Стекло аморфное вещество


Стекло –твердое аморфное вещество, способное после нагревания до вязкотекучего состояния снова превращаться при определенном режиме охлаждения в твердое вещество. Стекла получают путем переохлаждения расплава независимо от их состава и температурной области затвердевания. Они обладают в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния встеклообразное должен быть обратимым.

Физические свойства стекла – плотность, прозрачность, преломление и отражение света, теплопроводность, термическая устойчивость, твердость, прочность, электропроводность и др.

Самое важное свойство стекол – прозрачность в диапазоне длин волн видимого света. Оно определяется как отношение количества прошедших через стекло лучей ко всему световому потоку. Прозрачность большинства стекол 84 — 90 %; молочного стекла, толщиной 10 мм – от 12 до 51 %. Зависит прозрачность от толщины стекла, характера обработки поверхности, наличия примесей (особенно железа).


Плотность стекла зависит от его состава и характера термической обработки. Обычные стекла имеют плотность 2,5 г/см3, хрустальные – 3 г/см3 и выше.

Преломление стекла – это изменение направления распространения излучения при переходе через поверхность раздела стекло-воздух. Показатель преломления, т.е. отношение синуса угла падения к синусу угла преломления для воздуха – 1,0, для обыкновенного стекла – 1,5; для стекол с содержанием оксидов свинца – до 1,9. Показатель преломления стекол можно варьировать добавками (например, стекло сорта флинт с оксидом свинца).

Отражение света имеет значение для изделий, украшенных гранением. Гладкая поверхность стекла создает впечатление зеркального отраженного света. От шероховатой поверхности световой поток рассеивается во все стороны и поверхность воспринимается как матовая. Чем выше показатель преломления, тем выше коэффициент отражения. Для получения большего блеска стекла производят заточку граней под определенным углом: для обыкновенного стекла – 1000, для хрустального – 1200.

Теплопроводность, т.е. способность проводить тепло, у стекла невелика – в 600 раз меньше, чем у серебра, и в 400 раз меньше, чем у меди. Коэффициент теплопроводности стекол равен 0,34 — 0,96 Вт/м.град.

Термическая устойчивостьстекол зависит от ряда свойств – коэффициента термического расширения, теплопроводности, толщины и состава стекла, формы и размеров изделия, характера поверхности, наличия дефектов и др. В результате специальных обработок (полировки, титанизации, закалки, обработки литьем и др.) термическая стойкость стекла может быть увеличена в несколько раз.


Твердость – это способность стекла сопротивляться царапинам, проникновению в него другого тела. Отожженное стекло обладает большей твердостью. По шкале Мооса твердость стекол колеблется от 4,5 до 7,0.

Хрупкость – это способность стекла сопротивляться ударам. Стекло не способно к пластической деформации и поэтому является хрупким телом. Хрупкость зависит от химического состава, наименьшей хрупкостью обладают боросвинцовые стекла. При плохом отжиге, неоднородности строения, хрупкость увеличивается, изделия с выступающими деталями, углами также отличаются хрупкостью.

Электроизоляционные свойства стекла используют для создания изоляционных материалов. Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов. Проводимость быстро увеличивается с ростом температуры. Расплавленное стекло хорошо проводит ток, на этом основана его электроварка.

Химическая устойчивость стекла характеризуется высокой сопротивляемостью воздействию водных растворов, атмосферы, агрессивных сред.

Химический состав стекла различен в зависимости от требований, предъявляемых к свойствам стеклоизделий, от условий эксплуатации, а также способа выработки.


авной стеклообразующей частью большинства стекол является кремнезем (SiO2), который вводят в состав стекла с песком или кварцем. Состав оксидов, образующих стекла, ограничен главным образом оксидами, обладающими кислотными свойствами:, B2O3, P2O5, оксиды мышьяка и германия, а кроме того, и вещества, не являющиеся оксидами, например, сера, селен и флюорид свинца, также могут образовывать стекла. Кроме стеклообразователей имеется ряд оксидов, которые входят в состав стекла. Они называются модификаторами сетки (каркаса) стекла. К ним относятся основные оксиды щелочных и щелочноземельных металлов — Na2O, K2O, MgO, CaO. К третьей категории веществ относятся некоторые оксиды, которые в чистом виде не могут образовать каркаса стекла, но могут включаться в состав уже существующей сетки. Это – промежуточные оксиды. Примерами служат глинозем и оксид бериллия.

Стекла представляют собой сложные системы, состоящие не менее чем из пяти окислов. Названия стекол зависят от содержания в них тех или иных окислов: натриево-известковые, калиево-известковые, фосфатные, боратные, калиево-свинцовые (хрустальные) и др.

Структура стекла. Стекло является изотропным материалом, так как по всем направлениям в среднем имеет однородные структуру и свойства. Однако само строение стекла, т.е. внутреннее расположение его частиц окончательно не определено. Это связано с тем, что разные стека имеют различное строение, наблюдаются различия даже в строении основной массы стека и поверхностного его слоя, и кроме того, на строение стека влияет технологический процесс и другие факторы. Предложено несколько теорий строения стекла: кристаллитная; ионная; агрегативная.


По кристаллитной теории стекло состоит из кристаллитов. Кристаллиты — это мельчайшие, очень деформированные структурные образования. Кристаллитная теория позволила объяснить изменение коэффициентов термического расширения стекла, показателей преломления свет при различных температурах.

Согласно ионной теории стекло представляет собой непрерывную сетку с ионами или их группами в определенных положениях, но в отличии от настоящих кристаллов эта сетка не имеет симметрии и определенной периодичности. На основании этой теории можно объяснить изменение цвета при введении красителей в стекло.

Агрегативная теория строения стекла исходит из того, что в стекле всегда существует усложненные группировки – агрегаты молекул. При нагревании происходит распад этих группировок, при охлаждении сложность агрегатов и их число растут. При быстром охлаждении стекломассы вязкость возрастает, атомы не успевают занять нужное положение, возникает неуравновешенное состояние стекла, которое устраняется отжигом.

 

Источник: cyberpedia.su


image
Полученное при помощи просвечивающего электронного микроскопа изображение разных уровней кристаллизованности аморфного металла

Инженеры из Университета Южной Калифорнии получили новый вид металлического стекла, отличающийся повышенной упругостью. Материал сочетает в себе, кажется, несочетаемые свойства – твёрдость, прочность и эластичность. Материал, получивший технологическое название SAM2X5-630, обладает наивысшей ударной прочностью из всех известных металлических стёкол.

Металлические стёкла, или аморфные металлы — класс металлических твердых тел с аморфной структурой. В отличие от металлов с их кристаллической структурой, таковая у аморфных металлов аналогична атомной структуре переохлаждённых расплавов.


Слева прыгает шарик из нового металлического стекла, справа – из обычной стали

Материал способен выдерживать сильные удары, при этом он не крошится и не ломается, а возвращает первоначальную форму. Потенциал его применения практически безграничен – начиная от свёрл и бронежилетов и заканчивая имплантатами для укрепления костей и защитой космических спутников.


Обычно аморфные металлы получают нагреванием до 630 °C, а затем очень быстрым (порядка градуса в секунду) охлаждением. Материал SAM2X5-630 был получен нагреванием порошкообразного состава на основе железа (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4).

Уникальные свойства металла происходят из удачной находки сочетания температуры нагревания и скорости охлаждения – именно такие условия, которые испытал полученный состав, приводят к образованию локальных очагов слабо выраженной кристаллической структуры. Другие условия нагрева или охлаждения приводят к получению полностью аморфных металлов со случайным расположением атомов.

«У него почти нет внутренней структуры, и в этом он похож на стекло, но при этом встречаются регионы с кристаллизацией,- говорит Вероника Эльясон [Veronica Eliasson], ассистент-профессор из Инженерной школы им.Витерби при университете, и ведущий автор работы. – Мы пока понятия не имеем, почему небольшое количество кристаллизировавшихся участков в металлических стёклах приводят к таким сильным различиям в реакциях на удар».

Динамический предел упругости Гюгонио (максимальное воздействие, которое материал выдерживает без необратимой деформации), был определён для SAM2X5-630 в районе 12 ГПа. У нержавеющей стали этот показатель равен 0,2 ГПа, у карбида вольфрама (используемого для создания твёрдых инструментов и сердечников бронебойных пуль) – 4,5 ГПа, у алмазов – до 60 ГПа.


Изучение аморфных металлов началось в 1960 году в Калифорнийском технологическом институте – группой учёных было получено первое металлическое стекло Au75Si25. С тех пор было получено множество подобных материалов с интересными свойствами, однако пока область их практического применения нельзя назвать широкой из-за их высокой стоимости.

Например, полученный недавно в Японии Ti40Cu36Pd14Zr10 — неканцерогенный, в три раза прочнее титана, мало изнашивается, при трении не образует порошок, а по модулю продольной упругости практически совпадает с человеческими костями – в потенциале его можно будет использовать как прекрасную искусственную замену суставов.

Источник: habr.com

image
Полученное при помощи просвечивающего электронного микроскопа изображение разных уровней кристаллизованности аморфного металла

Инженеры из Университета Южной Калифорнии получили новый вид металлического стекла, отличающийся повышенной упругостью. Материал сочетает в себе, кажется, несочетаемые свойства – твёрдость, прочность и эластичность. Материал, получивший технологическое название SAM2X5-630, обладает наивысшей ударной прочностью из всех известных металлических стёкол.

Металлические стёкла, или аморфные металлы — класс металлических твердых тел с аморфной структурой. В отличие от металлов с их кристаллической структурой, таковая у аморфных металлов аналогична атомной структуре переохлаждённых расплавов.



Слева прыгает шарик из нового металлического стекла, справа – из обычной стали

Материал способен выдерживать сильные удары, при этом он не крошится и не ломается, а возвращает первоначальную форму. Потенциал его применения практически безграничен – начиная от свёрл и бронежилетов и заканчивая имплантатами для укрепления костей и защитой космических спутников.

Обычно аморфные металлы получают нагреванием до 630 °C, а затем очень быстрым (порядка градуса в секунду) охлаждением. Материал SAM2X5-630 был получен нагреванием порошкообразного состава на основе железа (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4).

Уникальные свойства металла происходят из удачной находки сочетания температуры нагревания и скорости охлаждения – именно такие условия, которые испытал полученный состав, приводят к образованию локальных очагов слабо выраженной кристаллической структуры. Другие условия нагрева или охлаждения приводят к получению полностью аморфных металлов со случайным расположением атомов.

«У него почти нет внутренней структуры, и в этом он похож на стекло, но при этом встречаются регионы с кристаллизацией,- говорит Вероника Эльясон [Veronica Eliasson], ассистент-профессор из Инженерной школы им.Витерби при университете, и ведущий автор работы. – Мы пока понятия не имеем, почему небольшое количество кристаллизировавшихся участков в металлических стёклах приводят к таким сильным различиям в реакциях на удар».


Динамический предел упругости Гюгонио (максимальное воздействие, которое материал выдерживает без необратимой деформации), был определён для SAM2X5-630 в районе 12 ГПа. У нержавеющей стали этот показатель равен 0,2 ГПа, у карбида вольфрама (используемого для создания твёрдых инструментов и сердечников бронебойных пуль) – 4,5 ГПа, у алмазов – до 60 ГПа.

Изучение аморфных металлов началось в 1960 году в Калифорнийском технологическом институте – группой учёных было получено первое металлическое стекло Au75Si25. С тех пор было получено множество подобных материалов с интересными свойствами, однако пока область их практического применения нельзя назвать широкой из-за их высокой стоимости.

Например, полученный недавно в Японии Ti40Cu36Pd14Zr10 — неканцерогенный, в три раза прочнее титана, мало изнашивается, при трении не образует порошок, а по модулю продольной упругости практически совпадает с человеческими костями – в потенциале его можно будет использовать как прекрасную искусственную замену суставов.

Источник: habr.com

Застывшая жидкость


Если быть точным, то не застывшая, а переохлажденная. Поскольку стекло сохраняет основные свойства жидкости даже в привычном твердом состоянии. Вполне понятны возражения – мол стекло не течет! Все очень просто при комнатной температуре оно почти не течет, вернее течет, но крайне медленно, но стоит его только нагреть, движение сразу станет наглядным.

Нагревание стекла или изделия из него до температуры 600 — 900 градусов полностью меняет его свойства. Стекло становится мягким и пластичным, что позволяет придавать ему любую форму.

Это свойственно всем аморфным веществам, к которым относится и стекло, также в эту категорию можно включить все смолы как натуральные, так и искусственные, различные клеи, резину отдельные виды пластических масс.

Разумеется, существует разница в температурах, при которых эти вещества теряют твердость, но принцип везде одинаков.

Секрет кристалла

Главное отличие аморфных веществ от кристаллических, в том, что аморфные не имеют упорядоченной кристаллической решетки. Сохраняя структуру ближних связей, аморфное вещество не имеет дальнего порядка расположения атомов и молекул. Таким образом, для аморфных тел типична изотропия свойств и отсутствие определенной точки плавления. То есть по мере повышения температуры аморфные тела постепенно размягчаются и незаметно переходят в жидкое состояние.

Отсюда следует, что кристаллическое тело отличается от жидкости не только и не столько количественно, но и главным образом качественно. То есть аморфное тело смело можно рассматривать как жидкость с бесконечно большой вязкостью.

Загадки стекла

Как человечество познакомилось со стеклом и когда научилось его вырабатывать, узнать уже невозможно. Очевидно, что знакомство это началось с природных аналогов стекла — обсидианов и тектитов.

Известно лишь, что самым древним из найденных на сегодня изделий из рукотворного стекла считается светло-зеленая бусинка размером 9х5,5 мм, обнаруженная в окрестностях города Фивы датируемая 35 годом до н.э.

У Плиния находится и предание о том, как появилось стекло, будто торговцы содой, причалив к берегу, принялись готовить обед. Поскольку они не отыскали подходящих камней, им пришлось подпереть котлы кусками соды — и спустя некоторое время сода разогрелась и смешалась с речным песком. Появилась незнакомая ранее жидкость. Несмотря на то, что попытки повторить опыт оказались безуспешными, предание продолжает жить.

Скорее всего, стекло было получено людьми как побочный продукт при выплавке меди.

Источник: www.kakprosto.ru

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.
  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

comments powered by HyperComments

Источник: SpaceGid.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.