Перечислите виды агрегатного состояния вещества их особенности


В энциклопедии «Природа науки»дискуссия выдохлась. Почему?
13.08.2006г ВиРа: «Физики-полимерщики склонны называть агрегатным состоянием и промежуточное между Жидким и Твёрдым
высокоэластическое состояние узкого класса веществ — полимерных молекулярных сеток — в узком интервале температур.
Типичные представители: резины, студни, гели.
Принципиальная особенность: способность к конечным упругим деформациям без изменения внутренней энергии
( при Т=const, — как и Газ!), — за счёт изменения энтропии».
19.10.2006г Петрович: «Ну, вот здесь-то зачем идти против практики? Сейчас не тогда, и вообще, — здесь нам не тут!
Мы-то как бы уж точно знаем, что агрегатные состояния не существуют в детерминированном виде. Кстати, это противоречило бы и всем современным теориям.
Так что же оно есть, это агрегатное?
— Не более чем способ объединения атомов в группы. — Не, вру, — более.
Это еще и объединение частиц в атомы.


чественной разницы нет. Механизм един. И он не из таблицы Дмитрия Иваныча, к сожалению.
Единственный интересный момент в таком переходе (от атомов к частицам), как раз в том, что качественной разницы, действительно, нет. Отсюда и закидоны холодного термояда, кстати. Разве не интересный момент, согласитесь. А интересен он еще и тем, что мы заведомо ищем ИНОЕ качество. — Не черная ли кошка в темной комнате?
Плазма, опять же. Это ли не доказательство только что сказанного? Да, действительно, от "между атомов" мы переехали уже к внутри. А все же, — надо было втемяшить "противоречие"!
Можно ли не замечать таких простых вещей? А именно, — единство механизма для атомов, молекул, частиц?
Для микро и макро, короче.
Демокрит (допустим, условно) дал исчерпывающую концепцию атомизма. Потом был еще Максвелл, который мечтал найти ту фабрику, на которой Бог печет эти разные "атомы", так удивительно повторяющие друг друга! … Не нашел. …
А ведь в рамках именно атомизма по Демокриту мы и не можем усмотреть каких-то качественных различий в агрегатных состояниях!
Воистину, концепция гениальна. И она философская, что характерно.
Все остальное, — "около того". В лучшем случае».
07.08.2012г. Пивень: «Петрович! Атомы – это узловые точки, в которые сфокусировалась часть энергии космических волн при их столкновениях на протяжении прошедшей вечности, и этот процесс продолжается.
далёком прошлом волны галактических масштабов, падая с периферии Вселенной, при встрече с себе равными взаимно тормозились и делились, что позволяло им проникать сквозь препятствия из габаритного космического частокола и продолжать падать дальше, ниже, к центру кривизны исходного уровня – высоты, которая служит потенциалом движения на нижний уровень. Так проходил и продолжает проходить этот простой и многократно повторяющийся процесс падений, встреч, столкновений, делений и продолжений падений в обновлённом, но уменьшенном виде. Из этой гипотезы следует, что атомы водорода моложе атомов гелия, а мейтнерий предстаёт самым старым из известных к данному времени химических элементов. 7.8.2012г. Пивень Григорий».
29.08.2012г SoKoBaN: «Пивень, вы это все всерьез или подкалываете так Петровича? Извините что уточняю, но я видел, как люди такие вещи всерьез пишут».
07.08.2013г novoim: «Петрович! А что у Пивень Григория сказано неправильно? Предложите свои гипотезы. Атомы, планеты, галактики, растения, животные имеют разый возраст или они все одногодки?»
07.08.2013г novoim: «ВиРа! Почему обсуждение серьёзной темы после Вашего ответа угасоо? И на форуме РАН эта тема никем не поднимается, а новые гипотезы, объясняющие переходы из одного агрегатного состояния в другое в разных энергетических средах, никто не выдвигает, а потому и обсуждать здесь нечего. В спорте есть судьи, которые на смотрах — соревнований определяют лучшего, а почему в науке этот механизм оценки, подтверждения первого по достижению лучших результатов, не работает?»
Прошло 32(!) месяца, но Петрович не отвечает. Жив ли он?
9.5.2015г. Пивень Григорий.


Источник: elementy.ru

Наверняка со школы всем известно, что бывает 4 агрегатных состояния вещества — твёрдое, жидкое, газообразное и плазма. Последнее известно вам многим, хотя и не все представляют, что это такое. Но ведь агрегатных состояний куда больше!

Основных, самых распространённых, пять. Но если учитывать все необычные состояния веществ, то получится около 15. Итак, в каких же формах бывает вещество?

P.S. твёрдое, жидкое и газообразное я описывать не буду — вы все про них знаете?

Плазма

Четвёртое агрегатное состояние, про которое знает большинство людей. Это состояние образуется при нагревании газа. Когда температуры очень высокие, некоторые электроны отсоединяются от своих ядер и начинают хаотично летать среди газового облака — настолько много стало у них энергии. Образуется так называемый ионизированный газ.

Плазма, в отличие от газа, отлично проводит электрический ток — поэтому её используют, к примеру, в газоразрядных лампах. А получают её очень просто — либо нагревом свыше 1 миллиона градусов, либо пропусканием электрического тока.


Кстати, плазму применяют и в сварке — плазменная сварка начинает использоваться повсеместно и её можно сделать чуть ли не своими руками!

Конденсат Бозе-Эйнштейна

Если можно очень сильно нагреть вещество, почему его нельзя очень сильно охладить? Ответ на этот вопрос даёт абсолютный ноль — значение температуры в -273,15 °C или 0 К (Кельвинов). При этой температуре у любых частиц пропадает вся кинетическая энергия и молекулы перестают двигаться. Тем не менее, абсолютный ноль недостижим, так как даже при отсутствии энергии атомы продолжают колебаться — это происходит из-за особенностей квантового мира.

Но если мы будем очень близко подходить к значению абсолютного нуля, то получим Конденсат Бозе-Эйнштейна — агрегатное состояние вещества, когда квантовые эффекты начинают проявляться на макроскопическом уровне. До сих пор это состояние изучено крайне мало, но тем не менее, мы смогли заморозить даже свет! Учёные сумели охладить пучок фотонов до 0.0000001 К, и при этом они начали себя вести как одна громадная волна.


Аморфные вещества

Итак, аморфные тела находятся между твёрдыми и жидкими веществами. у них есть кристаллическая решётка (как у углерода или кремния), но она не является строго упорядоченной, а имеет достаточно пространства для того, чтобы "плавать" (как это делают молекулы воды).

Самым известным примером аморфного тела является стекло. И хотя на бытовом уровне разница между ним и стеной из кремния незаметна, это всё же абсолютно разные состояния — нужно лишь посмотреть в микроскоп!

Кстати, то, что стекло стекает со временем вниз — это миф. Старые стёкла, обладающие такой особенностью, просто страдали от несовершенств изготовления стёкол в прошлом. Можете проверить этот миф на современных стёклах — хоть 1000 лет смотрите на них, ничего не увидите 🙂

Сверхтекучие жидкости

Эта особенность начинает проявляться при приближении к абсолютному нулю. Когда учёные охлаждали гелий, то заметили, что в какой-то момент времени он становится настолько текучим, что чуть ли не нарушает законы гравитации и поверхностного натяжения и ползёт вверх по стенкам пробирки!


Второе замечательное свойство этих жидкостей — это сверхпроводимость. То есть неважно, какого объёма была бы жидкость. Нагрей её в одном месте — и она моментально распределит всё тепло в своём объёме и передаст его в другую точку!

Кстати, некоторые конденсаты Бозе-Эйнштейна обладают теми же свойствами. И всё же это два разных агрегатных состояния.

Вырожденный газ

Отправляемся в космос! Здесь могут быть просто дикие формы материи. Вы же знаете, как образуются чёрные дыры? Когда масса звезды очень большая, а её радиус, напротив, очень мал, то вещество начинает сжиматься, пока не коллапсирует (очень быстро сжимается) в чёрную дыру. Из неё уже ничто не сможет вырваться…

Мы не знаем, из чего состоят чёрные дыры. Но мы знаем, что вещество предколлапсирующей звезды — это электронно-вырожденный газ, когда гравитация пытается "опустить" электроны с высших слоёв на низшие, а сами электроны этого сделать не дают.

Любопытно ещё вещество, из которого состоят нейтронные звёзды. Как понятно из названия, эти звёзды состоят целиком из нейтронов, что очень и очень ненормально… Как раз эту ненормальность и называют нейтронно-вырожденным веществом

Фотонное вещество

Помните, вам говорили, что частицы света, фотоны, не имеют массу? Забудьте. Тут физики из MIT и Гарварда научились замедлять фотоны настолько, что они начинают обмениваться энергией между собой и даже формировать "молекулы света"!


На самом деле фотоны остаются безмассовыми и молекула света выглядит молекулой просто внешне. Хотя это свойство можно будет использовать в будущих изобретениях — к примеру, в световых мечах, которые до этого момента казались детской мечтой.

Кварк-глюонная плазма

Теперь прыгнем назад во времени — в самое начало, на 13.8 миллиарда световых лет. После Большого взрыва не было звёзд и планет, не было молекул и атомов, даже электронов, протонов и нейтронов. Вся материя существовала в форме кварков (частичек материи) и глюонов (переносчиков взаимодействий между кварками). Температура там была настолько огромной, что наши законы физики попросту не работали при ней! Все частицы двигались со скоростью света, и этому бульону потребовалось долгое время, чтобы остыть.

Кстати, кварк-глюонная плазма существует не только в наших теориях — учёные смогли получить её на Большом Адронном Коллайдере и узнали много интересного про её свойства.

Источник: zen.yandex.ru



Коллоидная химия

Коллоидная химия


Агрегатные состояния вещества.


В этом разделе мы рассмотрим агрегатные состояния, в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.


Принято считать, что вещество может находиться в одном из трёх агрегатных состояниях:


1. Состояние твёрдого тела,

2. Жидкое состояние и

3. Газообразное состояние.


Часто выделяют четвёртое агрегатное состояние – плазму.

Иногда, состояние плазмы считают одним из видов газообразного состояния.



Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.


Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии. Но по мере нагрева они становятся жидкостями, затем газами. При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы.



Агрегатные состояния вещества


Газ


Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος) характеризующееся очень слабыми связями между составляющими его частицами.


Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы.



Агрегатные состояния вещества



Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ — изотропное вещество, то есть его свойства не зависят от направления.



При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие — подниматься вверх.


Газ имеет высокую сжимаемость — при увеличении давления возрастает его плотность. При повышении температуры расширяются.


При сжатии газ может перейти в жидкость, но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К.


Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ — сублимацией.


Твёрдое тело


Состояние твёрдого тела в сравнении с другими агрегатными состояниями характеризуется стабильностью формы.


Различают кристаллические и аморфные твёрдые тела.


Кристаллическое состояние вещества


Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение.


В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы.


В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.


В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.


Формы кристаллов


Каждое вещество образует кристаллы совершенно определённой формы.


Разнообразие кристаллических форм может быть сведено к семи группам:


1. Триклинная (параллелепипед),

2. Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная,

6. Гексагональная (призма с основанием правильного центрированного
    шестиугольника),

7. Кубическая (куб).



Сингонии


Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются в кубической системе. Простейшими формами этой системы являются куб, октаэдр, тетраэдр.


Магний, цинк, лёд, кварц кристализуются в гексагональной системе. Основные формы этой системы – шестигранные призмы и бипирамида.


Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.


Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.


Анизотропия


Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией.


Внутреннее строение кристаллов. Кристаллические решётки.


Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, — молекул, атомов или ионов.


Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.



Алмаз и графит


В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток:


1. молекулярные,

2. атомные,

3. ионные и

4. металлические.


Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.


  • Атомные кристаллические решётки

  • В узлах атомных решёток находятся атомы. Они связаны друг с другом ковалентной связью.


    Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежат алмаз, кремний и некоторые неорганические соединения.


    Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностью ковалентной связи.


  • Молекулярные кристаллические решётки

  • В узлах молекулярных решёток находятся молекулы. Они связаны друг с другом межмолекулярными силами.


    Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы, за исключением углерода и кремния, все органические соединения с неионной связью и многие неорганические соединения.


    Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.


  • Ионные кристаллические решётки

  • В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы. Они связаны друг с другом силами электростатического притяжения.


    К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов.


    По прочности ионные решётки уступают атомным, но превышают молекулярные.


    Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.


  • Металлические кристаллические решётки

  • В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны.



    Металл


    Наличием свободных электронов в кристаллических решётках металлов можно объяснить их многие свойства: пластичность, ковкость, металлический блеск, высокую электро- и теплопроводность


    Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью, а в других – металлической. Поэтому решётку графита можно рассматривать и как атомную, и как металлическую.



    Графит


    Во многих неорганических соединениях, например, в BeO, ZnS, CuCl, связь между частицами, находящимися в узлах решётки, является частично ионной, а частично ковалентной. Поэтому решётки подобных соединений можно рассматривать как промежуточные между ионными и атомными.


    Аморфное состояние вещества


    Свойства аморфных веществ


    Среди твёрдых тел встречаются такие, в изломе которых нельзя обнаружить никаких признаков кристаллов. Например, если расколоть кусок обыкновенного стекла, то его излом окажется гладким и, в отличие от изломов кристаллов, ограничен не плоскими, а овальными поверхностями.


    Подобная же картина наблюдается при раскалывании кусков смолы, клея и некоторых других веществ. Такое состояние вещества называется аморфным.


    Различие между кристаллическими и аморфными телами особенно резко проявляется в их отношении к нагреванию.


    В то время как кристаллы каждого вещества плавятся при строго определённой температуре и при той же температуре происходит переход из жидкого состояния в твёрдое, аморфные тела не имеют постоянной температуры плавления. При нагревании аморфное тело постепенно размягчается, начинает растекаться и, наконец, становится совсем жидким. При охлаждении оно также постепенно затвердевает.


    В связи с отсутствием определённой температуры плавления аморфные тела обладают другой способностью: многие из них подобно жидкостям текучи, т.е. при длительном действии сравнительно небольших сил они постепенно изменяют свою форму. Например, кусок смолы, положенный на плоскую поверхность, в теплом помещении на несколько недель растекается, принимая форму диска.


    Строение аморфных веществ


    Различие между кристаллическим и аморфным состоянием вещества состоит в следующем.


    Упорядоченное расположение частиц в кристалле, отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов – во всём их объёме.


    В аморфных телах упорядоченность в расположении частиц наблюдается только на очень малых участках. Кроме того, в ряде аморфных тел даже эта местная упорядоченность носит лишь приблизительный характер.



    Кристаллическое и аморфное состояние вещества



    Это различие можно коротко сформулировать следующим образом:


    • структура кристаллов характеризуется дальним порядком,
    • структура аморфных тел – ближним.


    Примеры аморфных веществ.


    К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др.


    Переход из аморфного состояния в кристаллическое.


    Некоторые вещества могут находиться как в кристаллическом, так и в аморфном состоянии. Диоксид кремния SiO2 встречается в природе в виде хорошо образованных кристаллов кварца, а также в аморфном состоянии (минерал кремень).


    При этом кристаллическое состояние всегда более устойчиво. Поэтому самопроизвольный переход из кристаллического вещества в аморфное невозможен, а обратное превращение – самопроизвольный переход из аморфного состояния в кристаллическое – возможно и иногда наблюдается.


    Примером такого превращения служит расстеклование – самопроизволная кристаллизация стекла при повышенных температурах, сопровождающаяся его разрушением.


    Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава.


    У металлов и сплавов аморфное состояние формируется, как правило, если расплав охлаждается за время порядка долей-десятков миллисекунд. Для стёкол достаточно намного меньшей скорости охлаждения.


    Кварц (SiO2) также имеет низкую скорость кристаллизации. Поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоёв вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности и поэтому аморфного.


    Жидкости


    Жидкость – промежуточное состояние между твёрдым телом и газом.


    Жидкое состояние является промежуточным между газообразным и кристаллическим. По одним свойствам жидкости близки к газам, по другим – к твёрдым телам.


    С газами жидкости сближает, прежде всего, их изотропность и текучесть. Последняя обуславливает способность жидкости легко изменять свою форму.


    Однако высокая плотность и малая сжимаемость жидкостей приближает их к твёрдым телам.


    Способность жидкостей легко изменять свою форму говорит об отсутствии в них жёстких сил межмолекулярного взаимодействия.


    В то же время низкая сжимаемость жидкостей, обусловливающая способность сохранять постоянный при данной температуре объём, указывает на присутствие хотя и не жёстких, но всё же значительных сил взаимодействия между частицами.


    Соотношение потенциальной и кинетической энергии.


    Для каждого агрегатного состояния характерно своё соотношение между потенциальной и кинетической энергиями частиц вещества.


    У твёрдых тел средняя потенциальная энергия частиц больше их средней кинетической энергии. Поэтому в твёрдых телах частицы занимают определённые положения друг относительно друга и лишь колеблются относительно этих положений.


    Для газов соотношение энергий обратное, вследствии чего молекулы газов всегда находятся в состоянии хаотического движения и силы сцепления между молекулами практически отсутствуют, так что газ всегда занимает весь предоставленный ему объём.


    В случае жидкостей кинетическая и потенциальная энергия частиц приблизительно одинаковы, т.е. частицы связаны друг с другом, но не жёстко. Поэтому жидкости текучи, но имеют постоянный при данной температуре объём.


    Стуктуры жидкостей и аморфных тел схожи.


    В результате применения к жидкостям методов структурного анализа установлено, что по структуре жидкости подобны аморфным телам. В большинстве жидкостей наблюдается ближний порядок – число ближайших соседей у каждой молекулы и их взаимное расположение приблизительно одинаковы во всём объёме жидкости.


    Степень упорядоченности частиц у различных жидкостей различна. Кроме того, она изменяется при изменении температуры.


    При низких температурах, незначительно превышающих температуру плавления данного вещества, степень упорядоченности расположения частиц данной жидкости велика.


    С ростом температуры она падает и по мере нагревания свойства жидкости всё больше и больше приближаются к свойствам газа. При достижении критической температуры различие между жидкостью и газом исчезает.


    Вследствии сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твёрдым телам относят только вещества в кристаллическом состоянии.


    Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах в отличие от обычных жидкостей частицы имеют незначительную подвижность – такую же как в кристаллах.


    Оглавление


    Органическая химия

    Биохимия

    Косметическая химия


    Коллоидная химия


    • Три агрегатных состояния
       вещества

    • Силы межмолекулярного
       взаимодействия

    Свойства жидкостей.

    • Характеристика жидкого
       состояния вещества.

    • Поверхностное натяжение
       жидкости.

    Растворы.

    • Понятие раствора.

    • Гидраты и сольваты.

    Дисперсные системы. Коллоиды.

    • Дисперсные системы.
       Определение.
       Классификация:

           — Суспензии,
           — Эмульсии,
           — Пены,
           — Золи,
           — Гели.

    • Адсорбция.

    • Коллоидные частицы.
           — Виды коллоидных частиц.
           — Строение коллоидной
             мицеллы.

    • Коагуляция коллоидных
       растворов.

    • Стабилизация
       коллоидных растворов.

    • Эмульсии и эмульгаторы.

    • Взаимодействие
       «воды» и «масла».

    Источник: xn—-7sbb4aandjwsmn3a8g6b.xn--p1ai


    You May Also Like

    About the Author: admind

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.