Что называется гравитационной постоянной


Введение

Из законов динамики нам хорошо известно, что для того, чтобы тело двигалось ускоренно, на него должна действовать сила, как в данном примере с автомобилем на рис. 1. Равнодействующая направлена таким образом, что машина ускоряется.

Что называется гравитационной постоянной

Рис. 1. Иллюстрация действий сил на тело

В то же время мы хорошо знаем, что земля сообщает одинаковое ускорение любым падающим на нее телам. Эту силу, с которой действует земля на падающие тела, мы традиционно называем сила тяжести. На рис. 2 проиллюстрировано действие силы тяжести.

Что называется гравитационной постоянной

Рис. 2. Иллюстрация действия силы тяжести

В конце XVII века Исаак Ньютон, которому на тот момент было всего 22 года, предположил, что свойство притягивать тела характерно не только для земли, но и для любых тел, обладающих массами (рисунок. 3). Такую силу он назвалсилой всемирного тяготения,а взаимодействие, ответственное за появление этой силы, было названо гравитационным (от латинского gravitas – «тяжесть»).


Что называется гравитационной постоянной

Рис. 3. Взаимодействие двух тел обладающих массой

Формулировка закона

Закон всемирного тяготения позволяет описывать не только падение тел на землю, но и движение планет, звезд, приливы, отливы и множество других универсальных явлений, которые протекают в природе. Попробуем восстановить ход рассуждений Ньютона, а он получил математическую формулу, описывая движение Луны вокруг Земли, и тоже получить закон всемирного тяготения.

Если Земля сообщает любому телу, находящемуся на ее поверхности, ускорение свободного падения g, которое, как мы знаем, по модулю равно g = 9,8 , то Луне притяжение Земли сообщает центростремительное ускорение. Запишем некоторые характеристики.

Радиус Земли (он нам понадобится в расчетах) R3 = 6370 км, орбиты Луны RЛ = 384000 км, период обращения Луны вокруг Земли, так называемый лунный месяц Т = 27,3 суток.

Воспользуемся этими данными и рассуждениями для дальнейших выводов.


Ньютон предположил, что сила, с которой Земля притягивает те или иные объекты, зависит от расстояния между объектом и центром Земли. Известно, что расстояние от Луны до центра Земли примерно в 60 раз больше чем радиус Земли, т. е. расстояние от любого тела находящегося на поверхности Земли.

А во сколько же раз отличается ускорение, приобретаемое телами в результате такого притяжения? Для начала рассчитаем ускорение, которое приобретает Луна в результате своего притяжения Землей. Ускорение, которым обладает любое тело, находящееся на поверхности Земли, вы и так хорошо знаете, это ускорение свободного падения.

Переходим к расчетам.Центростремительное ускорение Луны, вызванное притяжением Земли, может быть рассчитано по формуле:

Угловая скорость нам не известна, но мы прекрасно знаем, что угловая скорость связана с периодом вращения таким соотношением:

Получим:

Что называется гравитационной постоянной

Само по себе это значение может ничего нам не говорить, но сравним его с величиной ускорения свободного падения g = 9,8  и тоже вызванной земным притяжением. Итак, находим отношение:

Почему выделяем именно 602? Дело в том, что Луна по отношению к поверхности Земли расположена как раз на расстоянии приблизительно в 60 раз больше, чем сам радиус Земли.


На тот момент из исследований Галилео Галилея было хорошо известно, что ускорение, приобретаемое телами в результате притяжения Землей, не зависит от их массы, т. е. если яблоко у поверхности Земли обладает ускорением 9,8, вызванным земным притяжением:

то, помещенное на орбиту Луны, оно будет обладать точно таким же ускорением, как и Луна, т. е. в 3600 раз меньшим, чем ускорение свободного падения у поверхности Земли:

Исходя из наших расчетов, мы с вами получаем, что сила, с которой Земля притягивает Луну, обратно пропорциональна квадрату расстояния между центрами этих объектов:

Кроме этого, из второго закона Ньютона мы знаем, что сила прямо пропорциональна массе объекта. Т. е. в данном случае сила прямо пропорциональна массе Луны или другого небесного тела:

Что называется гравитационной постоянной

Из третьего закона Ньютона мы знаем, что сила действия вызывает аналогичное противодействие, направленное в противоположную сторону, значит, сила взаимодействия между Землей и Луной будет пропорциональна не только массе Луны, но и массе Земли тоже:

Что называется гравитационной постоянной

Объединяя все это в одну пропорциональность, мы можем получить, что сила, с которой взаимодействуют Земля и Луна, пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:


А если обобщать и говорить не только о Земле и Луне, то запишем аналогичную пропорциональность, но уже для двух произвольных масс. Итак, сила взаимодействия между ними пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния между этими телами:

Если же перейти к строгому равенству, то мы получаем ту самую формулировку, которая впервые появилась в знаменитом труде Ньютона «Математические начала натуральной философии» (1687) и носит название закона всемирного тяготения.

Формулировка

Закон всемирного тяготения: тела притягиваются друг к другу с силой, модуль которой пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними. Сила направлена вдоль прямой, соединяющей центры тел.

Математическая запись этой формулы

 


Как Луна влияет на Землю

Несмотря на то, что Луна расположена от Земли достаточно далеко, расстояние составляет порядка 400 000 км, ее влияние на Землю все-таки весьма ощутимо. Итак, поговорим о том, как Луна влияет на вес тел, находящихся на Земле. Сразу оговоримся: мы не будем учитывать влияние Солнца и других небесных тел, так как оно по сравнению с влиянием Луны значительно меньше.

Мы не будем сейчас вдаваться в детальные подробности того, как мы получили те данные, о которых сейчас поговорим, а остановимся лишь на результате.
ли подсчитать, воспользовавшись законом всемирного тяготения, влияние Луны на вес тел на Земле, то окажется что в наиболее близкой к Луне и в наиболее удаленной от Луны точках земной поверхности вес тела несколько уменьшается, а в точке, лежащей на средней линии, вес тела немного увеличивается. При этом изменение веса, показанное на рисунке 4 красным цветом, в два раза меньше, чем изменение веса, показанное на рисунке 5 также красным цветом, для точек наиболее близкой и наиболее удаленной.

Что называется гравитационной постоянной

Рис. 4. Изменение веса в зависимости от расстояния до Луны

Что называется гравитационной постоянной

Рис. 5. Изменение веса в зависимости от расстояния до Луны

Если бы Луны вообще не было на земной орбите, то вес тела уменьшился бы совершенно незначительно. Если перейти от ньютонов к единицам ускорения , то эта величина составляла бы всего лишь 0,0001 . По сравнению, например, с ускорением свободного падения 10  (мы здесь его округлили от 9,8 до 10), вы видите, что разница составляет порядка одной стомиллионной доли. Немного? Да, немного, но если сравнивать с радиусом Земли те изменения, которые привносит такое небольшое измерение ускорения в результате отсутствия Луны, то мы получим, что Rз = 6400 км. И эти стомиллионные доли изменения приводят к тому, что высота уровня воды в точках, показанных на рис. 4, поднимается на 54 см, в точках, показанных на рис. 5, она падает на 27 см (см. рис. 3).


Речь идет о явлении приливов и отливов. Именно Луна определяет наличие приливов и отливов на Земле.

Благодаря вращению Земли места подъемов и опусканий уровня воды постоянно перемещаются. Именно такие постоянные перемещения мы и ощущаем в виде приливов и отливов. Конечно же, приливы и отливы зависят и от географического места на Земле, например, на Черном море или на Каспийском море приливы практически не наблюдаются, однако в Охотском море есть бухта, в которой высота приливных волн достигает нескольких метров.

Еще одно интересное влияние Луны на Землю – в результате приливов и отливов, волна, которая бежит вдоль земли трется о поверхность земли и, значит, несколько замедляет вращение Земли. Интересно, что тот факт, что мы всегда видим Луну повернутой к нам одним боком, тоже предопределил теперь уже влияние Земли на Луну.

Границы применимости

А сейчас поговорим об ограничениях, о границах применимости той формулировки закона всемирного тяготения, которую мы записали. В каких случаях он справедлив? К примеру, есть два тела А и В. Они, согласно закону всемирного тяготения, притягиваются друг к другу.


ли эти тела притягиваются и, например, находятся на расстоянии, показанном на рисунке 6, то какую величину брать в качестве r (расстояния между ними) – либо самое маленькое между ними, либо расстояние между наиболее дальними краями, или же расстояние между серединками? А где взять эту серединку? Итак, возникает вопрос: применима ли формула закона всемирного тяготения для тел неправильной формы, находящихся на таком расстоянии друг от друга?

Что называется гравитационной постоянной

Рис. 6. Положение тел А и В

Ответ мы можем получить, для этого увеличим расстояние между телами. Когда мы их разнесли достаточно далеко друг от друга, нужно ли учитывать их размеры? Нет, ведь их размеры по сравнению с расстоянием между ними очень малы, поэтому в данном случаи мы их можем полагать материальными точками. Итак, первое ограничение:

1. Закон всемирного тяготения применим для тел, размеры которых несущественны по сравнению с расстоянием между ними. Такие тела мы называем материальными точками. Это первое условие.

Однако есть ситуации, когда можно рассматривать тела, обладающие реальными размерами и находящиеся на небольшом расстоянии друг от друга. Это тела примерно такой формы, как показано на рисунке 7.

Что называется гравитационной постоянной


Рис. 7. Положение тел сферической формы

Представьте себе, что это идеальные сферы. Если тела, обладающие сферической формой, или, говорят, сферической симметрией, находятся даже на небольшом расстоянии друг от друга, мы можем пользоваться формулой закона всемирного тяготения в качестве расстояния r. В этом случае мы берем расстояние между центрами тел, именно в такой форме мы пользуемся законом всемирного тяготения, когда рассматриваем наше притяжение к центру Земли.

Второе условие, при котором можно применять закон всемирного тяготения в той форме, которую мы записали:

2. Тела должны обладать сферической симметрией.

Гравитационная постоянная

Поняв, в каких случаях можно применять формулу для закона всемирного тяготения, вернемся к величине G (коэффициенту пропорциональности):

Эта величина носит название гравитационной постоянной. Выясним какой смысл у гравитационной постоянной G. Запишем еще раз закон всемирного тяготения:

Отсюда несложно получить, что гравитационная постоянная G может быть вычислена по формуле:

Итак, отсюда мы получаем физический смысл гравитационной постоянной. В самом деле, если мы возьмем две материальные точки, расположенные на расстоянии 1 м друг от друга, а масса этих материальных точек равна 1 кг, то гравитационная постоянная будет численно равна силе, с которой притягиваются эти две точки. Физический смысл гравитационной постоянной: она численно равна силе, с которой мысленно притягиваются две материальные точки массами по 1 кг, расположенные в вакууме на расстоянии 1 м друг от друга.


Поговорим о том, как вычислить гравитационную постоянную. Из курса физики 9 класса вы знаете, что эта же формула для гравитационной постоянной для закона всемирного тяготения в случае притяжения к Земле может быть заменена формулой для силы тяжести:

Где м – это масса тела, а g – ускорение свободного падения. Отсюда несложно получить фомулу для гравитационной постоянной:

Можно оценить гравитационную постоянную. Получилось следующее значение гравитационной постоянной:

Эта величина и носит название гравитационной постоянной и является так называемой универсальной физической постоянной, т. е. одинаковой в любой точке Вселенной.

 


Модельное представление опыта Кавендиша

Величину гравитационного взаимодействия определяет величина гравитационной постоянной, одной из фундаментальных физических констант. Она составляет:

Как видите, это сравнительно небольшая, даже маленькая величина. Как же ее измерить? Впервые она была измерена несколько сотен лет назад английским ученым Генри Кавендишем. Если говорить об этом человеке, то он был нетипичным ученым, он задолго до Кулона определил закон взаимодействия электрических зарядов, первым в истории науки определил среднюю плотность Земли с достаточно большой точностью. Однако он практически не занимался публикацией своих открытий, они стали известны уже после его смерти.

Для определения гравитационной постоянной Кавендиш сконструировал так называемые крутильные весы, принципиальная схема которых показана на рисунке 8.


Что называется гравитационной постоянной

Рис. 8. Принципиальная схема крутильных весов

Обратите внимание: на деревянном коромысле подвешены сравнительно небольшие свинцовые шары одинаковой массы. Само деревянное коромысло подвешено на тончайшей посеребренной медной проволочке длиной порядка 1 м. Если к этим шарам подносить массивные также свинцовые шары, то вследствие гравитационного притяжения нить будет немного закручиваться и шарики массы m будут притягиваться к шарикам массы М. В какой-то момент сила гравитационного взаимодействия уравновесится с силой упругости закрученной нити и система придет в равновесие. Сравнивая эти две силы, Кавендиш и определял гравитационную постоянную.

Вы понимаете, что значение гравитационной постоянной очень мало, поэтому углы на которые отклонялась нить также очень малы, он их регистрировал при помощи сложных оптических приборов. Также для того, чтобы избежать конвекционных потоков, т. е. влияния потоков воздуха, вся система была помещена в воздушный колпак, показанный на рисунке 9.

Что называется гравитационной постоянной

Рис. 9. Воздушный колпак

Интересно, что Кавендиш в своих опытах не измерял напрямую значение гравитационной постоянной, он ставил своей целью как раз определить значение средней плотности Земли, и он определили его как:

Тогда эта величина была неизвестна, и он сказал, что плотность Земли в 5,48 раз больше, чем плотность воды. Современное значение плотности, измеренное более точными приборами, составляет:

Отличие всего в 0,04, менее чем в 1 %. Настолько точно несколько сотен лет назад ученому удалось поставить эксперимент. Какой вывод сделал Кавендиш из значения, которое он получил? Дело в том, что средняя плотность поверхностных слоев Земли составляет порядка:

Отсюда вывод: раз средняя плотность значительно выше, значит где-то в глубине Земли, глубоко, находятся плотные породы, например железо или какие-то другие плотные металлы.

Сама гравитационная постоянная, по всей видимости, впервые в науку была введена французским ученым Пуассоном в трактате по механике в 1811 году, и вычислил он ее как раз из результатов опыта Генри Кавендиша.

Выводы

Подводим итоги.

1. Взаимодействие, свойственное всем телам во Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным, а само явление – всемирным тяготением или гравитацией.

2. Закон всемирного тяготения имеет следующий вид:

Сила взаимодействия между двумя телами массами , находящимися на расстоянии  друг от друга, прямо пропорционально произведению масс этих тел и обратно пропорционально квадрату расстояния между ними.

Направление силы вдоль прямой, соединяющей центры тел, представлено на рисунке 10.

Что называется гравитационной постоянной

Рис. 10. Направление силы вдоль прямой, соединяющей центры тел

3. Справедлив этот закон в таком виде для:

а) если тела можно положить материальными точками, т. е. их размерами можно пренебречь по сравнению с расстоянием между телами;

б) если тела обладают сферической симметрией.

Напомним, что мы с вами записали и поняли, чему равна гравитационная постоянная и обсудили ее универсальный характер:

Именно гравитационное взаимодействие как одно из четырех универсальных физических взаимодействий является наиболее ответственным за движение крупных небесных тел – планет, звезд, целых галактик.

 


Законы движение небесных тел (законы Кеплера)

Вам хорошо известно, что к появлению законов всемирного тяготения привело наблюдение за телами космических масштабов, за планетами, за солнцем, за кометами, за метеоритами и т. д. Именно о том, какие закономерности появились при наблюдении за такими телами, мы и поговорим, а точнее, мы поговорим о законах, которые впервые получил Иоганн Кеплер. На основаниях наблюдений своего учителя, датского астронома Тихо Браге, и собственных наблюдений он провел огромную аналитическую работу и получил три закона движения космических тел. Именно из этих законов и благодаря этим законам в свое время Ньютон и получил закон всемирного тяготения.

Первый закон Кеплера: все планеты Солнечной системы движутся по эллиптическим орбитам, в одном из фокусов эллипса находится Солнце.

Эллипс – это одна из геометрических фигур, условно его можно представить ка вытянутую окружность. Обратите внимание на иллюстрацию (рис. 10) первого закона Кеплера. В одном из фокусов эллипса находится Солнце, обратите внимание на расположение нашей планеты, наиболее ближняя к солнцу точка называется перигелий, она обозначена буквой Р, наиболее далекая точка называется афелий, это точка А. Расстояние a, показанное на рисунке 11, называется полуось.

Что называется гравитационной постоянной

Рис. 11. Иллюстрация первого закона Кеплера

Возможно, вам сложно представить, что такое эллипс или его фокус, вас должен успокаивать тот факт, что в реальности орбиты, по которым вращаются планеты вокруг Солнца, практически неотличимы от круговых, круг – это частный случай эллипса. Единственная планета, у которой эллипсоидальная траектория, – это Плутон, но совсем недавно Плутон был вынесен из списка планет, и он является, по современной астрономической классификации, небесным телом. Итак, траектория движения практически всех планет Солнечной системы – это окружность.

Второй закон Кеплера: радиус-вектор планеты, планета движется по траектории (внешняя окружность) которая показана на рисунке 12, и за одинаковые промежутки времени описывает одинаковые площадки, т. е. площадь, заштрихованная горизонтально (рис. 12), равна площади заштрихованной вертикально (рис. 12), если время движения планет в эти два отрезка одинаковое.

Что называется гравитационной постоянной

Рис. 12. Иллюстрация второго закона Кеплера

Третий закон Кеплера:

T – это период вращения планеты вокруг Солнца (на рис. 13 эта область закрашена), a – это половина или большая полуось, т. е. квадраты периодов вращения планет относятся как кубы больших полуосей.

Что называется гравитационной постоянной

Рис. 13. Иллюстрация третьего закона Кеплера

Несмотря на то что законы Кеплера практически полностью описывали движение небесных тел (а следует сказать, что по современным воззрениям точность действия законов Кеплера составляет практически порядка одного процента, это очень хорошая точность, т. е. на 99 % они правильно описывают движение небесных объектов) они остаются лишь обобщением некоторых эмпирических наблюдений, которые проводили астрономы. Фундамент под эти законы как раз и подвел Исаак Ньютон, выведя закон всемирного тяготения. Тем не менее отдадим должное трудам астрономов того времени: Тихо Праге, Иоганна Кеплера и других, ведь им было неизмеримо сложнее, чем современным астрономам, с точки зрения техники, которая у них была, и с точки зрения математического аппарата и устройств для обработки наблюдений.

Кроме этого, гравитационное взаимодействие обуславливает наличие приливов, отливов, а также множества других физических явлений.


 

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,35 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено.

А как формула для закона всемирного тяготения превращается в формулу для силы тяжести, которую вы уже хорошо знаете, мы обсудим на следующем уроке.

 

Список литературы

1. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

2. А.В. Перышкин, Е.М. Гутник. Физика 9. – М. Дрофа 2009.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал All-Физика (Источник)

2. Интернет-портал emto.com.ua (Источник)

 

Домашнее задание

1. Что такое гравитационная постоянная и каков физический смысл этой постоянной?

2. Сформулируйте закон всемирного тяготения.

3. Как и во сколько раз изменится сила тяготения, если при неизменном расстоянии массы тел возрастут вдвое?

Источник: interneturok.ru

Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.

Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с2.

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Уменьшение силы притяжения тел с их отдалением

Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • Fт = G (m1 *х m2) : r2.

В ней введены такие обозначения:

Сила тяготения Fт
Гравитационная постоянная G
Массы тел m1, m2
Расстояние между телами r

Формула гравитационной постоянной вытекает из этого закона:

  • G = (Fт Х r2) : (m1 х m2).

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10-11 Нˑм2/кг2. Прошло три года — и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10-11 Нˑм2/кг2. Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10-11 Нˑм2/кг2.

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра. По числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r2.

Причем в ней используются такие обозначения:

Масса Земли M
Радиус Земли r

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н)2, где н — высота над поверхностью Земли.

Задачи, в которых требуется знание гравитационной постоянной

Задача первая

Условие. Чему равно ускорение свободного падения на одной из планет Солнечной системы, например, на Марсе? Известно, что его масса 6,23·1023 кг, а радиус планеты 3,38·106 м.

Решение. Нужно воспользоваться той формулой, которая была записана для Земли. Только подставить в нее значения, данные в задаче. Получится, что ускорение свободного падения будет равно произведению 6,67 х 10-11 и 6,23 х 1023, которое потом нужно разделить на квадрат 3,38·106. В числителе получается значение 41,55 х 1012. А в знаменателе будет 11,42 х 1012. Степени сократятся, поэтому для ответа достаточно только узнать частное двух чисел.

Ответ: 3,64 м/с2.

Задача вторая

Условие. Что нужно сделать с телами, чтобы уменьшить их силу притяжения в 100 раз?

Решение. Поскольку массу тел изменять нельзя, то сила будет уменьшаться за счет удаления их друг от друга. Сотня получается от возведения в квадрат 10. Значит, расстояние между ними должно стать в 10 раз больше.

Ответ: отдалить их на расстояние, превышающее изначальное в 10 раз.

Источник: www.syl.ru

Гравитационная постоянная — это константа пропорциональности, используемая в Законе всеобщей гравитации Ньютона, и обычно обозначается G. Это отличается от g, который обозначает ускорение, вызванное гравитацией. В большинстве текстов мы видим это как:

G = 6,673 × 10 -11 Н м 2 кг -2

Обычно используется в уравнении:

F = (G xm 1 xm 2 ) / r 2 , где

F = сила тяжести

G = гравитационная постоянная

m 1 = масса первого объекта (предположим, что он массивный)

m 2 = масса второго объекта (предположим, что он меньшего)

г = разделение между двумя массами

Гравитационная постоянная эмпирическая величина. То есть это подтверждается серией экспериментов и последующих наблюдений.

Хотя гравитационная постоянная была впервые введена Исааком Ньютоном как часть его популярной публикации в 1687 году, Philosophiae Naturalis Principia Mathematica, только в 1798 году постоянная наблюдалась в реальном эксперименте. Не удивляйся. Это в основном так в физике. Математические предсказания обычно предшествуют экспериментальным доказательствам.

Так или иначе, первым человеком, который успешно измерил его, был английский физик Генри Кавендиш, который измерил очень маленькую силу между двумя свинцовыми массами, используя очень чувствительный торсионный баланс. Следует отметить, что после Кавендиша, хотя были проведены более точные измерения, улучшения значений (т. Е. Возможность получать значения ближе к G Ньютона) не были действительно существенными.

Глядя на значение G, мы видим, что когда мы умножаем его на другие величины, это приводит к довольно малой силе. Давайте раскроем это значение, чтобы дать вам лучшее понимание о его малом размере: 0,00000000006673 Н м 2 кг -2

Хорошо, теперь давайте посмотрим, какую силу будут оказывать два объекта весом 1 кг друг на друга, когда их геометрические центры расположены на расстоянии 1 метр друг от друга. Итак, сколько мы получаем?

F = 0,00000000006673 N. Это действительно не имеет большого значения, если мы значительно увеличим обе массы.

Например, давайте попробуем самую тяжелую зарегистрированную массу слона, 12 000 кг. Предполагая, что у нас есть два из них, на расстоянии 1 метра от их центров. Я знаю, трудно представить, что слоны довольно полные, но давайте просто продолжим в том же духе, потому что я хочу подчеркнуть значение G.

Итак, сколько мы получили? Даже если бы мы округлили это, мы все равно получили бы только 0,01 Н. Для сравнения, сила, оказываемая землей на яблоко, составляет примерно 1 Н. Неудивительно, что мы не чувствуем никакой силы притяжения, когда сидим рядом с кем-то … если, конечно, вы не мужчина, а этот человек — Меган Фокс (тем не менее, было бы безопасно предположить, что привлекательность будет только одним способом).

Следовательно, сила гравитации заметна только тогда, когда мы считаем, что по крайней мере одна масса является очень массивной, например, планеты.

Позвольте мне закончить эту статью еще одним математическим упражнением. Предполагая, что вы знаете и свою массу, и свой вес, и знаете радиус Земли. Включите их в уравнение выше и решите для другой массы. Вуаля! Чудо из чудес, вы только что получили массу Земли.

Не забывайте лайки и подписываться на канал)

Источник: zen.yandex.ru

Введение[править]

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения между двумя материальными точками с гравитационными массами m1 и m2, находящимися на расстоянии R, равна: $$F=Gfrac{m_1 m_2}{R^2}.$$ Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах СИ рекомендованное на 2014 год значение:[1] (G=6{,}67408(31) cdot 10^{-11}) м³•с²•кг−1, или Н•м²•кг².

Гравитационная постоянная присутствует в большинстве формул, связанных с гравитационным взаимодействием. В частности, она входит в уравнения общей теории относительности и ковариантной теории гравитации, а также используется в формулах при определении поля гравитационного кручения. Значение гравитационной постоянной и её константа взаимодействия таковы, что гравитационное взаимодействие между элементарными частицами на много порядков меньше, чем слабое, электромагнитное или сильное взаимодействия.

В теории бесконечной вложенности материи на основании SPФ-симметрии предполагается существование сильной гравитации, действующей на уровне элементарных частиц. Постоянная сильной гравитации получается из обычной гравитационной постоянной путём умножения на коэффициенты подобия, находимые с помощью подобия уровней материи.

История измерения[править]

Гравитационная постоянная фигурирует в современном законе всемирного тяготения, однако отсутствовала у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш подготовил и провёл эксперимент Кавендиша с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли и привело к значению (G= 6{,}754 cdot 10^{-11}) м³•с²•кг−1.[2] Точность измеренного значения G со времён Кавендиша увеличилась незначительно.

Теоретическое определение[править]

Maurizio Michelini для вычисления гравитационной постоянной использовал идею микро-квантов, заполняющих всё пространство, взаимодействующих с частицами тел и в результате подталкивающих тела друг к другу. [3] Для вещества, состоящего в основном из нуклонов, получается следующее: $$~G = frac { p_0 c^{4/3}}{ pi M^2_n phi^{4/3}_0} , $$

где (~ p_0 = 4,33 cdot 10^{61}) Дж/м³ – плотность энергии потоков микро-квантов; (~ M_n ) – масса нуклона; (~ c ) – скорость света; (~ phi_0 =1,35 cdot 10^{102}) м-2•с-1 – мощность флюенса потоков микро-квантов в одном направлении.

Сергей Федосин выразил гравитационную постоянную в рамках теории гравитации Лесажа через параметры, описывающие вакуумное поле гравитонов. [4] [5] [6] В модели кубического распределения потоков гравитонов: $$~G = frac {3 p_g D_0 sigma^2}{2 pi M^2_n}=frac { varepsilon_c sigma^2}{4 pi M^2_n } . $$

Здесь (~ p_g) есть импульс гравитонов, взаимодействующих с нуклонным веществом; мощность флюенса (~ D_0) обозначает количество гравитонов dN, попавших за время dt на перпендикулярную потоку площадь dA одного из граней некоторого куба, ограничивающего рассматриваемый объём; (~ sigma = 5,6 cdot 10^{-50} ) м² представляет собой сечение взаимодействия гравитонов с нуклонами; (~ M_n ) – масса нуклона; (~ varepsilon_c = 7,4 cdot 10^{35}) Дж/м³ – плотность энергии потоков гравитонов для кубического распределения.

В модели сферического распределения потоков гравитонов: $$~G = frac {4 p_g B_0 sigma^2}{M^2_n} = frac { varepsilon_s sigma^2}{6 pi M^2_n }, $$

где мощность флюенса (~ B_0) обозначает количество гравитонов dN, попавших за время dt из единичного телесного угла ( d{alpha} ) внутрь сферической поверхности dA; (~ varepsilon_s = 1,1 cdot 10^{36}) Дж/м³ – плотность энергии потоков гравитонов для сферического распределения.

Поскольку гравитационная постоянная выражается через другие переменные, она становится динамической переменной, являясь постоянной лишь в среднем.

Сечение взаимодействия (~ sigma ) может быть выражено через сечение взаимодействия (~ vartheta = 2,67 cdot 10^{-30} ) м² заряженных частиц вакуумного поля (праонов) с нуклонами: [6] $$~ sigma = vartheta sqrt {frac { G }{ Gamma}} , $$

где ( Gamma ) – постоянная сильной гравитации. Сечение взаимодействия (~ vartheta ) очень близко по величине к геометрическому сечению нуклона и используется для вычисления электрической постоянной. Если подставить выражение (~ sigma ) через (~ vartheta ) в формулу для гравитационной постоянной в модели кубического распределения, получится связь между постоянной сильной гравитации, параметрами нуклона и плотностью энергии потоков гравитонов на нуклонном уровне материи: $$~ Gamma = frac { varepsilon_c vartheta^2}{4 pi M^2_n } . $$

Точно также для гравитационной постоянной звёздного уровня материи возникает связь между соответствующей плотностью энергии потоков гравитонов и параметрами нейтронной звезды, являющейся аналогом нуклона: $$~ G = frac { varepsilon_{cs} vartheta^2_s}{4 pi M^2_s } , $$

где ( varepsilon_{cs} = varepsilon_c frac {Phi’ S’^2}{ P’^3} = 2,3 cdot 10^{34}) Дж/м³ – плотность энергии потоков гравитонов на уровне звёзд для кубического распределения; (~ vartheta_s = vartheta P’^2 = 5,2 cdot 10^{8} ) м² – сечение взаимодействия гравитонов с нейтронной звездой; (~ M_s = M_n Phi’ = 2,7 cdot 10^{30} ) кг – масса нейтронной звезды. В расчёте использованы коэффициенты подобия согласно подобию уровней материи: (~ Phi’ = 1,62 cdot 10^{57}) по массе, (~ P’ = 1,4 cdot 10^{19}) по размерам, (~S’ = 0,23) по скоростям протекания однотипных процессов.

Таким образом, на каждом уровне материи предполагается своя собственная постоянная гравитации, причём плотность энергии соответствующих потоков гравитонов увеличивается по мере перехода к низшим уровням материи.

Величину ( varepsilon_{cs} ) можно сравнить с плотностью энергии гравитационной волны в событии GW150914. Предполагается, что это событие было вызвано слиянием двух чёрных дыр массой 30 и 35 солнечных масс, вращающихся друг возле друга под действием гравитации, при уменьшении расстояния между ними до 350 км, при этом максимальная мощность гравитационного излучения достигла (3,6 cdot 10^{49} ) Вт. [7] Если разделить эту мощность на поверхность сферы радиусом 175 км, получается оценка плотности потока энергии через поверхность сферы. Эту величину можно затем разделить на скорость света и оценить плотность энергии в волне: ( approx 10^{30} ) Дж/м³. Плотность энергии волны получается существенно ниже, чем плотность энергии вакуумного поля гравитонов. Тем самым гравитационная волна от большинства мощных источников излучения лишь незначительно модулирует потоки гравитонов в космическом пространстве.

Квантово-релятивистская формулировка гравитационной постоянной[править]

Естественно-единая квантовая теории взаимодействий показала, что константы всех фундаментальных взаимодействий выражаются через постоянную тонкой структуры (ПТС). В этом случае значение (G) будет иметь следующий вид $$G=sqrt{3}alpha^{18}frac{hbar c}{m_{pa}^{2}},$$ где (alpha) — ПТС, (hbar) — приведённая постоянная Планка, (c) — скорость света в вакууме, (m_{pa}) — присоединённая масса протона.

Полученная формула раскрывает скрытый квантово-релятивистский статус самого закона тяготения Ньютона. Дело в том, что произведение (hbartimes c), входящее в (alpha) и (G), сохраняется только при одновременном преобразовании (c rightarrowinfty) и (hbarrightarrow0) согласно принципу соответствия. Таким образом, говорить об одностороннем (не квантово-релятивистском) уточнении закона тяготения Ньютона оказывается в принципе неправильно.

На основе данных, приведённых в нижеследующей таблице (взяты из Википедии 07.03.2018), получаем: $$m_{pa}=1.68082*10^{-27}.$$ Таким образом, значение (m_{pa}) всего на 9 электронных масс превышает массу протона (m_{p}) и может считаться достоверным.[8]

Параметр Значение
(hbar) 1.054 571 800(13) (times 10^{-34}) Дж c
с 299 792 458 м/с
(alpha) 7.297 352 566 4(17) (times 10^{-3} )
G 6.674 08(31) (times10^{-11}) (м^{3}) (с^{-2}) (кг^{-1})

В качестве примера оценки (m_{pa}) можно считать, что эта величина включает массу протона (m_{p}) и массу электрона (m_е). Кроме того необходимо включить массу нейтрона (m_n) с коэффициентом (delta) — долей нейтронов на один протон, которая составляет десятые для звёзд и единицы для планет. Также надо вычесть энергию связи связанных нуклонов, которая различна для звёзд и планет. Наконец, надо добавить кинетическую энергию на нуклон и другие возможные вклады. В результате константа (G) превратится в константу (G_{ik}), где, например, i и k — индексы Солнца и планет. Таким образом, вместо (G) вводится физически осмысленная космологическая константа (m_{pa}). Простейшая интерпретация такова: присоединённая масса протона (m_{pa}) равна массе протона (m_{p}) и массе электрона (m_{e}) (т.е. массе атома водорода), причём их суммарная кинетическая энергия равна 4 Mev (масса восьми электронов). В такой формулировке закон Ньютона говорит нам, что в первом приближении Вселенная в основном состоит из горячего водорода.

Таким образом, закон Ньютона не чувствует тёмную материю и не может быть использован для её обоснования. Такое же заключение можно сделать и относительно тёмной энергии.

См. также[править]

  • Постоянная сильной гравитации
  • Константы вакуума
  • Самосогласованные гравитационные константы
  • Константа взаимодействия

Внешние ссылки[править]

  • Гравитационная постоянная — статья из Большой советской энциклопедии.
  • Иванов И. «Гравитационная постоянная измерена новыми методами» // Элементы.ру. — 22.01.2007.
  • Gravitational constant

Источник: traditio.wiki

Работы Ньютона

Примечательно, что в трудах Ньютона (1684—1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела. Нахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы) более точно известно, нежели порознь значение гравитационной постоянной и массы тела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м3с−2.

Следует отметить тот факт, что значение гравитационной постоянной несколько варьируется даже до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша

Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

 

Более наглядное описание эксперимента доступно в видео ниже:

Что называется гравитационной постоянной

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см3 (сегодня более точные расчеты дают 5,52 г/см3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10−11 м³/(кг·с²), G = 6,71·10−11м³/(кг·с²) или G = (6,6 ± 0,04)·10−11м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10-17. Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10-11 – 10-12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10−11 м3·с−2·кг−1.

 

Источник: SpaceGid.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.