Как выглядит антивещество


Антиматерия давно была предметом научной фантастики. В книге и фильме «Ангелы и демоны» профессор Лэнгдон пытается спасти Ватикан от бомбы из антиматерии. Космический корабль «Энтерпрайз» из «Звездного пути» использует двигатель на основе аннигилирующей антиматерии для путешествий быстрее скорости света. Но антиматерия также предмет нашей с вами реальности. Частицы антиматерии практически идентичны своим материальным партнерам, за исключением того, что переносят противоположный заряд и спин. Когда антиматерия встречает материю, они мгновенно аннигилируют в энергию, и это уже не вымысел.

Антиматерия

Хотя бомбы из антиматерии и корабли на основе этого же топлива пока не представляются возможными на практике, есть много фактов об антиматерии, которые вас удивят или позволят освежить в памяти то, что вы уже знали.

Антиматерия должна была уничтожить всю материю во Вселенной после Большого Взрыва


Согласно теории, Большой Взрыв породил материю и антиматерию в равных количествах. Когда они встречаются, происходит взаимное уничтожение, аннигиляция, и остается только чистая энергия. Исходя из этого, мы не должны существовать.

Но мы существуем. И насколько знают физики, это потому, что на каждый миллиард пар материи-антиматерии была одна лишняя частица материи. Физики всеми силами пытаются объяснить эту асимметрию.

Антиматерия ближе к вам, чем вы думаете

Небольшие количества антиматерии постоянно проливаются дождем на Землю в виде космических лучей, энергетических частиц из космоса. Эти частицы антивещества достигают нашей атмосферы с уровнем от одной до более сотни на квадратный метр. Ученые также располагают свидительствами того, что антивещество рождается во время грозы.

Есть и другие источники антивещества, которые находятся ближе к нам. Бананы, например, вырабатывают антивещество, испуская один позитрон — антивещественный экивалент электрона — примерно раз в 75 минут. Это происходит потому, что бананы содержат небольшое количество калия-40, встречающегося в природе изотопа калия. При распаде калия-40 иногда рождается позитрон.

Наши тела тоже содержат калий-40, а значит, и вы излучаете позитроны. Антиматерия аннигилирует мгновенно при контакте с материей, поэтому эти частицы антивещества живут не очень долго.

Людям удалось создать совсем немного антиматерии


Аннигиляция антиматерии и материи обладает потенциалом высвобождения огромного количества энергии. Грамм антиматерии может произвести взрыв размером с ядерную бомбу. Впрочем, люди произвели не так много антиматерии, поэтому бояться нечего.

Все антипротоны, созданные на ускорителе частиц Тэватроне в Лаборатории Ферми, едва ли наберут 15 нанограммов. В CERN на сегодняшний день произвели только порядка 1 нанограмма. В DESY в Германии — не больше 2 нанограммов позитронов.

Если вся антиматерия, созданная людьми, аннигилирует мгновенно, ее энергии не хватит даже на то, чтобы вскипятить чашку чая.

Проблема заключается в эффективности и стоимости производства и хранения антивещества. Создание 1 грамма антиматерии требует порядка 25 миллионов миллиардов киловатт-часов энергии и стоит выше миллиона миллиарда долларов. Неудивительно, что антивещество иногда включают в список десяти самых дорогих веществ в нашем мире.

Существует такая вещь, как ловушка для антиматерии

Для изучения антиматерии вам нужно предотвратить ее аннигиляцию с материей. Ученые нашли несколько способов это осуществить.

Заряженные частицы антивещества, вроде позитронов и антипротонов, можно хранить в так называемых ловушках Пеннинга. Они похожи на крошечные ускорители частиц. Внутри них частицы движутся по спирали, пока магнитные и электрические поля удерживают их от столкновения со стенками ловушки.


Однако ловушки Пеннинга не работают для нейтральных частиц вроде антиводорода. Поскольку у них нет заряда, эти частицы нельзя ограничить электрическими полями. Они удерживаются в ловушках Иоффе, которые работают, создавая область пространства, где магнитное поле становится больше во всех направлениях. Частицы антивещества застревают в области с самым слабым магнитным полем.

Магнитное поле Земли может выступать в качестве ловушек антивещества. Антипротоны находили в определенных зонах вокруг Земли — радиационных поясах Ван Аллена.

Антиматерия может падать (в прямом смысле слова)

Частицы материи и антиматерии обладают одной массой, но различаются в свойствах вроде электрического заряда и спина. Стандартная модель предсказывает, что гравитация должна одинаково воздействовать на материю и антиматерию, однако это еще предстоит выяснить наверняка. Эксперименты вроде AEGIS, ALPHA и GBAR работают над этим.

Наблюдать за гравитационным эффектом на примере антиматерии не так просто, как смотреть на падающее с дерева яблоко. Эти эксперименты требуют удержания антиматерии в ловушке или замедления ее путем охлаждения до температур чуть выше абсолютного нуля. И поскольку гравитация — самая слабая из фундаментальных сил, физики должны использовать нейтральные частицы антиматерии в этих экспериментах, чтобы предотвратить взаимодействие с более мощной силой электричества.

Антиматерия изучается в замедлителях частиц


Вы слышали об ускорителях частиц, а о замедлителях частиц слышали? В CERN находится машина под названием Antiproton Decelerator, в кольце которого улавливаются и замедляются антипротоны для изучения их свойств и поведения.

В кольцевых ускорителях частиц вроде Большого адронного коллайдера частицы получают энергетический толчок каждый раз, когда завершают круг. Замедлители работают противоположным образом: вместо того чтобы разгонять частицы, их толкают в обратную сторону.

Нейтрино могут быть своими собственными античастицами

Частица материи и ее антиматериальный партнер переносят противоположные заряды, что позволяет легко их различить. Нейтрино, почти безмассовые частицы, которые редко взаимодействуют с материей, не имеют заряда. Ученые считают, что они могут быть майорановскими частицами, гипотетическим классом частиц, которые являются своими собственными античастицами.

Проекты вроде Majorana Demonstrator и EXO-200 направлены на определение того, действительно ли нейтрино являются майорановскими частицами, наблюдая за поведением так называемого безнейтринного двойного бета-распада.

Некоторые радиоактивные ядра распадаются одновременно, испуская два электрона и два нейтрино. Если нейтрино были бы собственными античастицами, они бы аннигилировали после двойного распада, и ученым осталось бы наблюдать только электроны.

Поиск майорановских нейтрино может помочь объяснить, почем существует асимметрия материи-антиматерии. Физики предполагают, что майорановские нейтрино могут быть либо тяжелыми, либо легкими. Легкие существуют в наше время, а тяжелые существовали сразу после Большого Взрыва. Тяжелые майорановские нейтрино распались асимметрично, что привело к появлению крошечного количества вещества, которым наполнилась наша Вселенная.

Антиматерия используется в медицине


PET, ПЭТ (позитронно-эмиссионная топография) использует позитроны для получения изображений тела в высоком разрешении. Излучающие позитроны радиоактивные изотопы (вроде тех, что мы нашли в бананах) крепятся к химическим веществам вроде глюкозы, которая присутствует в теле. Они вводятся в кровоток, где распадаются естественным путем, испуская позитроны. Те, в свою очередь, встречаются с электронами тела и аннигилируют. Аннигиляция производит гамма-лучи, которые используются для построения изображения.

Ученые проекта ACE при CERN изучают антиматерию как потенциального кандидата для лечения рака. Врачи уже выяснили, что могут направлять на опухоли лучи частиц, испускающие свою энергию только после того, как безопасно пройдут через здоровую ткань. Использование антипротонов добавит дополнительный взрыв энергии. Эта техника была признана эффективной для лечения хомяков, только вот на людях пока не испытывалась.

Антиматерия может скрываться в космосе

Один из путей, которым ученые пытаются разрешить проблему асимметрии материи-антиматерии, является поиск антиматерии, оставшейся после Большого Взрыва.


Alpha Magnetic Spectrometer (AMS) — это детектор частиц, который располагается на Международной космической станции и ищет такие частицы. AMS содержит магнитные поля, которые искривляют путь космических частиц и отделяют материю от антиматерии. Его детекторы должны обнаруживать и идентифицировать такие частицы по мере прохождения.

Столкновения космических лучей обычно производят позитроны и антипротоны, но вероятность создания атома антигелия остается чрезвычайно малой из-за гигантского количества энергии, которое требуется для этого процесса. Это означает, что наблюдение хотя бы одного ядрышка антигелия будет мощным доказательством существования гигантского количества антиматерии где-либо еще во Вселенной.

Источник: Hi-News.ru

Что такое антиматерия?

Наш мир устроен так, что для каждого сорта частиц — электронов, протонов, нейтронов, и т.п. — существуют античастицы (позитроны, антипротоны, антинейтроны). Они обладают той же массой и, если они нестабильны, тем же временем полураспада, но противоположными по знаку зарядами и другими числами, характеризующими взаимодействие. У позитронов та же масса, что у электронов, но только положительный заряд. У антипротонов — заряд отрицательный. Антинейтроны электрически нейтральны, так же как и нейтроны, но обладают противоположным барионным числом и состоят из антикварков. Из антипротонов и антинейтронов можно собрать антиядро. Добавив позитронов, мы создадим антиатомы, а накопив их — получим антивещество. Это всё и есть антиматерия.


И тут сразу есть несколько любопытных тонкостей, про которые стоит рассказать. Прежде всего, само по себе существование античастиц — это огромный триумф теоретической физики. Эта неочевидная, а для некоторых даже шокирующая идея была выведена Полем Дираком теоретически и поначалу воспринималась в штыки. Более того, даже после открытия позитронов многие все равно сомневались в существовании антипротонов. Во-первых, говорили они, Дирак придумал свою теорию для описания электрона, и не факт, что для протона она сработает. Вот, например, магнитный момент протона в несколько раз отличается от предсказания теории Дирака. Во-вторых, следы антипротонов долго искали в космических лучах, и что-то ничего не нашлось. В-третьих, они утверждали, — буквально повторяя наши слова, — что если есть антипротоны, тогда должны существовать и антиатомы, антизвезды и антигалактики, и мы бы обязательно их заметили по грандиозным космическим взрывам. Раз мы этого не видим, то наверно потому, что антивещества не бывает. Поэтому экспериментальное открытие антипротона в 1955 году на только что запущенном ускорителе Беватрон стало достаточно нетривиальным результатом, отмеченным Нобелевской премией по физике за 1959 год. В 1956 году на том же ускорителе был открыт и антинейтрон. Рассказ про эти поиски, сомнения, и достижения можно найти в многочисленных исторических очерках, например, вот в этом докладе или в недавней книге Франка Клоуза Antimatter.


Впрочем, надо отдельно сказать, что здравое сомнение в чисто теоретических утверждениях всегда полезно. Например, утверждение, что античастицы имеют ту же массу, что и частицы — это тоже теоретически полученный результат, он следует из очень важной CPT-теоремы. Да, на этом утверждении построена современная, многократно проверенная на опыте физика микромира. Но всё равно это равенство полезно проверять экспериментально: кто знает, может быть так мы нащупаем границы применимости теории.

Другая особенность: не все силы микромира относятся одинаково к частицам и античастицам. Для электромагнитных и сильных взаимодействий разницы между ними нет, для слабых — есть. Из-за этого различаются некоторые тонкие детали взаимодействий частиц и античастиц, например, вероятности распада частицы A на набор частиц B и анти-A на набор анти-B (чуть подробнее про различия см. в подборке Павла Пахова). Эта особенность возникает потому, что слабые взаимодействия нарушают CP-симметрию нашего мира. А вот почему так получается — это одна из загадок элементарных частиц, и она требует выхода за пределы известного.

А вот еще одна тонкость: у некоторых частиц так мало характеристик, что античастицы и частицы вообще не отличаются друг от друга. Такие частицы называются истинно нейтральными.


о фотон, бозон Хиггса, нейтральные мезоны, состоящие из кварков и антикварков одинакового сорта. А вот с нейтрино ситуация пока непонятная: может быть, они истинно нейтральные (майорановские), а может — нет. Это имеет важнейшее значение для теории, описывающей массы и взаимодействия нейтрино. Ответ на этот вопрос реально станет крупным шагом вперед, потому что поможет разобраться с утройством нашего мира. Эксперимент пока ничего однозначного на этот счет не сказал. Но экспериментальная программа по нейтринным исследованиям настолько мощная, экспериментов ставится так много, что физики постепенно приближаются к разгадке.

Где она, эта антиматерия?

Античастица при встрече со своей частицей аннигилирует: обе частицы исчезают и превращаются в набор фотонов или более легких частиц. Вся энергия покоя превращается в энергию этого микровзрыва. Это самое эффективное превращение массы в тепловую энергию, в сотни раз превосходящее по эффективности ядерный взрыв. Но никаких грандиозных природных взрывов мы вокруг себя не видим; антиматерии в заметных количествах в природе нет. Однако отдельные античастицы вполне могут рождаться в разнообразных природных процессах.

Проще всего рождать позитроны. Самый простой вариант — радиоактивность, распады некоторых ядер за счет положительной бета-радиоактивности. Например, в экспериментах в качестве источника позитронов часто используется изотоп натрия-22 с периодом полураспада два с половиной года. Другой, довольно неожиданный природный источник — грозовые разряды, во время которых иногда детектируются вспышки гамма-излучения от аннигиляции позитронов, а это значит, что позитроны там как-то родились.


Антипротоны и другие античастицы рождать труднее: энергии радиоактивного распада для этого не хватает. В природе они рождаются под действием космических лучей высоких энергий: космический протон, столкнувшись с какой-то молекулой в верхних слоях атмосферы, порождает потоки частиц и античастиц. Однако это происходит там, наверху, до земли антипроторы почти не долетают (о чем не знали те, кто в 40-х годах искал антипротоны в космических лучах), да и в лабораторию этот источник антипротонов не принесешь.

Во всех физических экспериментах антипротоны производят «грубой силой»: берут пучок протонов большой энергии, направляют его на мишень, и сортируют «адронные ошметки», которые в больших количествах рождаются в этом столкновении. Сортированные антипротоны выводят в виде пучка, а дальше либо разгоняют их до больших энергий для того, чтобы сталкивать с протонами (так работал, например, американский коллайдер Тэватрон), либо, наоборот, замедляют их и используют для более тонких измерений.

В ЦЕРНе, который может по праву гордиться долгой историей исследований антивещества, работает специальный «ускоритель» AD, «Антипротонный замедлитель», который как раз и занимается этой задачей. Он берет пучок антипротонов, охлаждает их (т.е. притормаживает), и дальше распределяет поток медленных антипротонов по нескольким специальным экспериментам. Кстати, если хотите посмотреть на состояние AD в реальном времени, то церновские онлайн-мониторы это позволяют.

Синтезировать антиатомы, даже простейшие, атомы антиводорода, уже совсем трудно. В природе они вообще не возникают — нет подходящих условий. Даже в лаборатории требуется преодолеть множество технических трудностей, прежде чем антипротоны соизволят соединиться с позитронами. Проблема в том, что антипротоны и позитроны, вылетающих из источников, все еще слишком горячие; они просто столкнутся друг с другом и разлетятся, а не образуются антиатом. Физики эти трудности всё же преодолевают, но довольно хитрыми методами (почитайте, как это делается в одном из церновских экспериментов ASACUSA).

Что известно про антиядра?

Все антиатомные достижения человечества относятся только к антиводороду. Антиатомы других элементов до сих пор не синтезированы в лаборатории и не наблюдались в природе. Причина простая: антиядра создавать еще труднее, чем антипротоны.

Единственный известный нам способ создавать антиядра — это сталкивать тяжелые ядра больших энергий и смотреть, что там получается. Если энергия столкновений велика, в нем родятся и разлетятся во все стороны тысячи частиц, в том числе, антипротоны и антинейтроны. Антипротоны и антинейтроны, случайно вылетевшие в одном направлении, могут объединиться друг с другом — получится антиядро.

Метод простой, но не слишком неэффективный: вероятность синтезировать ядро таким способом резко падает при увеличении числа нуклонов. Легчайшие антиядра, антидейтроны, впервые наблюдались ровно полвека назад. Антигелий-3 увидели в 1971 году. Известен также антитритон и антигелий-4, причем последний был открыт совсем недавно, в 2011 году. Более тяжелые антиядра до сих пор не наблюдались.

К сожалению, антиатомов таким способом не сделаешь. Антиядра не только рождаются редко, но и обладают слишком большой энергией и вылетают во все стороны. Пытаться их отловить на коллайдере, чтобы затем отвести по специальному каналу и охладить, нереально.

Впрочем, иногда достаточно внимательно отследить антиядра на лету, чтобы получить кое-какую интересную информацию об антиядерных силах, действующих между антинуклонами. Самая простая вещь — это аккуратно измерить массу антиядер, сравнить ее с суммой масс антипротонов и антинейтронов, и вычислить дефект масс, т.е. энергию связи ядра. Это недавно проделал эксперимент ALICE, работающий на Большом адронном коллайдере; энергия связи для антидейтрона и антигелия-3 в пределах погрешности совпала с обычными ядрами.

Другой, более тонкий эффект изучил эксперимент STAR на американском коллайдере тяжелых ионов RHIC. Он измерил угловое распределение рожденных антипротонов и выяснил, как оно меняется, когда два антипротона вылетают в очень близком направлении. Корреляции между антипротонами позволили впервые измерить свойства действующих между ними «антиядерных» сил (длину рассеяния и эффективный радиус взаимодействия); они совпали с тем, что известно про взаимодействие протонов.

Есть ли антиматерия в космосе?

Когда Поль Дирак вывел из своей теории существование позитронов, он вполне допускал, что где-то в космосе могут существовать настоящие антимиры. Сейчас мы знаем, что звезд, планет, галактик из антивещества в видимой части Вселенной нет. Дело даже не в том дело, что не видно аннигиляционных взрывов; просто совершенно невообразимо, как они вообще могли бы образоваться и дожить до настоящего времени в постоянно эволюционирующей вселенной.

Но вот вопрос «как так получилось» — это еще одна большущая загадка современной физики; на научном языке она называется проблемой бариогенеза. Согласно космологической картине мира, в самой ранней вселенной частиц и античастиц было поровну. Затем, в силу нарушения CP-симметрии и барионного числа, в динамично развивающейся вселенной должен был появиться небольшой, на уровне одной миллиардной, избыток материи над антиматерией. При остывании вселенной все античастицы проаннингилировали с частицами, выжил лишь этот избыток вещества, который и породил ту вселенную, которую мы наблюдаем. Именно из-за него в ней осталось хоть что-то интересное, именно благодаря нему мы вообще существуем. Как именно возникла эта асимметрия — неизвестно. Теорий существует много, но какая из них верна — неизвестно. Ясно лишь, что это точно должна быть какая-то Новая физика, теория, выходящая за пределы Стандартной модели, за границы экспериментально проверенного.

Хоть планет и звезд из антивещества нет, антиматерия в космосе все же присутствует. Потоки позитронов и антипротонов разных энергий регистрируются спутниковыми обсерваториями космических лучей, такими как PAMELA, Fermi, AMS-02. Тот факт, что позитроны и антипротоны прилетают к нам из космоса, означает, что они где-то там рождаются. Высокоэнергетические процессы, которые могут их породить, в принципе известны: это сильно замагниченные окрестности нейтронных звезд, разные взрывы, ускорение космических лучей на фронтах ударных волн в межзвездной среде, и т.п. Вопрос в том, могут ли они объяснить все наблюдаемые свойства потока космических античастиц. Если окажется, что нет, это будет свидетельством в пользу того, что некоторая их доля возникает при распаде или аннигиляции частиц темной материи.

Здесь тоже есть своя загадка. В 2008 году обсерватория PAMELA обнаружила подозрительно большое количество позитронов больших энергий по сравнению с тем, что предсказывало теоретическое моделирование. Этот результаты был надавно подтвержден установкой AMS-02 — одним из модулей Международной Космической Станции и вообще самым крупным детектором элементарных частиц, запущенным в космос (и собранным догадайтесь где? — правильно, в ЦЕРНе). Этот избыток позитронов будоражит ум теоретиков — ведь ответственным за него могут оказаться не «скучные» астрофизические объекты, а тяжелые частицы темной материи, которые распадаются или аннигилируют в электроны и позитроны. Ясности тут пока нет, но установка AMS-02, а также многие критически настроенные физики, очень тщательно изучают это явление.

С антипротонами тоже ситуация неясная. В апреле этого года AMS-02 на специальной научной конференции представил предварительные результаты нового цикла исследований. Главной изюминкой доклада стало утверждение, что AMS-02 видит слишком много антипротонов высокой энергии — и это тоже может быть намеком на распады частиц темной материи. Впрочем, другие физики с таким бодрым выводом не согласны. Сейчас считается, что антипротонные данные AMS-02, с некоторой натяжкой, могут быть объяснены и обычными астрофизическими источниками. Так или иначе, все с нетерпением ждут новых позитронных и антипротонных данных AMS-02.

AMS-02 зарегистрировала уже миллионы позитронов и четверть миллиона антипротонов. Но у создателей этой установки есть светлая мечта — поймать хоть одно антиядро. Вот это будет настоящая сенсация — совершенно невероятно, чтобы антиядра родились где-то в космосе и долетели бы до нас. Пока что ни одного такого случая не обнаружено, но набор данных продолжается, и кто знает, какие сюрпризы готовит нам природа.

Антиматерия — антигравитирует? Как она вообще чувствует гравитацию?

Если опираться только на экспериментально проверенную физику и не вдаваться в экзотические, никак пока не подтвержденные теории, то гравитация должна действовать на антиматерию точно так же, как на материю. Никакой антигравитации для антиматерии не ожидается. Если же позволить себе заглянуть чуть дальше, за пределы известного, то чисто теоретически возможны варианты, когда в нагрузку к обычной универсальной гравитационной силе существует нечто добавочное, которое по-разному действует на вещество и антивещество. Какой бы ни призрачной казалась эта возможность, ее требуется проверить экспериментально, а для этого надо поставить опыты по проверке того, как антиматерия чувствует земное притяжение.

Долгое время это толком не удавалось сделать по той простой причине, что для этого надо создать отдельные атомы антивещества, поймать их в ловушку, и провести с ними эксперименты. Сейчас это делать научились, так что долгожданная проверка уже не за горами.

Главный поставщик результатов — всё тот же ЦЕРН со своей обширной программой по изучению антивещества. Некоторые из этих экспериментов уже косвенно проверили, что с гравитацией у антиматерии всё в порядке. Например, недавний эксперимент BASE обнаружил, что (инертная) масса антипротона совпадает с массой протона с очень высокой точностью. Если бы гравитация действовала на антипротоны как-то иначе, физики заметили бы разницу — ведь сравнение производилось в одной и той же установке и в одинаковых условиях. Результат этого эксперимента: действие гравитации на антипротоны совпадает с действием на протоны с точностью лучше одной миллионной.

Впрочем, это измерение — косвенное. Для пущей убедительность хочется поставить прямой эксперимент: взять несколько атомов антивещества, уронить их и посмотреть, как они будут падать в поле тяжести. Такие эксперименты тоже проводятся или готовятся в ЦЕРНе. Первая попытка была не слишком впечатляющей. В 2013 году эксперимент ALPHA, — который к тому времени уже научился удерживать облачко антиводорода в своей ловушке, — попробовал определить, куда будут падать антиатомы, если ловушку отключают. Увы, из-за низкой чувствительности эксперимента однозначного ответа получить не удалось: времени прошло слишком мало, антиатомы метались в ловушке туда-сюда, и вспышки аннигиляции случались то здесь, то там.

Ситуацию обещают кардинально улучшить два других церновских эксперимента: GBAR и AEGIS. Оба эти эксперимента проверят разными способами, как падает в поле тяжести облачко сверххолодного антиводорода. Их ожидаемая точность по измерению ускорения свободного падения для антивещества — около 1%. Обе установки сейчас находятся в стадии сборки и отладки, а основные исследования начнутся в 2017 году, когда антипротонный замедлитель AD будет дополнен новым накопительным кольцом ELENA.

Что случится, если позитрон попадет в вещество?

Если вы дочитали до этого места, то уже прекрасно знаете, что как только частица антивещества попадает в обычное вещество, происходит аннигиляция: частицы и античастица исчезают и превращаются в излучение. Но насколько быстро это происходит? Представим себе позитрон, который прилетел из вакуума и вошел в твердое вещество. Проаннигилирует ли он при соприкосновении с первым же атомом? Вовсе не обязательно! Аннилигяция электрона и позитрона — процесс не мгновенный; он требует длительного по атомным масштабам времени. Поэтому позитрон успевает прожить в веществе яркую и насыщенную нетривиальными событиями жизнь.

Во-первых, позитрон может подхватить бесхозный электрон и образовать связанное состояние — позитроний (Ps). При подходящей ориентации спинов, позитроний может жить десятки наносекунд до аннигиляции. Находясь в сплошном веществе, он успеет за это время столкнуться с атомами миллионы раз, ведь тепловая скорость позитрония при комнатной температуре — около 25 км/сек.

Во-вторых, дрейфуя в веществе, позитроний может выйти на поверхность и залипнуть там — это позитронный (а точнее, позитрониевый) аналог адсорбции атомов. При комнатной температуре он не сидит на одном месте, а активно путешествует по поверхности. И если это не внешняя поверхность, а пора нанометрового размера, то позитроний оказывается пойманным в ней на длительное время.

Дальше — больше. В стандартном материале для таких экспериментов, пористом кварце, поры не изолированы, а объединены наноканалами в общую сеть. Тепленький позитроний, ползая по поверхности, успеет обследовать сотни пор. А поскольку позитрониев в таких экспериментах образуется много и почти все они вылезают в поры, то рано или поздно они натыкаются друг на друга и, взаимодействуя, иногда образуют самые настоящие молекулы — молекулярный позитроний, Ps2. Дальше уже можно изучать, как ведет себя позитрониевый газ, какие у позитрония есть возбужденые состояния и т.д. И не думайте, что это чисто теоретические рассуждения; все перечисленные эффекты уже проверены и изучены экспериментально.

Источник: nplus1.ru

Все, с чем мы соприкасаемся в своей жизни, состоит из материи. Чашка, которую мы держим в руке, состоит из молекул, молекулы — из атомов, атомы, вопреки своему названию («атом» в переводе с греческого означает «неделимый»), — из электронов, протонов и нейтронов. Два последних ученые называют «барионами». Их можно делить дальше, на кварки, а может быть, и еще дальше, но пока на этом остановимся. Все вместе они образуют вещество.

 

Как выглядит антивещество

 

Как знают все наши читатели, у вещества есть антипод — антивещество. При соприкосновении они взаимоуничтожаются с выделением очень большой энергии — аннигилируют. По подсчетам физиков, кусок антивещества размером с кирпич, попав на Землю, может вызвать эффект сродни взрыву водородной бомбы. Во всем остальном антиподы схожи: у антивещества есть масса, на него в полной мере распространяются законы физики, вот только электрический заряд у него противоположен. У антипротона он отрицателен, а у позитрона (антиэлектрона) — положителен. А еще антивещество практически не встречается в окружающей нас действительности.

 

 

 

Или все-таки оно где-то есть? Ничего невозможного в таком допущении нет, живем же мы на свете, хоть нам и нельзя пожать руку своим антиподам. Вполне возможно, что и они тоже где-то живут.

 

Вероятно, все наблюдаемые на сегодня галактики состоят из обычного вещества. В противном случае их границы были бы зоной практически непрерывной аннигиляции с окружающей материей, ее было бы видно издалека. Земные обсерватории регистрировали бы кванты энергии, образовавшиеся при аннигиляции. Пока этого не происходит.

 

Свидетельством присутствия во Вселенной заметных количеств антивещества могло бы стать обнаружение где-то в космосе (на Земле, ввиду большой плотности вещества, искать явно бесполезно) ядер антигелия. Два антипротона, два антинейтрона. Составляющие такое ядро античастицы регулярно рождаются при столкновениях высокоэнергетичных частиц в земных ускорителях и естественным путем при бомбардировке вещества космическими лучами. Их обнаружение ни о чем нам не говорит. А вот антигелий может образоваться таким же образом, если в одном месте одновременно родятся четыре составляющие его частицы. Это нельзя назвать совсем невозможным, но такое событие во всей Вселенной случается примерно раз в пятнадцать миллиардов лет, что вполне сопоставимо со временем ее существования.

 

Как выглядит антивещество

 

Поэтому обнаружение антигелия вполне может расцениваться если не как привет от антиподов, то как свидетельство того, что где-то в пучинах космоса плавает кусок антивещества приличных размеров. Вот оно оттуда и прилетело.

 

Увы, неоднократные попытки поискать антигелий в верхних слоях земной атмосферы или на подходе к ней пока не принесли успеха. Конечно, это тот случай, когда «отсутствие следов пороха на руках ничего не доказывает». Вполне может быть, что лететь было просто очень далеко (порядка миллиардов световых лет), а попасть в небольшой детектор на маленькой планете еще сложнее. И уж точно, если бы детектор был чувствительнее (и дороже), наши шансы на успех были бы выше.

 

Антизвезды, случись им быть в природе, в ходе термоядерных реакций порождали бы такой же поток антинейтрино, как и обычные звезды — поток их антиподов. Такие же антинейтрино должны образовываться при взрывах антисверхновых. Пока ни то, ни другое не обнаружено, но, надо заметить, что нейтринная астрономия вообще делает первые шаги.

 

Как выглядит антивещество

 

В любом случае пока мы не обладаем достоверной информацией о существовании сколько-нибудь заметных количеств антивещества во Вселенной.

 

Это плохо и хорошо одновременно. Плохо потому, что, по современным представлениям, в первые мгновения после Большого взрыва образовалось и вещество, и антивещество. Впоследствии они аннигилировали, породив реликтовое космическое излучение. Количество фотонов в нем очень велико, оно примерно в миллиард раз превышает количество барионов (т. е. протонов и нейтронов) во Вселенной. Иными словами, когда-то, в начале времен, вещества во Вселенной оказалось на одну миллиардную долю больше, чем антивещества. Потом все «лишнее» исчезло, аннигилировав, а одна миллиардная доля осталась. Получилось то, что в специальной литературе называется барионной асимметрией.

 

Для физиков отсутствие равновесия — это проблема, потому что его надо как-то объяснить. По крайней мере, в случае с предметами, которые во всех иных отношениях ведут себя симметрично.

 

А для нас (включая физиков) это хорошо, поскольку при одинаковых количествах вещества и антивещества произошла бы полная аннигиляция, Вселенная была бы пуста, и задаваться вопросами было бы некому.

 

 

 

Наличие большой космологической проблемы было осознано учеными где-то к середине XX века. Условия, при которых Вселенная становится такой, какой мы ее видим, были сформулированы Андреем Сахаровым в 1967 году и с тех пор являются «общим местом» тематической литературы, по крайней мере, на русском и английском языках. В сильно упрощенном виде они выглядят так.

 

Во-первых, при каких-то условиях, вероятно, существовавших в ранней Вселенной, законы физики все-таки неодинаково работают для вещества и антивещества.

 

Во-вторых, при этом может не сохраняться барионное число, т. е. количество барионов после реакции не равно тому, что было до нее.

 

В-третьих, процесс должен протекать взрывным образом, т. е. быть неравновесным. Это существенно, поскольку в равновесии концентрации веществ стремятся к выравниванию, а нам нужно получить нечто разное.

 

Как выглядит антивещество

 

 

На этом общепризнанная часть объяснения заканчивается, далее и через полвека властвуют гипотезы. Наиболее авторитетная на данный момент связывает произошедшее с электрослабым взаимодействием. Посмотрим на нее поближе.

 

 

 

Для объяснения того, что же все-таки произошло с нашей материей, нам придется напрячь воображение и представить себе, что во Вселенной существует некое поле. О его существовании и свойствах мы пока не знаем ничего, кроме того, что оно связано с распределением вещества и антивещества в пространстве и до некоторой степени похоже на привычную нам температуру, в частности может принимать большие и меньшие значения, до определенного уровня, который можно уподобить температуре кипения.

 

Первоначально материя во Вселенной находится в перемешанном состоянии. Вокруг очень «горячо» — кавычки здесь можно было бы и опустить, поскольку обычная температура тоже очень высока, но мы-то говорим о ее воображаемом аналоге. Этот аналог «кипит» — значение максимально.

 

По мере расширения пространства из первоначального «пара» начинают конденсироваться «капли», в которых «попрохладнее». Пока все выглядит совершенно так же, как с водой — если перегретый пар находится в сосуде, объем которого достаточно быстро увеличивается, то происходит адиабатическое охлаждение. Если оно достаточно сильно, то часть воды выпадет в виде жидкости.

 

Как выглядит антивещество

 

Нечто похожее происходит и с материей в космосе. По мере роста объема Вселенной количество и размер «капель» увеличиваются. А вот дальше начинается то, что не имеет аналогий в привычном нам мире.

 

Условия проникновения в «капли» частиц и античастиц оказываются неодинаковыми, частицам сделать это немножко проще. В результате первоначальное равенство концентраций нарушается, в сконденсировавшейся «жидкости» оказывается немножко больше вещества, а в «кипящей фазе» — его антипода. Совокупное число барионов при этом пока не меняется.

 

А дальше, в «кипящей фазе», начинают действовать квантовые эффекты взаимодействующих электрослабых полей, которые вроде бы не должны изменять количество барионов, но в действительности выравнивают количество частиц и античастиц. Строго говоря, этот процесс идет и в «каплях» тоже, но там он менее эффективен. Таким образом, общее количество античастиц уменьшается. Это написано коротко и, конечно, очень упрощенно, на самом деле все куда интереснее, но вдаваться в теорию глубоко мы сейчас не станем.

 

Ключевыми для объяснения ситуации оказываются два эффекта. Квантовая аномалия электрослабых взаимодействий — это наблюденный факт, он обнаружен еще в 1976 году. Разница в вероятности проникновения частиц в зону конденсации — факт расчетный и, следовательно, гипотетический. Само поле, которое «кипит», а затем остывает, пока не обнаружено. При формировании теории предполагалось, что это — поле Хиггса, но после открытия знаменитого бозона выяснилось, что оно тут не при чем. Вполне возможно, что его открытие еще ждет своего часа. А может быть, и нет — и тогда космологам придется изобретать другие объяснения. Вселенная ждала этого пятнадцать миллиардов лет, может подождать и еще.

 

Источник: naked-science.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.