Что характеризует гравитационная постоянная


После изучения курса физики в головах у учащихся остаются всевозможные постоянные и их значения. Тема гравитации и механики не становится исключением. Чаще всего ответить на вопрос о том, какое значение имеет гравитационная постоянная, они не могут. Но всегда однозначно ответят, что она присутствует в законе всемирного тяготения.

Из истории гравитационной постоянной

Интересно, что в работах Ньютона нет такой величины. Она появилась в физике существенно позже. Если быть конкретнее, то только в начале девятнадцатого века. Но это не значит, что ее не было. Просто ученые ее не определили и не узнали ее точное значение. Кстати, о значении. Гравитационная постоянная постоянно уточняется, поскольку является десятичной дробью с большим количеством цифр после запятой, перед которой стоит ноль.

Именно тем, что эта величина принимает такое маленькое значение, объясняется то, что действие сил гравитации незаметно на небольших телах. Просто из-за этого множителя сила притяжения оказывается ничтожно маленькой.


Впервые опытным путем установил значение, которое принимает гравитационная постоянная, физик Г. Кавендиш. И случилось это в 1788 году.

В его опытах использовался тонкий стержень. Он был подвешен на тоненькой проволоке из меди и имел длину около 2 метров. К концам этого стержня были прикреплены два одинаковых свинцовых шара диаметром 5 см. Рядом с ними были установлены большие свинцовые шары. Их диаметр был уже 20 см.

При сближении больших и маленьких шаров наблюдался поворот стержня. Это говорило об их притяжении. По известным массам и расстоянию, а также измеренной силе закручивания удалось достаточно точно узнать, чему равно гравитационное постоянное.

А началось все со свободного падения тел

Если поместить в пустоту тела разной массы, то они упадут одновременно. При условии их падения с одинаковой высоты и его начала в один и тот же момент времени. Удалось рассчитать ускорение, с которым все тела падают на Землю. Оно оказалось приблизительно равно 9,8 м/с2.

Ученые установили, что сила, с которой все притягивается к Земле, присутствует всегда. Причем это не зависит от высоты, на которую перемещается тело. Один метр, километр или сотни километров. Как бы далеко ни находилось тело, оно будет притягиваться к Земле. Другой вопрос в том, как ее значение будет зависеть от расстояния?

Именно на этот вопрос нашел ответ английский физик И. Ньютон.

Уменьшение силы притяжения тел с их отдалением


Для начала он выдвинул предположение о том, что сила тяжести убывает. И ее значение находится в обратной зависимости от расстояния, возведенного в квадрат. Причем это расстояние нужно отсчитывать от центра планеты. И провел теоретические расчеты.

Потом этот ученый воспользовался данными астрономов о движении естественного спутника Земли — Луны. Ньютон рассчитал, с каким ускорением она вращается вокруг планеты, и получил те же результаты. Это свидетельствовало о правдивости его рассуждений и позволило сформулировать закон всемирного тяготения. Гравитационная постоянная в его формуле пока отсутствовала. На этом этапе было важно определить зависимость. Что и было сделано. Сила тяжести уменьшается обратно пропорционально расстоянию от центра планеты, возведенному в квадрат.

К закону о всемирном тяготении

Ньютон продолжил размышления. Поскольку Земля притягивает Луну, то и она сама должна притягиваться к Солнцу. Причем сила такого притяжения тоже должна подчиняться описанному им закону. А потом Ньютон распространил его на все тела вселенной. Поэтому и название закона включает слово «всемирное».

Силы всемирного тяготения тел определяются как пропорционально зависящие от произведения масс и обратные квадрату расстояния. Позже, когда был определен коэффициент, формула закона приобрела такой вид:

  • Fт = G (m1 *х m2) : r2.

В ней введены такие обозначения:

Сила тяготения Fт
Гравитационная постоянная G
Массы тел m1, m2
Расстояние между телами r

Формула гравитационной постоянной вытекает из этого закона:


  • G = (Fт Х r2) : (m1 х m2).

Значение гравитационной постоянной

Теперь настал черед конкретных чисел. Поскольку ученые постоянно уточняют это значение, то в разные годы были официально приняты разные числа. К примеру, по данным за 2008 год гравитационная постоянная равна 6,6742 х 10-11 Нˑм2/кг2. Прошло три года — и константу пересчитали. Теперь гравитационная постоянная равна 6,6738 х 10-11 Нˑм2/кг2. Но для школьников в решении задач допустимо ее округление до такой величины: 6,67 х 10-11 Нˑм2/кг2.

В чем физический смысл этого числа?

Если в формулу, которая дана для закона всемирного тяготения, подставить конкретные числа, то получится интересный результат. В частном случае, когда массы тел равны 1 килограмму, а расположены они на расстоянии 1 метра, сила тяготения оказывается равной самому числу, которое известно для гравитационной постоянной.

То есть смысл гравитационной постоянной заключается в том, что она показывает, с какой силой будут притягиваться такие тела на расстоянии одного метра.
числу видно, насколько мала эта сила. Ведь она в десять миллиардов меньше единицы. Ее даже невозможно заметить. Даже при увеличении тел в сотню раз результат существенно не изменится. Он по-прежнему останется гораздо меньше единицы. Поэтому становится понятно, отчего сила притяжения заметна только в тех ситуациях, если хотя бы одно тело имеет огромную массу. Например, планета или звезда.

Как связана гравитационная постоянная с ускорением свободного падения?

Если сравнить две формулы, одна из которых будет для силы тяжести, а другая для закона тяготения Земли, то можно увидеть простую закономерность. Гравитационная постоянная, масса Земли и квадрат расстояния от центра планеты составляют коэффициент, который равен ускорению свободного падения. Если записать это формулой, то получится следующее:

  • g = (G х M) : r2.

Причем в ней используются такие обозначения:

Масса Земли M
Радиус Земли r

Кстати, гравитационную постоянную можно найти и из этой формулы:

  • G = (g х r2) : M.

Если требуется узнать ускорение свободного падения на некоторой высоте над поверхностью планеты, то пригодится такая формула:

  • g = (G х M) : (r + н)2, где н — высота над поверхностью Земли.

Задачи, в которых требуется знание гравитационной постоянной

Задача первая

Условие. Чему равно ускорение свободного падения на одной из планет Солнечной системы, например, на Марсе? Известно, что его масса 6,23·1023 кг, а радиус планеты 3,38·106 м.

Решение. Нужно воспользоваться той формулой, которая была записана для Земли. Только подставить в нее значения, данные в задаче. Получится, что ускорение свободного падения будет равно произведению 6,67 х 10-11 и 6,23 х 1023, которое потом нужно разделить на квадрат 3,38·106. В числителе получается значение 41,55 х 1012. А в знаменателе будет 11,42 х 1012. Степени сократятся, поэтому для ответа достаточно только узнать частное двух чисел.

Ответ: 3,64 м/с2.

Задача вторая

Условие. Что нужно сделать с телами, чтобы уменьшить их силу притяжения в 100 раз?

Решение. Поскольку массу тел изменять нельзя, то сила будет уменьшаться за счет удаления их друг от друга. Сотня получается от возведения в квадрат 10. Значит, расстояние между ними должно стать в 10 раз больше.

Ответ: отдалить их на расстояние, превышающее изначальное в 10 раз.

Источник: www.syl.ru

Работы Ньютона


Примечательно, что в трудах Ньютона (1684—1686) гравитационная постоянная в явном виде отсутствовала, как и в записях других ученых аж до конца XVIII-го века.

Ранее использовался так называемый гравитационный параметр, который равнялся произведению гравитационной постоянной на массу тела.
1053;ахождение такого параметра в то время было более доступно, поэтому на сегодняшний день значение гравитационного параметра различных космических тел (в основном Солнечной системы.
090;ела.

µ = GM

Здесь: µ — гравитационный параметр, G – гравитационная постоянная, а M — масса объекта.

Размерность гравитационного параметра — м3с−2.

Следует о.
072;же до сегодняшнего дня, а чистое значение масс космических тел в то время было определить довольно сложно, поэтому гравитационный параметр нашел более широкое применение.

Эксперимент Кавендиша


Эксперимент по определению точного значения гравитационной постоянной впервые предложил английский естествоиспытатель Джон Мичелл, который сконструировал крутильные весы. Однако, не успев провести эксперимент, в 1793-м году Джон Мичелл умер, а его установка перешла в руки Генри Кавендишу – британскому физику. Генри Кавендиш улучшил полученное устройство и провел опыты, результаты которых были опубликованы в 1798-м году в научном журнале под названием «Философские труды Королевского общества».

Установка для проведения эксперимента состояла из нескольких элементов. Прежде всего она включала 1,8-метровое коромысло, к концам которого крепились свинцовые шарики с массой 775 г и диаметром 5 см. Коромысло было подвешено на медной 1-метровой нити. Несколько выше крепления нити, ровно над ее осью вращения устанавливалась еще одна поворотная штанга, к концам которой жестко крепились два шара массой 49,5 кг и диаметром 20 см. Центры всех четырех шаров должны были лежать в одной плоскости. В результате гравитационного взаимодействия притяжение малых шаров к большим должно быть заметно. При таком притяжении нить коромысла закручивается до некоторого момента, и ее сила упругости должна равняться силе тяготения шаров. Генри Кавендиш измерял силу тяготения посредством измерения угла отклонения плеча коромысла.

 

Более наглядное описание эксперимента доступно в видео ниже:

Что характеризует гравитационная постоянная

Для получения точного значения константы Кавендишу пришлось прибегнуть к ряду мер, снижающих влияние сторонних физических факторов на точность эксперимента. В действительности Генри Кавендиша проводил эксперимент не для того, чтобы выяснить значение гравитационной постоянной, а для расчета средней плотности Земли. Для этого он сравнивал колебания тела, вызванные гравитационным возмущением шара известной массы, и колебания, вызванные тяготением Земли. Он достаточно точно вычислил значение плотности Земли – 5,47 г/см3 (сегодня более точные расчеты дают 5,52 г/см3). Согласно различным источникам, значение гравитационной постоянной, высчитанное из гравитационного параметра с учетом плотности Земли, полученной Кавердишем, составило G=6,754·10−11 м³/(кг·с²), G = 6,71·10−11м³/(кг·с²) или G = (6,6 ± 0,04)·10−11м³/(кг·с²). До сих пор неизвестно, кто впервые получил численное значение постоянной Ньютона из работ Генри Кавердиша.

Измерение гравитационной постоянной

Наиболее раннее упоминание гравитационной постоянной, как отдельной константы, определяющей гравитационное взаимодействие, найдено в «Трактате по механике», написанном в 1811-м году французским физиком и математиком — Симеоном Дени Пуассоном.

Измерение гравитационной постоянной проводится различными группами ученых и по сей день. При этом, несмотря на обилие доступных исследователям технологий, результаты экспериментов дают различные значения данной константы. Из этого можно было бы сделать вывод, что, возможно, гравитационная постоянная на самом деле непостоянная, а способна менять свое значение, с течением времени или от места к месту. Однако, если значения константы по результатам экспериментов разнятся, то неизменность этих значений в рамках этих экспериментов уже проверена с точностью до 10-17. Кроме того, согласно астрономическим данным постоянная G не изменилась в значительной степени за несколько последних сотен миллионов лет. Если постоянная Ньютона и способна меняться, то ее изменение не превысило б отклонение на число 10-11 – 10-12 в год.

Примечательно, что летом 2014-го года совместно группа итальянских и нидерландских физиков провели эксперимент по измерению гравитационной постоянной совсем иного вида. В эксперименте использовались атомные интерферометры, которые позволяют отследить влияние земной гравитации на атомы. Значение константы, полученное таким образом, имеет погрешность 0,015% и равняется G = 6.67191(99) × 10−11 м3·с−2·кг−1.

 

Источник: SpaceGid.com

Для объяснения наблюдаемой эволюции Вселенной в рамках существующих теорий, приходится допустить, что одни фундаментальные постоянные более постоянны, чем другие

В ряду фундаментальных физических констант — скорость света, постоянная Планка, заряд и масса электрона — гравитационная постоянная стоит как-то особняком. Даже история её измерения изложена в знаменитых энциклопедиях Britannica и Larousse , не говоря уж о «Физической энциклопедии» , с ошибками. Из соответствующих статей в них читатель узнает, что её численное значение впервые определил в прецизионных экспериментах 1797–1798 годов знаменитый английский физик и химик Генри Кавендиш (Henry Cavendish , 1731–1810), герцог Девонширский. В действительности Кавендиш измерял среднюю плотность Земли (его данные, кстати, всего лишь на полпроцента отличаются от результатов современных исследований). Располагая же информацией о плотности Земли, мы легко можем вычислить её массу, а зная массу, определить гравитационную постоянную.

Интрига состоит в том, что во времена Кавендиша понятия гравитационной постоянной ещё не существовало, и закон всемирного тяготения не принято было записывать в привычном для нас виде. Напомним, что сила тяготения пропорциональна произведению масс тяготеющих тел и обратно пропорциональна квадрату расстояния между этими телами, коэффициентом же пропорциональности как раз и является гравитационная постоянная. Такая форма записи ньютоновского закона появляется только в XIX столетии. А первые опыты, в которых измерялась именно гравитационная постоянная, были выполнены уже в конце столетия — в 1884 году.

Как отмечает российский историк науки Константин Томилин , гравитационная постоянная отличается от других фундаментальных постоянных ещё и тем, что с ней не связан естественный масштаб какой-либо физической величины. В то же время скорость света определяет предельное значение скорости, а постоянная Планка — минимальное изменение действия.

И только в отношении гравитационной постоянной была высказана гипотеза о том, что её численное значение, возможно, меняется со временем. Впервые эту идею сформулировал в 1933 году английский астрофизик Эдвард Милн (Edward Arthur Milne , 1896–1950), а в 1937 году знаменитый английский физик-теоретик Поль Дирак (Paul Dirac , 1902–1984), в рамках так называемой «гипотезы больших чисел», предположил, что гравитационная постоянная уменьшается с течением космологического времени. Гипотеза Дирака занимает важное место в истории теоретической физики ХХ века, однако никаких более или менее надежных экспериментальных подтверждений её не известно.

С гравитационной постоянной непосредственно связана так называемая «космологическая постоянная», впервые появившаяся в уравнениях общей теории относительности Альберта Эйнштейна . Обнаружив, что эти уравнения описывают либо расширяющуюся, либо сжимающуюся вселенную, Эйнштейн искусственно добавил в уравнения «космологический член», обеспечивавший существование стационарных решений. Его физический смысл сводился к существованию силы, компенсирующей силы всемирного тяготения и проявляющейся лишь на очень больших масштабах. Несостоятельность модели стационарной Вселенной стала для Эйнштейна очевидной после выхода в свет работ американского астронома Эдвина Хаббла (Edwin Powell Hubble , 1889–1953) и советского математика Александра Фридмана , доказавших справедливость иной модели, согласно которой Вселенная расширяется во времени . В 1931 году Эйнштейн отказался от космологической постоянной, назвав её в частной беседе «величайшей ошибкой своей жизни».

История, однако, на этом не закончилась. После того как было установлено, что последние пять миллиардов лет расширение Вселенной происходит с ускорением , вопрос о существовании антигравитации вновь стал актуальным; вместе с ним в космологию вернулась и космологическая постоянная. При этом современные космологи связывают антигравитацию с присутствием во Вселенной так называемой «темной энергии» .

И гравитационная постоянная, и космологическая постоянная, и «темная энергия» были предметом активных дискуссий на недавней конференции в Имперском Колледже Лондона (London Imperial College), посвященной нерешенным проблемам в стандартной модели космологии. Одна из наиболее радикальных гипотез была сформулирована в докладе Филиппа Мангейма (Philip Mannheim) — специалиста по физике элементарных частиц из университета Коннектикута в Шторсе (University of Connecticut in Storrs). Фактически Мангейм предложил лишить гравитационную постоянную статуса универсальной постоянной. Согласно его гипотезе, «табличное значение» гравитационной постоянной определено в лаборатории, находящейся на Земле, и им можно пользоваться только в пределах Солнечной системы . В космологических же масштабах гравитационная постоянная имеет другое, существенно меньшее численное значение, которое можно рассчитать методами физики элементарных частиц.

Представляя свою гипотезу коллегам, Мангейм прежде всего стремился приблизить решение весьма актуальной для космологии «проблемы космологической постоянной». Суть этой проблемы в следующем. По современным представлениям, космологическая постоянная характеризует скорость расширения Вселенной. Её численное значение, найденное теоретически методами квантовой теории поля, в 10 120 раз превышает полученное из наблюдений. Теоретическое значение космологической постоянной столь велико, что при соответствующей скорости расширения Вселенной звезды и галактики просто не успели бы сформироваться.

Свою гипотезу о существовании двух разных гравитационных постоянных — для солнечной системы и для межгалактических масштабов — Мангейм обосновывает следующим образом. По его словам, в наблюдениях на самом деле определяется не сама космологическая постоянная, а некоторая величина, пропорциональная произведению космологической постоянной на гравитационную постоянную. Предположим, что в межгалактических масштабах гравитационная постоянная очень мала, а значение космологической постоянной соответствует расчетному и очень велико. В этом случае произведение двух постоянных вполне может быть малой величиной, что не противоречит наблюдениям. «Возможно, пришло время отказаться считать космологическую постоянную малой величиной, — говорит Мангейм, — просто принять, что она велика, и исходить из этого». В этом случае «проблема космологической постоянной» оказывается решенной.

Предлагаемое Мангеймом решение выглядит простым, но цена, которую придется заплатить за него, очень велика. Как отмечает Зейя Мерали (Zeeya Merali) в статье «Two constants are better than one», опубликованной журналом New scientist 28 апреля 2007 года, вводя два разных численных значения гравитационной постоянной, Мангейм неизбежно должен отказаться от уравнений общей теории относительности Эйнштейна. Кроме того, гипотеза Мангейма делает излишним принятое большинством космологов представление о «темной энергии», поскольку малое значение гравитационной постоянной на космологических масштабах уже само по себе эквивалентно предположению о существовании антигравитации.

Кейт Хорн (Keith Horne) из британского университета св. Андрея (University of St Andrew) приветствует гипотезу Мангейма, поскольку в ней использованы фундаментальные принципы физики элементарных частиц: «Она очень элегантна, и было бы просто замечательно, если бы она оказалась правильной». По словам Хорн, в этом случае нам удалось бы объединить физику элементарных частиц и теорию гравитации в одну весьма привлекательную теорию.

Но с ней согласны далеко не все. New Scientist приводит и мнение космолога Тома Шэнкса (Tom Shanks), что некоторые явления, очень хорошо укладывающиеся в стандартную модель, — например, недавние измерения реликтового излучения , и движения двойных пульсаров, — вряд ли окажутся так же легко объяснимы в теории Мангейма.

Сам Мангейм не отрицает проблем, с которыми сталкивается его гипотеза, замечая при этом, что считает их намного менее значимыми в сравнении с трудностями стандартной космологической модели: «Её разрабатывают сотни космологов, и тем не менее она неудовлетворительна на 120 порядков».

Надо отметить, что Мангейм нашел некоторое количество сторонников, поддержавших его, дабы исключить худшее. К худшему они отнесли выдвинутую в 2006 году гипотезу Пола Штейнхарда (Paul Steinhardt) из Принстонского университета (Princeton University) и Нила Тьюрока (Neil Turok) из Кембриджа (Cambridge University), согласно которой Вселенная периодически рождается и исчезает, причем в каждом из циклов (длящемся триллион лет) происходит свой Большой Взрыв , и при этом в каждом цикле численное значение космологической постоянной оказывается меньше, нежели в предыдущем. Крайне незначительная величина космологической постоянной, зафиксированная в наблюдениях, означает тогда, что наша Вселенная — очень дальнее звено в очень длинной цепи рождающихся и исчезающих миров…

Как ни странно это может показаться, но с точным определением гравитационной постоянной у исследователей всегда были проблемы. Авторы статьи говорят о трех сотнях предыдущих попыток сделать это, но все они приводили к значениям, которые не совпадали с другими. Даже в последние десятилетия, когда точность измерений значительно возросла, ситуация оставалась прежней — данные друг с другом, как и раньше, совпадать отказывались.

Основной метод измерения G остался неизменным с 1798 года, когда Генри Кавендиш решил использовать для этого крутильные (или торсионные) весы. Из школьного курса известно, что собой представляла такая установка. В стеклянном колпаке на метровой нити из посеребренной меди висело деревянное коромысло из свинцовых шаров, каждый по 775 г.

Wikimedia Commons Вертикальный разрез установки (Копия рисунка из отчёта Г. Кавендиша «Experiments to determine the Density of the Earth», опубликованного в Трудах Лондонского Королевского Общества за 1798 г. (часть II) том 88 стр.469-526)

К ним подносили свинцовые шары массой 49,5 кг, и в результате действия гравитационных сил коромысло закручивалось на некий угол, зная который и зная жесткость нити, можно было вычислить величину гравитационной постоянной.

Проблема состояла в том, что, во-первых, гравитационное притяжение очень невелико, плюс на результат могут влиять другие массы, экспериментом не учтенные и от которых не было возможности экранироваться.

Второй минус, как ни странно, сводился к тому, что атомы в подносимых массах находились в постоянном движении, и при малом воздействии гравитации этот эффект тоже сказывался.

Ученые решили добавить к гениальной, но в данном случае недостаточной, идее Кавендиша свой метод и использовали вдобавок другой прибор, квантовый интерферометр, известный в физике под названием СКВИД (от англ. SQUID, Superconducting Quantum Interference Device — «сверхпроводящий квантовый интерферометр»; в буквальном переводе с английского squid — «кальмар»; сверхчувствительные магнитометры, используемые для измерения очень слабых магнитных полей ).

Этот прибор отслеживает минимальные отклонения от магнитного поля.

Заморозив лазером 50 кг шара из вольфрама до температур, близких к абсолютному нулю, отследив по изменениям магнитного поля перемещения в этом шаре атомов и, таким образом, исключив их влияние на результат измерения, исследователи получили значение гравитационной постоянной с точностью 150 частей на миллион, то есть 15 тысячных процента. Теперь значение этой постоянной, заявляют ученые, равно 6,67191(99)·10 −11 м 3 ·с −2 ·кг −1 . Предыдущее значение G составляло 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 .

И это довольно странно.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, и пока она все время другая. В 2010 году , в которой американские ученые Гарольд Паркс и Джеймс Фаллер предлагали уточненное значение 6,67234(14)·10 −11 м 3 ·с −2 ·кг −1 . Это значение было получено ими путем регистрации с помощью лазерного интерферометра изменения расстояний между маятниками, подвешенными на струнах, при их колебаниях относительно четырех вольфрамовых цилиндров — источников гравитационного поля — с массами 120 кг каждый. Второе плечо интерферометра, служащее стандартом расстояния, фиксировалось между точками подвеса маятников. Полученная Парксом и Фаллером величина оказалась на три стандартных отклонения меньше величины G , рекомендованной в 2008 году Комитетом данных для науки и техники (CODATA) , но соответствует более раннему значению CODATA, представленному в 1986 году. Тогда сообщалось , что пересмотр величины G, произошедший в период с 1986 по 2008 год был вызван исследованиями неупругости нитей подвесок в крутильных весах.

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

Ссылки

  • Гравитационная постоянная — статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

  • Дарвин (космический проект)
  • Коэффициент размножения на быстрых нейтронах

Смотреть что такое «Гравитационная постоянная» в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ — (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ — (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м&sup2/кг&sup2 … Большой Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ — (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ — фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная — — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная — gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    гравитационная постоянная — (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ — тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Гравитационная постоянная — коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ — (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Источник: orcafe.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.