N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide) contaminated a gas-sniffing analysis instrument shortly after Curiosity landed. Since the scientists knew the collected samples were already reacting with the vapor, they eventually derived a way to seek and preserve the organics after extracting, collecting and analyzing the vapor. 

Curiosity had a dangerous computer glitch just six months after landing that put the rover within only an hour of losing contact with Earth forever, NASA revealed in 2017. Another brief glitch in 2016 briefly stopped science work, but the rover quickly resumed its mission.

In the months after landing, NASA noticed damage to the rover’s wheels appearing much faster than expected. By 2014, controllers made in the rover’s routing to slow down the appearance of dings and holes. «They are taking damage. That’s the surprise we got back at the end of last year,» said Jim Erickson, Curiosity project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, in a July 2014 interview. «We always expected we would get some holes in the wheels as we drove. It’s just the magnitude of what we’re seeing that was the surprise.»

NASA pioneered a new drilling technique at Mount Sharp in February 2015 to begin operations at a lower setting, a requirement for working with the soft rock in some of the region. (Previously, a rock sample shattered after being probed with the drill.) 

Engineers had mechanical trouble with Curiosity’s drill starting in ate 2016, when a motor linked with two stabilizing posts on the drill bit ceased working. NASA examined several alternative drilling techniques, and on May 20, 2018 the drill obtained its first samples in more than 18 months.

Источник: www.space.com

 Проект MSL — это самая крупная американская миссия на Марс, являющаяся вершиной длительной и успешной программы исследования Красной планеты.

    На пионерском этапе марсианской программы США провели съемку и зондирование планеты с трех пролетных (Mariner 4,6 и 7) и трех орбитальных (Mariner 9, Viking 1 и 2) аппаратов, а также исследование грунта Марса на наличие в нем признаков жизни в двух точках поверхности планеты (Viking 1 и 2, 1976 г.).

    Современный этап начался запуском в сентябре 1992 г. большого орбитального аппарата Mars Observer с комплексом из шести научных приборов. К сожалению, КА был потерян в результате аварии двигательной установки в августе 1993 г. за несколько дней до выхода на орбиту спутника планеты.

Mars curiosity
Химическая камера , используется импульсный лазерный луч для испарения крошечной цели — минерального образца, полученные вспышки света могут быть проанализированы для выявления химических элементов. На фото главный исследователь Роджер Вине, Лос-Аламосской национальной лаборатории, (NASA / JPL-Caltech / LANL)

    После этого было решено сделать ставку на малые КА, распределив между ними задачи погибшего «Обсервера» и дополняя их новыми исследованиями. Первым стал спутник Mars Global Surveyor, который был успешно выведен на рабочую орбиту в марте 1999 г. и продуктивно работал до ноября 2006 г., осуществляя обзорное и детальное фотографирование, высотную съемку с использованием лазерного альтиметра и картирование минерального состава поверхности Марса. Оставаясь вполне работоспособным через десять лет после старта, MGS был утрачен в результате ошибки при обновлении бортового программного обеспечения.


Mars curiosity

Этот тест для радиолокационной системы, которые будут использоваться в  августе 2012 в момент спуска и посадки. Инженерный образец испытания радиолокационной системы на носу вертолета.

МИССИИ ПО ИССЛЕДОВАНИЮ МАРСА
Наименование Дата запуска Основные результаты Стоимость, млн. $
Mars Observer 25.09.1992 980
Mars Global Surveyor (MGS) 07.11.1996 219
Mars Pathfinder (MPF) 04.12.1996 266
Mars Climate Orbiter (MCО) 11.12.1998 328
Mars Polar Lander (MPL) 03.01.1999
Deep Space 1 3
Mars Odyssey 07.04.2001 297
Mars Exploration Rover-A (Spirit) 10.06.2003 830
Mars Exploration Rover-B (Opportunity) 08.07.2003
Mars Reconnaissance Orbiter (MRO) 12.08.2005 540
Phoenix 04.08.2007 386
Mars Science Laboratory 26.11.2011 2476
MAVEN 31.10.2013 655

Mars curiosity
Кратер Gale (кратер Гейла) будущее место посадки марсохода Curiosity. В августе 2012 года ровер сядет в северной части кратера. Кратер достигает 154 км в диаметре, в его центре гора в высоту 5 км. Место посадки очерчено элипсом (20х25 км). Поверхность кратера в районе посадки указывает на воздейстаие воды.(NASA / JPL-Caltech / ASU)

Mars curiosity
Кожух посадочного модуля (NASA / Jim Гроссман)


Mars curiosity


Mars curiosity

Тепловизор  крепится на руке марсохода НАСА в Лаборатории реактивного движения в Пасадене, Калифорния, 4 апреля 2011 года.  (AP Photo / Damian Dovarganes)

Mars curiosity


Mars curiosity

Mars curiosity

    К началу 2002 г. было решено, что целесообразно делать долгоживущую мобильную лабораторию с питанием от радиоизотопного генератора, а это потребовало отсрочить запуск до сентября 2009 г. Одновременно сменилось имя проекта: сокращение осталось прежним — MSL, а вот расшифровка стала иной — Mars Science Laboratory, то есть марсианская научная лаборатория. Именно ей предстояло открывать новый цикл изучения Марса в 2009-2020 гг., программу которого готовила так называемая «группа синтеза» из ученых NASA и университетов США с учетом рекомендаций Национального исследовательского совета Национальной академии наук США.

Mars curiosity

В феврале 2003 г. «группа синтеза» сформулировала четыре возможные стратегии научных поисков на Марсе, каждой из которых соответствовали цели MSL и районы ее работы: поиск следов прошлой жизни, изучение районов гидротермальных проявлений, поиск сегодняшней жизни и изучение эволюции планеты. Для оценки научных задач первой экспедиции в каждом из вариантов была сформирована «группа научной интеграции» во главе с Дэниелом МакКлизом (Daniel J. McClease) из JPL и Джеком Фармером (Jack D. Farmer) из Университета штата Аризона.

Mars curiosity

    В августе 2005 г. начался этап реализации проекта, то есть детального проектирования, изготовления и испытаний КА. Основные компоненты посадочного аппарата разрабатывались Лабораторией реактивного движения JPL, а создание системы, обеспечивающей его вход в атмосферу Марса и безопасное торможение в ней, в марте 2006 г. было поручено компании Lockheed Martin Space System. Общая стоимость MSL была оценена тогда в 1327 млн $.

Mars curiosity

    Сейчас общая стоимость проекта оценивается в 2476 млн $ — почти вдвое больше, чем пять лет назад. Около 1.8 млрд из общей суммы приходится на разработку КА и научной аппаратуры, остальное — на запуск и управление. Очередная, казалось бы, миссия к Марсу, обошлась почти во столько же, что и все девять пусков между 1992 и 2011 г., и достигла уровня уникальных проектов флагманского класса. И, увы, нельзя не сравнить ее стоимость с расходами на отечественный проект аналогичного уровня сложности «Фобос-Грунт», официально исчисленными в 5 млрд руб — в пятнадцать раз меньше, чем у американцев!


Mars curiosity

MSL и в самом деле превосходит всех своих предшественников, и не только по сложности, но и просто по отправляемой к Марсу массе. Если Mars Observer «потянул» на 2487 кг, а масса MRO составила 2180 кг, то стартовая масса нового марсианского аппарата равна 3839 кг. Комплекс MSL делится натри основные части:
    — перелетная ступень, обеспечивающая полет по траектории от Земли к Марсу, включая коррекции этой траектории, общей массой 539 кг;
    — система обеспечения входа в атмосферу, торможения и посадки массой 2401 кг;
    — ровер массой 899 кг.

Mars curiosity

Максимальный диаметр КА (диаметр лобового экрана для торможения в атмосфере Марса) составляет 4.50 м, длина изделия — 2.95 м.

    Перелетная ступень выполнена в виде цилиндрического «бублика» диаметром 4.50 м и высотой около 0.90 м с фиксированной солнечной батареей на нижней его части и десятью радиаторами жидкостной системы терморегулирования по периметру. В течение всего полета до Марса она управляется бортовым компьютером ровера, будучи соединена с ним через интерфейсный блок на хвостовом экране десантной части и системы посадочной ступени. Питание ступени осуществляется от шести панелей СБ общей площадью 12.8 м2, выдающих 1080 Вт у Марса при наихудшей возможной ориентации, а при необходимости — и от радиоизотопного генератора марсохода. Ступень оснащена звездным датчиком и двумя блоками солнечных датчиков для определения текущей ориентации. На ней имеется два блока по четыре гидразиновых ЖРД MR-111C тягой по 1.1 кгс, обеспечивающих закрутку КА и коррекции траектории перелета. Топливо хранится в двух титановых сферических баках диаметром по 48 см. На перелетной ступени установлена антенна среднего усиления MGA, с помощью которой большую часть полета осуществляется связь с Землей.

    Десантный комплекс можно разделить на лобовой экран, хвостовой обтекатель, находящуюся внутри них посадочную ступень и собственно полезный груз — ровер. Все его системы также управляются компьютером марсохода.
  
  Лобовой экран в виде тупого конуса — наибольший из всех подобных изделий для межпланетных аппаратов. Lockheed Martin делала его с учетом опыта по экрану спускаемого аппарата пилотируемого корабля Orion. Композитная конструкция воспринимает механические нагрузки, достигающие 50 тонн, а теплозащиту обеспечивает фенольно-углеродное абляционное покрытие PICA, разработанное Центром Эймса и впервые использованное на возвращаемой капсуле КА Stardust.


Mars curiosity

На фото Передний лобовой экран и хвостовой обтекатель, именно они будут защищать марсоход при спуске в атмосфере МарсаЫ. Космический центр им. Кеннеди, Флорида.

Mars curiosity

Биконический хвостовой обтекатель покрыт пробочно-силиконовой теплозащитой типа SLA-561V. На нем смонтированы восемь двигателей управления спуском MR-107U тягой по 30.8 кгс, сбрасываемые балансировочные грузы, парашютная система и три антенны — для связи с Землей в Х-диапазоне и со спутниками Марса на УКВ.

    Посадочная ступень MSL, в отличие от всех своих предшественников, несет полезный груз не на себе, а под собой: марсоход крепится к ней пироболтами. Ступень оснащена восемью посадочными двигателями MLE (Mars Landing Engine) — по два на четырех углах платформы. Эти ЖРД регулируемой тяги (до 336 кгс) типа MR-80B работают на гидразине, запас которого — 387 кг — хранится в трех сферических баках. Посадочный радиолокатор с шестью дисковидными антеннами измеряет ориентацию, горизонтальную и вертикальную скорость. Посадочная ступень оснащена приемопередатчиком, усилителем и антеннами X- и УКВ-диапазона.

    Ровер Curiosity («Любопытство») получил свое имя в мае 2009 г. по результатам всеамериканского конкурса, который выиграла 12-летняя Клара Ма из городка Ленекса в штате Канзас. Его часто сравнивают с небольшим автомобилем. Действительно, длина ровера без учета манипулятора достигает 3.00 м, ширина — 2.77 м, а высота с мачтой с телекамерами — 2.13 м. Система движения построена сходно с марсоходами MER и имеет в своем составе шесть ведущих колес диаметром 0.51 м с грунтозацепами, причем четыре из них — ориентируемые. Максимальная скорость Curiosity — 4 см/с.

Mars curiosity

Манипулятор с пятью степенями свободы несет турель массой 33 кг с двумя научными приборами и тремя инструментами для копки грунта, фрезерования камней и дробления образцов.

    Ровер питается от расположенного в хвостовой части радиоизотопного генератора типа MMRTG (диаметр 64 см, длина 66 см, масса 45 кг), имеющего в своем составе 4.8 кг радиоактивного изотопа плутония-238. Выделяемое при его распаде тепло преобразуется в электрическую энергию — 110 Вт, или около 2700 Вт-ч за сутки. Минимальный ресурс генератора — 14 лет. Два литий-ионных аккумулятора емкостью по 42 А-ч позволяют накапливать энергию и отдавать ее в те периоды, когда энергопотребление ровера выше средней мощности MMRTG.

Mars curiosity

Манипулятор с пятью степенями свободы несет турель массой 33 кг с двумя научными приборами и тремя инструментами для копки грунта, фрезерования камней и дробления образцов.

    Ровер питается от расположенного в хвостовой части радиоизотопного генератора типа MMRTG (диаметр 64 см, длина 66 см, масса 45 кг), имеющего в своем составе 4.8 кг радиоактивного изотопа плутония-238. Выделяемое при его распаде тепло преобразуется в электрическую энергию — 110 Вт, или около 2700 Вт-ч за сутки. Минимальный ресурс генератора — 14 лет. Два литий-ионных аккумулятора емкостью по 42 А-ч позволяют накапливать энергию и отдавать ее в те периоды, когда энергопотребление ровера выше средней мощности MMRTG.

Mars curiosity

Два дублированных бортовых компьютера Curiosity построены на процессоре RAD 750 с тактовой частотой 200 МГц, имеют постоянное запоминающее устройство емкостью 256 кбайт, оперативную память 256 Мбайт и 2 Гбайт флэш-памяти. Для планирования движения и обнаружения опасностей ровер оснащен в общей сложности 12 техническими камерами, в том числе двумя парами навигационных камер NavCam с полем зрения 45° и «картинкой» размером 1024×1024 элемента, а также четырьмя стереопарами контрольных камер HazCam с объективом типа «рыбий глаз» и полем зрения 124°. Эти камеры поровну распределены между двумя компьютерами.

    Радиообмен с Землей идет непосредственно через 15-ваттный передатчик и две антенны Х-диапазона (в том числе остронаправленную диаметром 0.3 м) либо через орбитальные ретрансляторы по «местной» УКВ-линии. В первом случае пропускная способность не превышает нескольких килобит в секунду, во втором достигает 0.25 Мбит/с через Mars Odyssey и 2 Мбит/с через MRO. Всего за сутки MSL сможет передавать примерно по 250 Мбит данных.

    На верхней панели корпуса ровера закреплены два памятных чипа: один с 1.24 млн имен, присланных в JPL по электронной почте в рамках кампании «Отправь свое имя к Марсу», и второй — с 20000 отсканированными именами людей, увидевших его в JPL и Космическом центре имени Кеннеди.

Mars curiosity

Основная цель проекта сформулирована так: исследование и описание конкретного района Марса и проверка наличия там в прошлом или настоящем природных условий, благоприятных для существования жизни (вода, энергия, химические ингридиенты). Можно сказать и так: к старому лозунгу марсианских исследований «ищи воду» MSL добавляет новый — «ищи углерод». Биологический потенциал зоны посадки предстоит определить исходя из наличия и количества органических соединений и тех химических элементов, которые являются основой жизни (С, Н, N, О, Р и S), а также путем поиска ее внешних проявлений. Параллельными задачами является описание геологии и геохимии района посадки на всех возможных пространственных масштабах, изучение планетарных процессов, которые могли иметь отношение к жизни в прошлом, а также исследование радиационной обстановки.

Mars curiosity

    Не входят в программу работ поиски самой жизни — ни в виде микроорганизмов, ни путем регистрации биохимических процессов, как пытались сделать в 1976 г. на «Викингах». Однако если MSL докажет потенциальную пригодность исследуемого района для жизни, в дальнейшем могут быть предприняты экспедиции для биологических исследований на месте или для доставки образцов грунта на Землю.

    Для решения поставленных задач марсоход Curiosity оснащен комплексом из 10 научных приборов суммарной массой 75 кг, которые подразделяются на обзорные инструменты (размещенные на мачте на высоте около 2 м над грунтом планеты), контактные (выносимые к объекту исследования с помощью манипулятора) и аналитические (для анализа образцов грунта и атмосферы Марса). В эту классификацию не входят десантная камера, работающая на этапе спуска, и приборы радиационного контроля и метеонаблюдений. Кроме того, на лобовом экране спускаемого аппарата установлены датчики для регистрации условий гиперзвукового входа и полета в атмосфере.

Mars curiosity

Отметим, что ныне работающий на Марсе ровер Opportunity имеет комплект научной аппаратуры общей массой всего 5 кг и масса одного лишь анализатора SAM на борту Curiosity составляет 40 кг.

Mars curiosity

    Камера MastCam в первоначальном варианте проекта была задумана как цифровая стереокамера с двумя объективами, оси которых находятся на высоте 1.97 м над грунтом и разнесены на 24.5 см по горизонтали. Каждый из них должен был иметь переменное фокусное расстояние в пределах от 6.5 до 100 мм, что позволяло вести стереосъемку при любом уровне «зума». Однако в сентябре 2007 г. NASA распорядилось изменить проект в пользу двух камер с фиксированным фокусным расстоянием -100 мм на правом «глазу» и 34 мм на левом. В начале 2010 г., когда они были уже изготовлены, агентство согласилось оплатить компании MSSS первоначальные камеры с зумом с тем условием, что они будут поставлены на борт в случае своевременного изготовления и соответствия заявленным характеристикам. Однако в итоге Curiosity так и остался «разноглазым».

Mars curiosity

    Итак, левая обзорная камера М-34 с фокусным расстоянием 34 мм и светосилой 1:8 имеет поле зрения 15° по вертикали и 18° по горизонтали. Правая камера М-100 с фокусным расстоянием 100 мм и светосилой 1:10 имеет поле зрения 5×6°. Ее разрешение составляет около 7.5 см на дальности 1 км и 0.15 мм на расстоянии 2 м, что позволит использовать М-100 для поиска интересных объектов для исследования. Обе камеры могут фокусироваться на объектах на расстоянии от 1.8 м до бесконечности.

  В конструкции обеих камер применен встроенный байеровский фильтр, позволяющий одновременно фиксировать красный, зеленый и синий компонент изображения на приемной матрице фирмы Kodak размером 1600×1200 элементов. Этот режим применяется совместно с широкополосным сменным фильтром; помимо него имеется еще семь фильтров, из которых три (440,525 и 1035 нм) общие для обеих камер, а четыре индивидуальны для каждой из них.

Mars curiosity

Российская аппаратура, установленная на американском марсоходе Curiosity, работает в штатном режиме, сообщил научный сотрудник Института космических исследований РАН (ИКИ) Максим Литвак, находясь в Лаборатории реактивного движения НАСА в Калифорнии. Его слова передает РИА «Новости».

Работоспособность нейтронного детектора (ДАН — детектор альбедных нейтронов), разработанного в ИКИ, уже проверили. Первое включение было короткое, потом он также будет включаться и выключаться в соответствии с графиком работы. Российский прибор стал одним из двух «иностранцев» из десяти научных инструментов, установленных на Curiosity. Испанцы для него разработали метеостанцию REMS.

ДАН способен определить на планете содержание водорода, а значит и воды, а также гидратированных минералов. Зоны с большой концентрацией этих веществ наиболее интересны ученым.

Принцип работы нейтронного детектора заключается в том, что он облучает поверхность планеты нейтронами высоких энергий, затем по свойству потока вторичных нейтронов и определяет содержание тех или иных веществ. Он сможет «почувствовать» присутствие воды в грунте, даже если ее содержание там будет минимальным. Примечательно, что специалисты НАСА выбрали для посадки марсохода район, где так мало льда. Это сделано для того, чтобы не заразить Марс земными микроорганизмами.

Такая технология уже была опробована ранее на двух приборах, разработанных в ИКИ. Устройство ХЕНД уже более 10 лет работает на марсианской орбите, на борту зонда «Марс-Одиссей». С помощью него ученые установили, что в высоких широтах планеты присутствует толстый слой льда. А детектор ЛЕНД на борту зонда LRO нашел лед в кратерах у лунных полюсов.

Mars curiosity

Импульсный нейтронный генератор ДАН-ИНГ, изготовленный во ВНИИ автоматики имени Н.Л.Духова на базе промышленного импульсного генератора, способен выдать примерно 107 импульсов с частотой до 10 раз в секунду по 10 млн частиц в импульсе. Регистрирующий блок ДАН-ДЭ создан в лаборатории космической гамма-спектроскопим И. Г. Митрофанова в ИКИ. В разработке и создании комплекса аппаратуры участвовали также Институт машиноведения имени А.А. Благонравова РАН и Объединенный институт ядерных исследований (Дубна).

    ДАН будет проводить измерения вдоль трассы движения марсохода во время длительных стоянок и остановок, чтобы оперативно оценивать содержание воды и гидратированных соединений в грунте. При обнаружении участков с повышенным содержанием воды будут проводиться детальные исследования грунта другими приборами.

Mars curiosity

М-34 может снять цветную круговую панораму до высоты 60° из 150 кадров примерно за 25 минут. Предусмотрен также режим видеосъемки с шириной кадра 720 пикселов и скоростью 4-7 кадров в секунду, в зависимости от экспозиции. Каждая камера имеет флэш-память объемом 8 Гбайт и собственный блок обработки и сжатия изображений, функционирующий независимо от основного компьютера марсохода. Блоки электроники MastCam и еще двух камер MARDI и MAHLI, также разработанных MSSS, аналогичны.

    Новым и очень интересным инструментом MSL является анализатор элементного состава пород ChemCam, расположенный на мачте рядом с камерами. Основная задача ChemCam — выбор среди окружающих ровер пород наиболее интересных для химического анализа. Прибор имеет в своем составе инфракрасный лазер, способный сконцентрировать на определенной точке образца достаточную мощность для испарения его верхнего слоя, и спектрометр для регистрации спектра образовавшейся плазмы. Лазерный импульс продолжительностью 5 нс и мощностью более 1 МВт излучается через телескопическую систему с апертурой 110 мм, которая также служит для приема ответного сигнала и для контрольной съемки образца на матрицу размером 1024×1024.

    Излучение испаренного вещества по шестиметровому оптоволоконному кабелю передается на три спектрометра, размещенные в корпусе марсохода, где разлагается на 6144 спектральных канала в диапазоне от 240 до 850 нм. Спектры позволяют определить элементный состав образца, и в первую очередь количество натрия, магния, алюминия, кремния, кальция, калия, титана, марганца, железа, водорода, кислорода, бериллия, лития, стронция, серы, азота и фосфора. Многократная «стрельба» по одной и той же точке улучшает надежность их определения, а также позволяет удалить слой пыли или ржавчины и вести измерения по нижележащему веществу. ChemCam способен оперативно определять содержание в образце кислорода и водорода и однозначно выявлять воду.

    Партнером Лос-Аламосской лаборатории в создании ChemCam является французский Институт исследований в области астрофизики и планетологии в Тулузе, поставивший лазер и телескоп. В Лос-Аламосе были изготовлены спектрометры и

Mars curiosity
Тестирование парашюта.

 Спектрометр имеет радиоактивный источник с 0.7 г альфа- и гамма-активного изотопа кюрия 244Си в составе измерительной головки и блок регистрации «ответного» рентгеновского излучения в корпусе ровера. Этот изотоп имеет период полураспада 18.1 года, а это значит, что быстродействие и чувствительность прибора будут практически неизменными в течение всего срока работы ровера. Детектор APXS размещается на высоте всего 20 мм над объектом, благодаря чему время измерений сокращается втрое.

    Прибор определяет содержание элементов в диапазоне от натрия до стронция, включая такие породообразующие компоненты, как натрий, магний, алюминий, кремний, кальций, железо и сера. Высокая чувствительность к сере, хлору и брому позволит ему уверенно определять залежи солей. В режиме «быстрого просмотра», за 10 минут, он может определить элементы с концентрацией до 0.5%, а за трехчасовой сеанс измерений — малые составляющие в количестве до 0.01%. Твердотельный электрический холодильник позволяет использовать детектор не только ночью, как на марсоходах 2003 года, но и днем.

    Микроскопическая камера МАНИ предназначена для получения детальных изображений исследуемых образцов и участков грунта. От своего предшественника на роверах MER она отличается цветным «зрением», подсветкой и наличием автофокуса. Разрешение МАНИ при съемке с предельно малого расстояния 21 мм составляет 14 мкм в поле зрения 22×17 мм. Камера оснащена двумя белыми светодиодами для съемки ночью и в тени и двумя светодиодами, излучающими в ультрафиолете (365 нм), для флуоресцирующих материалов. Изображение принимается на матрицу 1600×1200 пикселов.
   
 Рентгеновский диффракционный анализатор CheMin позволяет изучать структуру и состав кристаллических образцов. Масса прибора — 10 кг, объем — примерно 25x25x25 см. Он смонтирован в корпусе ровера и имеет на верхней поверхности воронку со сдвигаемой крышкой для загрузки образцов. Это может быть либо песок, либо порода, предварительно измельченная и просеянная через сито с ячейкой 0.15 мм. Приемное устройство разделено на 32 сектора, в пяти из которых заложены на Земле контрольные образцы, а остальные 27 могут быть использованы, причем многократно, для анализа марсианских пород. На одно измерение требуется примерно 10 часов облучения образца кобальтовым источником. CheMin определяет элементы с атомным номером от 11 (натрий) и выше и минералы, составляющие по крайней мере 3% изучаемого образца. Он также способен определить некристаллические ингредиенты, такие как вулканическое стекло.
    
Аппаратура SAM, самая сложная и тяжелая на борту MSL, предназначена для поиска органических соединений в количестве до одной части на миллиард и для измерения соотношений изотопов отдельных элементов (в частности, 12С/13С и 18O/16O). Исследоваться будут как составляющие атмосферы, так и газы, выделяющиеся из образцов грунта под действием химических агентов и нагрева. Измельченный грунт поступает в прибор через две приемные воронки. Система подачи образцов манипулирует 74 кюветами объемом по 0.78 см3, из которых шесть содержат контрольные образцы, девять предназначены для химической обработки, а 59 -из кварцевого стекла — для возгонки. Две «печки» способны нагревать образцы до 1000°С, потребляя при этом всего 40 Вт. Микроклапаны (в количестве 52) обеспечивают перемещение газовых порций, а два вакуумных насоса создают рабочие условия для измерительных устройств.

Mars curiosity

 В составе SAM имеется три аналитических прибора, размещенных в корпусе марсохода. Масс-спектрометр определяет ионизированные газы по молекулярному весу и заряду. Он рассчитан на регистрацию важнейших составляющих живой материи — азота, фосфора, серы, кислорода, водорода и углерода. Лазерный спектрометр использует явление абсорбции света на конкретных длинах волн для определения концентраций метана, углекислого газа и водяного пара и выявления их изотопных вариантов. (Соотношения между изотопами расскажут историю потери Марсом своей атмосферы и климата на планете.) Наконец, газовый хроматограф, созданный французскими специалистами, разделяет газовую смесь и выявляет органические соединения с помощью капиллярной колонки, а затем направляет фракции в масс-спектрометр для более точного определения.

    Десантная камера MARDI предназначена для цветной видеосъемки на этапе спуска и приземления с целью привязки района посадки, получения контекстной геологической информации и планирования начального этапа движения ровера. Во время работы на поверхности с ее помощью можно будет снимать грунт непосредственно под днищем марсохода с разрешением до 1.5 мм. MARDI снимает в поле зрения 70×55° на матрицу 1600×1200 пикселов при частоте кадров до 4 в секунду.

Mars curiosity

Mars curiosity

Радиационный комплекс RAD представляет собой телескоп с детекторами заряженных частиц, нейтронов и гамма-лучей, приходящих как из атмосферы, так и со стороны поверхности планеты. Измерения уровней солнечного и галактического излучения — по 15 минут в течение каждого часа — позволят сделать выводы о пригодности района работы Curiosity для жизни в настоящее время и в прошлом и, что еще более важно, получить количественные оценки радиационных доз по трассе перелета и на поверхности Марса и необходимого уровня защиты для проектов пилотируемых экспедиционных комплексов. Создание RAD было профинансировано Директоратом исследовательских систем NASA и Германским аэрокосмическим центром.

    Испанский метеорологический комплекс REMS включает датчики скорости и направления ветра, атмосферного давления, температуры и влажности, а также инфракрасный датчик температуры грунта и прибор для измерения ультрафиолетового излучения Солнца в шести спектральных полосах. Данные REMS предполагается снимать ежечасно в течение пяти минут.
    
Научным руководителем всего проекта MSL является Джон Гротцингер (John Grotzinger) из Калифорнийского технологического института.

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

Mars curiosity

SPACE-MARS/

Was6739504

Mars curiosity

Mars curiosity

Mars curiosity
Кликабельно 6000 рх

Curiosity уже получил 360-градусную панораму Марса. Конечно, панорама не целостная, а состоит из 130 изображений разрешением 144 на 144 пикселя

Источник: masterok.livejournal.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.