Какие агрегатные состояния вещества существуют


Наверняка со школы всем известно, что бывает 4 агрегатных состояния вещества — твёрдое, жидкое, газообразное и плазма. Последнее известно вам многим, хотя и не все представляют, что это такое. Но ведь агрегатных состояний куда больше!

Основных, самых распространённых, пять. Но если учитывать все необычные состояния веществ, то получится около 15. Итак, в каких же формах бывает вещество?

P.S. твёрдое, жидкое и газообразное я описывать не буду — вы все про них знаете?

Плазма

Четвёртое агрегатное состояние, про которое знает большинство людей. Это состояние образуется при нагревании газа. Когда температуры очень высокие, некоторые электроны отсоединяются от своих ядер и начинают хаотично летать среди газового облака — настолько много стало у них энергии. Образуется так называемый ионизированный газ.

Плазма, в отличие от газа, отлично проводит электрический ток — поэтому её используют, к примеру, в газоразрядных лампах. А получают её очень просто — либо нагревом свыше 1 миллиона градусов, либо пропусканием электрического тока.


Кстати, плазму применяют и в сварке — плазменная сварка начинает использоваться повсеместно и её можно сделать чуть ли не своими руками!

Конденсат Бозе-Эйнштейна

Если можно очень сильно нагреть вещество, почему его нельзя очень сильно охладить? Ответ на этот вопрос даёт абсолютный ноль — значение температуры в -273,15 °C или 0 К (Кельвинов). При этой температуре у любых частиц пропадает вся кинетическая энергия и молекулы перестают двигаться. Тем не менее, абсолютный ноль недостижим, так как даже при отсутствии энергии атомы продолжают колебаться — это происходит из-за особенностей квантового мира.

Но если мы будем очень близко подходить к значению абсолютного нуля, то получим Конденсат Бозе-Эйнштейна — агрегатное состояние вещества, когда квантовые эффекты начинают проявляться на макроскопическом уровне. До сих пор это состояние изучено крайне мало, но тем не менее, мы смогли заморозить даже свет! Учёные сумели охладить пучок фотонов до 0.0000001 К, и при этом они начали себя вести как одна громадная волна.


Аморфные вещества

Итак, аморфные тела находятся между твёрдыми и жидкими веществами. у них есть кристаллическая решётка (как у углерода или кремния), но она не является строго упорядоченной, а имеет достаточно пространства для того, чтобы "плавать" (как это делают молекулы воды).

Самым известным примером аморфного тела является стекло. И хотя на бытовом уровне разница между ним и стеной из кремния незаметна, это всё же абсолютно разные состояния — нужно лишь посмотреть в микроскоп!

Кстати, то, что стекло стекает со временем вниз — это миф. Старые стёкла, обладающие такой особенностью, просто страдали от несовершенств изготовления стёкол в прошлом. Можете проверить этот миф на современных стёклах — хоть 1000 лет смотрите на них, ничего не увидите 🙂

Сверхтекучие жидкости


Эта особенность начинает проявляться при приближении к абсолютному нулю. Когда учёные охлаждали гелий, то заметили, что в какой-то момент времени он становится настолько текучим, что чуть ли не нарушает законы гравитации и поверхностного натяжения и ползёт вверх по стенкам пробирки!

Второе замечательное свойство этих жидкостей — это сверхпроводимость. То есть неважно, какого объёма была бы жидкость. Нагрей её в одном месте — и она моментально распределит всё тепло в своём объёме и передаст его в другую точку!

Кстати, некоторые конденсаты Бозе-Эйнштейна обладают теми же свойствами. И всё же это два разных агрегатных состояния.

Вырожденный газ

Отправляемся в космос! Здесь могут быть просто дикие формы материи. Вы же знаете, как образуются чёрные дыры? Когда масса звезды очень большая, а её радиус, напротив, очень мал, то вещество начинает сжиматься, пока не коллапсирует (очень быстро сжимается) в чёрную дыру. Из неё уже ничто не сможет вырваться…

Мы не знаем, из чего состоят чёрные дыры. Но мы знаем, что вещество предколлапсирующей звезды — это электронно-вырожденный газ, когда гравитация пытается "опустить" электроны с высших слоёв на низшие, а сами электроны этого сделать не дают.


Любопытно ещё вещество, из которого состоят нейтронные звёзды. Как понятно из названия, эти звёзды состоят целиком из нейтронов, что очень и очень ненормально… Как раз эту ненормальность и называют нейтронно-вырожденным веществом

Фотонное вещество

Помните, вам говорили, что частицы света, фотоны, не имеют массу? Забудьте. Тут физики из MIT и Гарварда научились замедлять фотоны настолько, что они начинают обмениваться энергией между собой и даже формировать "молекулы света"!

На самом деле фотоны остаются безмассовыми и молекула света выглядит молекулой просто внешне. Хотя это свойство можно будет использовать в будущих изобретениях — к примеру, в световых мечах, которые до этого момента казались детской мечтой.

Кварк-глюонная плазма

Теперь прыгнем назад во времени — в самое начало, на 13.8 миллиарда световых лет. После Большого взрыва не было звёзд и планет, не было молекул и атомов, даже электронов, протонов и нейтронов. Вся материя существовала в форме кварков (частичек материи) и глюонов (переносчиков взаимодействий между кварками). Температура там была настолько огромной, что наши законы физики попросту не работали при ней! Все частицы двигались со скоростью света, и этому бульону потребовалось долгое время, чтобы остыть.

Кстати, кварк-глюонная плазма существует не только в наших теориях — учёные смогли получить её на Большом Адронном Коллайдере и узнали много интересного про её свойства.

Источник: zen.yandex.ru

Газообразное состояние


При нормальных условиях (273 К, 101325 Па) в газообразном состоянии могут находиться как простые вещества, молекулы которых состоят из одного атома (Не, Ne, Ar) или из нескольких несложных атомов (Н2, N2, O2), так и сложные вещества с малой молярной массой (СН4 , HCl, C2H6).

Поскольку кинетическая энергия частиц газа превышает их потенциальную энергию, то молекулы в газообразном состоянии непрерывно хаотически двигаются. Благодаря большим расстояниям между частицами силы межмолекулярного взаимодействия в газах настолько незначительны, что их не хватает для привлечения частиц друг к другу и удержания их вместе. Именно по этой причине газы не имеют собственной формы и характеризуются малой плотностью и высокой способностью к сжатию и к расширению. Поэтому газ постоянно давит на стенки сосуда, в котором он находится, одинаково во всех направлениях.

Для изучения взаимосвязи между важнейшими параметрами газа (давление Р, температура Т, количество вещества n, молярная масса М, масса m) используется простейшая модель газообразного состояния вещества — идеальный газ, которая базируется на следующих допущениях:

  • взаимодействием между частицами газа можно пренебречь;
  • сами частицы являются материальными точками, которые не имеют собственного размера.

Наиболее общим уравнением, описывающим модель идеального газа, считается уравнения Менделеева-Клапейрона для одного моля вещества:

Какие агрегатные состояния вещества существуют

Однако поведение реального газа отличается, как правило, от идеального. Это объясняется, во-первых, тем, что между молекулами реального газа все же действуют незначительные силы взаимного притяжения, которые в определенной степени сжимают газ. С учетом этого общее давление газа возрастает на величину a/V2, которая учитывает дополнительное внутреннее давление, обусловленное взаимным притяжением молекул. В результате общее давление газа выражается суммой Р+ а/V2. Во-вторых, молекулы реального газа имеют хоть и малый, но вполне определенный объем b , поэтому действительный объем всего газа в пространстве составляет V —  b. При подстановке рассмотренных значений в уравнение Менделеева-Клапейрона получаем уравнение состояния реального газа , которое называется уравнением Ван-дер-Ваальса:


Какие агрегатные состояния вещества существуют

где а и b — эмпирические коэффициенты, которые определяются на практике для каждого реального газа. Установлено, что коэффициент a имеет большую величину для газов, которые легко сжижаются (например, СО2 , NH3 ), а коэффициент b — наоборот, тем выше по величине, чем больше размеры имеют молекулы газа (например, газообразные углеводороды).

Уравнение Ван-дер-Ваальса гораздо точнее описывает поведение реального газа, чем уравнения Менделеева-Клапейрона, которое тем не менее, благодаря наглядному физическому смыслу широко используется в практических расчетах. Хотя идеальное состояние газа является предельным, мнимым случаем, однако простота законов, которые ему отвечают, возможность их применения для описания свойств многих газов в условиях низких давлений и высоких температур делает модель идеального газа очень удобной.

Жидкое состояние вещества


Жидкое состояние любого конкретного вещества являются термодинамически устойчивым в определенном интервале температур и давлений, характерных для природы (состава) данного вещества. Верхний температурный предел жидкого состояния — температура кипения, выше которой вещество в условиях устойчивого давления находится в газообразном состоянии. Нижняя граница устойчивого состояния существования жидкости — температура кристаллизации (затвердевания). Температуры кипения и кристаллизации, измеренные при давлении 101,3 кПа, называются нормальными.

Для обычных жидкостей присуща изотропность — единообразие физических свойств во всех направлениях внутри вещества. Иногда для изотропности употребляют и другие термины: инвариантность, симметрия относительно выбора направления.

В формировании взглядов на природу жидкого состояния важное значение имеет представление о критическом состоянии, который был открыт Менделеевым (1860 г.):

Критическое состояние — это равновесное состояние, при котором предел разделения между жидкостью и ее паром исчезает, поскольку жидкость и ее насыщенный пар приобретают одинаковые физические свойства.


В критическом состоянии значение как плотностей, так и удельных объемов жидкости и ее насыщенного пара становятся одинаковыми.

Жидкое состояние вещества является промежуточным между газообразным и твердым. Некоторые свойства приближают жидкое состояние к твердому. Если для твердых веществ характерна жесткая упорядоченность частиц, которая распространяется на расстояние до сотен тысяч межатомных или межмолекулярных радиусов, то в жидком состоянии наблюдается, как правило, не более нескольких десятков упорядоченных частиц. Объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества быстро возникает, и так же быстро снова «размывается» тепловым колебаниям частиц. Вместе с тем общая плотность «упаковки» частиц мало отличается от твердого вещества, поэтому плотность жидкостей не сильно отличается от плотности большинства твердых тел. К тому же способность жидкостей к сжатию почти такая же мала, что и в твердых тел (примерно в 20000 раз меньше, чем у газов).

Структурный анализ подтвердил, что в жидкостях наблюдается так называемый ближний порядок, который означает, что число ближайших «соседей» каждой молекулы и их взаимное расположение примерно одинаковы по всему объему.


Относительно небольшое количество различных по составу частиц, соединенных силами межмолекулярного взаимодействия, называется кластером. Если все частицы в жидкости одинаковы, то такой кластер называется ассоциатом. Именно в кластерах и ассоциатах наблюдается ближний порядок.

Степень упорядоченности в различных жидкостях зависит от температуры. При низких температурах, незначительно превышающих температуру плавления, степень упорядоченности размещения частиц очень большая. С повышением температуры она уменьшается и по мере нагревания свойства жидкости все больше приближаются к свойствам газов, а по достижении критической температуры разница между жидким и газообразным состоянием исчезает.

Близость жидкого состояния к твердому подтверждается значениями стандартных энтальпий испарения DН0испарения и плавления DН0плавления. Напомним, что величина DН0испарения показывает количество теплоты, которая нужна для преобразования 1 моля жидкости в пар при 101,3 кПа; такое же количество теплоты расходуется на конденсацию 1 моля пара в жидкость при тех же условиях (т.е. DН0испарения  = DН0конденсации). Количество теплоты, затрачиваемое на превращение 1 моля твердого вещества в жидкость при 101,3 кПа, называется стандартной энтальпией плавления; такое же количество теплоты высвобождается при кристаллизации 1 моля жидкости в условиях нормального давления (DН0плавления  = DН0кристаллизации). Известно, что DН0испарения  << DН0плавления, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притяжения, чем переход из жидкого в газообразное состояние.

Однако другие важные свойства жидкостей больше напоминают свойства газов. Так, подобно газам, жидкости могут течь — это свойство называется текучестью. Они могут сопротивляться течению, то есть им присуща вязкость. На эти свойства влияют силы притяжения между молекулами, молекулярная масса жидкого вещества и другие факторы. Вязкость жидкостей примерно в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, но гораздо медленнее, поскольку частицы жидкости упакованы плотнее, чем частицы газа.

Одной из самых интересных свойств жидкого состояния, которая не характерна ни для газов, ни для твердых веществ, является поверхностное натяжение.

Какие агрегатные состояния вещества существуют
Схема поверхностного натяжения жидкости

На молекулу, находящуюся в объеме жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, вследствие чего поверхностные молекулы находятся под действием некоторой результирующей силы, которая направлена ​​внутрь жидкости. По этой причине поверхность жидкости находится в состоянии натяжения. Поверхностное натяжение — это минимальная сила, которая удерживает частицы жидкости внутри и тем самым предотвращает сокращении поверхности жидкости.

Источник: www.polnaja-jenciklopedija.ru

Твердые и жидкие тела

Определение 2

В твердых телах межмолекулярные расстояния маленькие, а потенциальную энергию молекул можно сравнить с кинетической.

Твёрдые тела подразделяются на

2

вида:

  1. Кристаллические;
  2. Аморфные.

В состоянии термодинамического равновесия находятся только лишь кристаллические тела. Аморфные же тела по факту представляют собой метастабильные состояния, которые по строению схожи с неравновесными, медленно кристаллизующимися жидкостями. В аморфном теле происходит чересчур медленный процесс кристаллизации, процесс постепенного преобразования вещества в кристаллическую фазу. Разница кристалла от аморфного твердого тела состоит, в первую очередь, в анизотропии его свойств. Свойства кристаллического тела определяются в зависимости от направления в пространстве. Разнообразные процессы (например, теплопроводность, электропроводность, свет, звук) распространяются в разных направлениях твердого тела по-разному. А вот аморфные тела (например, стекло, смолы, пластмассы) изотропные, как и жидкости. Разница аморфных тел от жидкостей заключается лишь только в том, что последние текучие, в них не происходят статические деформации сдвига.

У кристаллических тел правильное молекулярное строение. Именно за счет правильного строения кристалл имеет анизотропные свойства. Правильное расположение атомов кристалла создает так называемую кристаллическую решетку. В разных направлениях месторасположение атомов в решетке различное, что и приводит к анизотропии. Атомы (ионы либо целые молекулы) в кристаллической решетке совершают беспорядочное колебательное движение возле средних положений, которые и рассматриваются в качестве узлов кристаллической решетки. Чем выше температура, тем выше энергия колебаний, а значит, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний определяется размер кристалла. Увеличение амплитуды колебаний приводит к увеличению размеров тела. Таким образом, объясняется тепловое расширение твердых тел.

Определение 3

Для вещества в жидком состоянии характерно сильное межмолекулярное взаимодействие и малая сжимаемость. Жидкость занимает промежуточное положение между твердым телом и газом. Жидкости, также как и газы, обладают изотpопными свойствами. Помимо этого, жидкость обладает свойством текучести. В ней, как и в газах, нет касательного напряжения (напряжения на сдвиг) тел. Жидкости тяжелые, то есть их удельные веса можно сравнить с удельными весами твердых тел. Вблизи температур кристаллизации их теплоемкости и прочие тепловые свойства близки к соответствующим свойствам твердых тел. В жидкостях наблюдается до заданной степени правильное расположение атомов, но только лишь в маленьких областях. Здесь атомы также проделывают колебательное движение около узлов квазикристаллической ячейки, однако в отличие от атомов твердого тела они периодически перескакивают от одного узла к другому. В итоге движение атомов будет весьма сложное: колебательное, но вместе с тем центр колебаний перемещается в пространстве.

Газ, испарение, конденсация и плавление

Определение 4

Силами взаимодействия между молекулами при небольших давлениях можно пренебречь. Частицы газа заполоняют весь объем, который предоставлен для газа. Газы рассматривают как сильно перегретые либо ненасыщенные пары. Особый вид газа – плазма (частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов почти одинаковые). То есть плазма – это газ из заряженных частиц, взаимодействующих между собой при помощи электрических сил на большом расстоянии, но не имеющих ближнего и дальнего расположения частиц.

Как известно, вещества способны переходить из одного агрегатного состояния в другое.

Определение 5

Испарение является фазовым переходом. При испарении часть жидкости или твердого тела преобразуется в пар.

Определение 6
Определение 7

Изменение внутренней энергии рассчитывается по формуле

(1)

.

Определение 8

При нагревании вещества растет его внутренняя энергия, поэтому увеличивается скорость теплового движения молекул. При достижении веществом своей температуры плавления кристаллическая решетка твердого тела разрушается. Связи между частицами также разрушаются, растет энергия взаимодействия между частицами. Теплота, которая передается телу, идет на увеличение внутренней энергии данного тела, и часть энергии расходуется на совершение работы по изменению объема тела при его плавлении. У многих кристаллических тел объем увеличивается при плавлении, однако есть исключения (к примеру, лед, чугун). Аморфные тела не обладают определенной температурой плавления. Плавление представляет собой фазовый переход, который характеризуется скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она остается неизменной в ходе процесса. Тогда изменение внутренней энергии тела равняется:

U=±mλ (2)

,

где

λ

– это удельная теплота плавления

(Дж/кг)

.

Определение 9

Изменение внутренней энергии рассчитывается по формуле

(2)

.

Изменение внутренней энергии каждого тела системы при нагревании или охлаждении вычисляется по формуле:

U=mcT (3)

,

где

c

– это удельная теплоемкость вещества,

ДжкгК

,

T

– это изменение температуры тела.

Определение 10

По сути, уравнение теплового баланса – это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

Пример 1
Пример 2

Источник: Zaochnik.com

Свойства агрегатных состояний

Физики изучили различные вещества, их свойства и то, при каких условиях эти вещества меняют свое агрегатное состояние.

Газы

Важно: Газы не имеют своей формы и не имеют своего объема. Они займут весь предложенный объем.

В газах расстояние между молекулами гораздо больше размеров самих молекул.

Притяжение между молекулами мало. А скорости молекул достаточно высоки. А чем выше скорость, тем больше энергия движения (кинетическая энергия) молекулы.

Поэтому, молекулы газа могут свободно перемещаться по всему объему, предоставленному этому газу. А если газ выпустить из баллона, то молекулы газа разлетятся во все стороны.

Примечание: При комнатной температуре молекулы воздуха движутся в среднем со скоростью, примерно 500 метров в секунду.

Жидкости

Важно: Жидкости не имеют своей формы, они займут предложенную им форму. Но, жидкости имеют свой объем.

В жидкостях молекулы располагаются очень близко, так, что они касаются друг друга. Поэтому, жидкости сжать не получается!

Однако, молекулы жидкости все еще могут передвигаться по всему объему жидкости. Но скорости молекул во много раз меньше, чем в газах. Поэтому, молекулы в жидкостях будут двигаться гораздо медленней.

Примечание:

  • Когда мы сжимаем тело, мы уменьшаем расстояние между его молекулами.
  • Физики иногда вместо слов «сжимать тело» говорят «уменьшать объем тела».

Твердые тела

Важно: Твердые тела имеют свою форму. Они, так же, имеют свой объем.

В твердых телах молекулы, как и в жидкостях, располагаются очень близко друг к другу. Однако, в твердых телах маленькие частички образуют решетчатую структуру. Поэтому, двигаться по твердому телу они не могут. Но под воздействием температуры они могут вибрировать (колебаться), оставаясь при этому на месте.

Все твердые тела по упорядоченности расположения маленьких частиц можно разделить на аморфные и кристаллические тела.

Различают аморфные и кристаллические твердые тела. То, будет ли твердое тело аморфным, или кристаллическим, зависит от того, насколько упорядочены мельчайшие частицы, из которых состоит это твердое тело — молекулы.

Выводы

  1. Одно и то же вещество может находиться в твердом, жидком и газообразном состояниях. Эти состояния называют агрегатными состояниями вещества.
  2. При переходе из одного агрегатного состояние в другое, молекулы вещества не изменяются. Изменяется лишь расстояние между ними и их взаимное действие на соседние молекулы.
  3. Газы не имеют своей формы и не имеют своего объема. Они займут весь предложенный объем.
  4. Жидкости не имеют своей формы, они займут предложенную им форму. Зато, жидкости имеют свой объем.
  5. Переход из жидкого в газообразное состояние – это испарение, а из газообразного в жидкое состояние – конденсация;
  6. Твердые тела имеют свою собственную форму и свой объем.
  7. Все твердые тела по их строению можно разделить на аморфные и кристаллические.

Источник: formulki.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.