Аморфные вещества это химия


Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.


При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

comments powered by HyperComments

Источник: SpaceGid.com

При понижении температуры жидкость может замораживаться без упорядочения структуры. Вещество при этом уже находиться в твёрдом состоянии, но структура его приближается к структуре жидкости – такие вещества называются аморфными(от греческого "аморфос" — бесформенный)


Свойства аморфных тел:

§ Главный признак — отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

§ Для аморфного состояния характерно наличие только ближнего порядка. Структуры аморфных веществ напоминают жидкости, однако обладают гораздо меньшей текучестью.

§ Аморфное состояние обычно неустойчиво. Аморфное состояние обладает некоторым избыточным запасом внутренней энергии, поэтому самопроизвольно переходит в кристаллическое состояние как более устойчивое. Из-за этого большинство веществ в обычных условиях всё же находятся в кристаллическом состоянии.

§ Под действием механических нагрузок или при изменении температуры аморфные тела могут закристаллизоваться.

§ Текучесть (т.к. по некоторым теориям аморфные тела рассматриваются как переохлаждённые жидкости). Это свойство можно обнаружить при внимательном исследовании оконных стёкол, очень старых домов. Оконные стёкла в таких домах внизу несколько толще, так как долгое время стекло постоянно перетекало вниз под влиянием силы тяжести. Сравнительно недавно научились получать в стеклообразном состоянии металлы. Для этого металл расплавляют, а затем за очень короткое время охлаждают. Вследствие быстрого охлаждения в металле не возникает правильной кристаллической структуры, он становиться стеклообразным. Металлостёкла отличаются высокой твёрдостью, износоустойчивостью и коррозийной стойкостью.


§ Аморфные тела изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления.

§ У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Например: интервал температуры плавления силикатных стёкол составляет приблизительно 200°С.

 

Физическая модель аморфного состояния до сих пор не создана.

Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом.

Примеры аморфных веществ: естественные: мёд, янтарь, канифоль, смола, битум;

искусственные: стекло, многие оксиды, гидроксиды.

 

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.

В ряде случаев одно и тоже вещество может находиться в различных состояниях, например: SiO2 существует в стеклообразном и в нескольких кристаллических состояниях; также S-сера, есть аморфная сера и две кристаллические модификации (ромбическая и моноклинная).

Источник: studopedia.su

Необыкновенные свойства аморфных веществ


Во время расщепления в аморфных телах не образуются грани. Частицы совершенно беспорядочны и находятся на близком расстоянии друг к другу. Они могут быть как сильно густыми, так и вязкими. Как на них влияют внешние воздействия? Под влиянием различных температур тела становятся текучими, словно жидкости, и одновременно довольно упругими. В случае, когда внешнее воздействие длится недолго, вещества аморфного строения могут при мощном ударе расколоться на кусочки. Длительное влияние извне приводит к тому, что они просто-напросто текут.

Попробуйте провести дома небольшой эксперимент с применением смолы. Положите ее на твердую поверхность, и вы заметите, что она начинает плавно растекаться. Правильно, ведь это аморфное вещество! Скорость зависит от показателей температуры. Если она будет сильно высокой, то растекаться смола начнет заметно быстрее.

Что еще характерно для таких тел? Они могут принимать любую форму. Если аморфные вещества в виде маленьких частиц поместить в сосуд, например, в кувшин, то они также примут форму сосуда. Еще они являются изотропными, то есть проявляют одинаковые физические свойства по всем направлениям.

Плавление и переход в другие состояния. Металл и стекло

Аморфное состояние вещества не подразумевает поддержания какой-либо определенной температуры. При  низких показателях тела застывают, при высоких — плавятся. Кстати, от этого зависит и степень вязкости таких веществ. Низкая температура способствует пониженной вязкости, высокая, наоборот, ее повышает.


Для веществ аморфного типа можно выделить еще одну особенность — переход в кристаллическое состояние, причем самопроизвольный. Почему так происходит? Внутренней энергии в кристаллическом теле намного меньше, чем в аморфном. Мы это можем заметить на примере стеклянной продукции — со временем стекла становятся мутными.

Металлическое стекло — что же это такое? Металл можно избавить от кристаллической решетки в ходе плавления, то есть сделать вещество аморфного строения стеклообразным. Во время застывания при искусственном охлаждении кристаллическая решетка снова образуется. Аморфный металл имеет просто поразительную стойкость к коррозии. Например, сделанный из него кузов автомобиля не нуждался бы в различных покрытиях, так как не подвергался бы самопроизвольному разрушению. Аморфным веществом является такое тело, атомная структура которого обладает невиданной прочностью, а значит, аморфный металл мог бы применяться в совершенно любой промышленной отрасли.

Кристаллическое строение веществ

Чтобы хорошо разбираться в характеристиках металлов и уметь с ними работать, нужно обладать знаниями о кристаллическом строении тех или иных веществ. Производство продукции из металлов и область металлургии не смогли бы получить такое развитие, если бы у людей не было определенных знаний об изменениях в структуре сплавов, технологических приемах и эксплуатационных характеристиках.

Четыре состояния вещества


Общеизвестно, что существует четыре агрегатных состояния: твердое, жидкое, газообразное, плазменное. Твердые аморфные вещества могут быть и кристаллическими. При таком строении может наблюдаться пространственная периодичность в расположении частиц. Эти частицы в кристаллах могут выполнять периодическое движение. Во всех телах, которые мы наблюдаем в газообразном или жидком состоянии, можно заметить движение частиц в виде хаотичного беспорядка. Аморфные твердые вещества (например, металлы в конденсированном состоянии: эбонит, стеклянная продукция, смолы) можно называть жидкостями замороженного типа, потому что у них при изменении формы можно заметить такую характерную черту, как вязкость.

Отличие аморфных тел от газов и жидкостей

Проявления пластичности, упругости, упрочнения при деформации свойственны многим телам. Кристаллические и аморфные вещества в большей степени обладают этими характеристиками, в то время как жидкости и газы не имеют таких свойств. Но зато можно заметить, что они способствуют упругому изменению объема.

Кристаллические и аморфные вещества. Механические и физические свойства

Что собой представляют кристаллические и аморфные вещества? Как уже упоминалось выше, аморфными можно назвать те тела, которые обладают огромным коэффициентом вязкости, и при обыкновенной температуре их текучесть невозможна. А вот высокая температура, наоборот, позволяет, им быть текучими, как жидкость.


Совершенно другими представляются вещества кристаллического типа. Эти твердые тела могут иметь свою температуру плавления, зависящую от внешнего давления. Получение кристаллов возможно, если охладить жидкость. Если не принимать определенных мер, то можно заметить, что в жидком состоянии начинают возникать различные центры кристаллизации. В области, окружающей эти центры, происходит образование твердого вещества. Очень маленькие кристаллики начинают соединяться друг с другом в беспорядочном порядке, и получается так называемый поликристалл. Такое тело является изотропным.

Характеристики веществ

Что определяет физические и механические характеристики тел? Важное значение имеют атомные связи, а также тип кристаллической структуры. Кристаллам ионного типа характерны ионные связи, что означает плавный переход от одних атомов к другим. При этом происходит образование положительно и отрицательно заряженных частиц. Ионную связь мы можем наблюдать на простом примере — такие характеристики свойственны разнообразным оксидам и солям. Еще одна особенность ионных кристаллов — низкая проводимость тепла, но ее показатели могут заметно возрастать при нагревании. В узлах кристаллической решетки можно заметить различные молекулы, которые отличаются крепкой атомной связью.

Множество минералов, которые мы встречаем повсеместно в природе, имеют строение кристаллическое. И аморфное состояние вещества — это тоже природа в чистом виде. Только в этом случае тело представляет собой нечто бесформенное, а вот кристаллы могут принимать формы красивейших многогранников с наличием плоских граней, а также образовывать новые удивительной красоты и чистоты твердые тела.

Что представляют собой кристаллы? Аморфно-кристаллическая структура


Форма таких тел постоянна для определенного соединения. Например, берилл всегда выглядит как шестигранная призма. Проведите небольшой эксперимент. Возьмите небольшой кристаллик поваренной соли кубической формы (шар) и положите его в специальный раствор как можно более насыщенный той же поваренной соли. Со временем вы заметите, что этот тело осталось неизменным — оно снова приобрело форму куба или шара, которая присуща именно кристаллам поваренной соли.

Аморфно-кристаллические вещества — это такие тела, которые могут содержать в себе как аморфные, так и кристаллические фазы. Что влияет на свойства материалов такой структуры? Главным образом различное соотношение объемов и разное расположение по отношению друг к другу. Распространенными примерами таких веществ являются материалы из керамики, фарфора, ситаллы. Из таблицы свойств материалов с аморфно-кристаллической структурой становится известно, что фарфор содержит максимальный процент стеклофазы. Показатели колеблются в пределах 40-60-ти процентов. Самое низкое содержание мы увидим на примере каменного литья — меньше 5-ти процентов. При этом более высокое поглощение воды будет у керамической плитки.


Как известно, такие промышленные материалы, как фарфор, керамическая плитка, каменное литье и ситаллы, — это аморфно-кристаллические вещества, потому что содержат стекловидные фазы и одновременно кристаллы в своем составе. При этом стоит отметить, что свойства материалов не зависят от содержания в нем стеклофаз.

Аморфные металлы

Применение аморфных веществ наиболее активно осуществляется в области медицины. Например, быстро охлажденный металл активно используется в хирургии. Благодаря связанным с ним разработкам многие люди получили возможность самостоятельно передвигаться после тяжелых травм. Все дело в том, что вещество аморфной структуры является отличным биоматериалом для имплантации в кости. Полученные специальные винты, пластины, штыри, булавки внедряют при тяжелых переломах. Раньше в хирургии для таких целей применялись сталь и титан. Лишь позже было замечено, что аморфные вещества очень медленно распадаются в организме, а это удивительное свойство дает возможность восстановиться костным тканям. Впоследствии вещество заменяется костью.

Применение веществ аморфного типа в метрологии и точной механике

Точная механика основана именно на точности, а потому так и называется. Особенно важную роль в данной отрасли, равно как и в метрологии, играют сверхточные показатели приборов измерения,  этого позволяет добиться использование в устройствах аморфных тел. Благодаря точным измерениям проводятся лабораторные и научные исследования в институтах в области механики и физики, происходит получение новых препаратов, совершенствование научных знаний.

Полимеры

Еще один пример применения аморфного вещества — это полимеры. Они могут медленно переходить из твердого состояния в жидкость, в то время как кристаллические полимеры характеризуются температурой плавления, а не температурой размягчения. Каково физическое состояние аморфных полимеров? Если предоставить этим веществам низкую температуру, можно заметить, что они будут находиться в стеклообразном состоянии и проявлять свойства твердых тел. Постепенное нагревание способствует тому, что полимеры начинают переходить в состояние повышенной эластичности.

Аморфные вещества, примеры которых мы сейчас приводили, интенсивно используются в промышленности. Сверхэластичное состояние позволяет полимерам как угодно деформироваться, а достигается такое состояние благодаря повышенной гибкости звеньев и молекул. Дальнейшее повышение показателей температуры приводит к тому, что полимер приобретает еще более эластичные свойства. Он начинает переходить в особое текучее и вязкое состояние.

Если оставить ситуацию без контроля и не воспрепятствовать дальнейшему повышению температуры, полимер подвергнется деструкции, то есть разрушению. Вязкое состояние показывает, что все звенья макромолекулы очень подвижны. Когда течет молекула полимера, звенья не только выпрямляются, но и еще и сильно сближаются друг с другом. Межмолекулярное воздействие превращает полимер в жесткое вещество (резину). Такой процесс называют механическим стеклованием. Полученное вещество используют для производства пленок и волокон.

На основе полимеров можно получить полиамиды, полиакрилонитрилы. Чтобы изготовить полимерную пленку, нужно продавить полимеры через фильеры, которые имеют щелевидное отверстие, и нанести на ленту. Таким образом изготавливаются упаковочные материалы и основы для магнитных лент. К полимерам относятся также различные лаки (образующие пенку в органическом растворителе), клеи и другие скрепляющие материалы, композиты (полимерная основа с наполнителем), пластмассы.

Источник: FB.ru

Кристаллическими называют тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными — в которых атомы и молекулы расположены беспорядочно. С энергетической стороны имеет место принципиальное различие между кристаллическими и аморфными телами, состоящее в том, что процесс плавления и затвердевания кристаллических тел сопровождается определенным тепловым эффектом. У аморфных же тел этого теплового эффекта нет.

Характерные свойства кристаллических веществ:

а) однородность строения (однородностью кристалла назовём одинаковость узора взаимного расположения атомов во всех частях его объема);

б) анизотропия (в изотропных телах все свойства — теплопроводность, электропроводность, твёрдость царапания и т.д. — одинаковы в любом направлении, а в анизотропных телах все свойства неодинаковы в непараллельных направлениях, т.е., например, в одном направлении электрический ток проходит быстрее, в другом — медленнее);

в) симметричность.

Различие в строении кристаллических и аморфных веществ определяет и различие в их свойствах. Так, аморфные вещества, обладая большим запасом свободной энергии, химически более активны, чем кристаллические вещества такого же состава.

Стекло или стеклообразным сплавом называют неорганический или органический продукт плавления, охлажденный до твердого состояния без кристаллизации. Другими словами, стекло – это переохлажденная жидкость.

В аморфных и стеклообразных сплавах при отсутствии дальнего порядка сохраняется ближний порядок – группировки атомных частиц, отражающих химический состав вещества. Такие группировки принято называть структурными единицами. Характерным свойством стеклообразных материалов является их прозрачность в различных областях спектра. Существуют разные разновидности стекол.

Оксидные стекла (например, оконное стекло) получены на основе Na2O СаО 6SiО+ силикаты калия, свинца (хрусталь) + оксид бора (термостойкое химическое стекло), прозрачны в видимой области спектра. Непрозрачны для ультрафиолетовых лучей.

Халькогенидные стекла (на основе халькогенов – серы, селена, теллура), прозрачные в видимой и ИК-областях спектра. Из них изготавливают приборы ночного видения, ключевые элементы памяти, используют для записи информации (в аппаратах для ксерокопирования), в голографии, для передачи изображения на дальние расстояния и в космическом пространстве, используют в качестве волноводов — волоконно-оптический кабель, термометров сопротивления для атомных реакторов.

Фторцирконатные стекла изготавливают на основе фторидов гафния, циркония с добавками других фторидов, имеют большой диапазон прозрачности — от УФ до ближней ИК области спектра.

Фосфатные стекла изготавливают на основе ортофосфата кальция – прозрачны в видимой и УФ-областях спектра (темные стекла на автомобилях).

Аллотропия — существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам — так называемых аллотропных (или аллотропических) модификаций или форм.

Явление аллотропии обусловлено либо различным составом молекул простого вещества (аллотропия состава), либо способом размещения атомов или молекул в кристаллической решётке (аллотропия формы). Если какой-либо элемент может существовать в двух или нескольких твердых формах (кристаллических либо аморфных), то считается, что он проявляет аллотропию. Различные формы одного элемента называются аллотропами. Аллотропы существуют приблизительно у половины всех элементов.

Например, углерод существует в виде алмаза либо графита. Сера существует в двух кристаллических формах-ромбической и моноклинной-в зависимости от температуры. Обе ее кристаллические формы являются примерами молекулярных кристаллов. Молекулы в них представляют собой гофрированные циклы, в каждом из которых содержится по восемь ковалентно связанных атомов серы . Твердая сера может существовать еще в третьей аллотропной форме-как пластическая сера. Эта форма серы неустойчива. Она состоит из длинных цепочек атомов серы, которые при комнатной температуре разрушаются и снова образуют молекулы S8, кристаллизующиеся в ромбическую решетку.

Фосфор может существовать в трех аллотропных формах. Наиболее устойчивая из них-красный фосфор. Красный фосфор имеет каркасную кристаллическую структуру, в которой каждый атом ковалентно связан с тремя другими атомами фосфора. Белый фосфор представляет собой молекулярный кристалл. Каждая его молекула содержит четыре атома фосфора, ковалентно связанных в тетраэдрическую структуру. Третий аллотроп — черный фосфор-образуется только при высоких давлениях. Он существует в виде макромолекулярной слоистой структуры.

Полиморфизм это исключительное явление, присущее только твёрдому агрегатному состоянию вещества, в частности, веществам кристаллической структуры.

Суть этого явления заключается в том, что под влиянием тех или иных процессов некоторые вещества способны изменять свою кристаллическую форму при сохранении химической природы, т.е. химического состава и молекулярного строения.

Это явление наблюдается как у элементов (например, углерода, серы, кремния, железа и т.д.), так и у соединений (например, льда, кремнезёма, рутила, углекислого кальция и т.д.).

С физической точки зрения превращение кристаллического вещества из одной формы в другую обуславливается внутренней перегруппировкой молекул, которая ведёт к изменению его кристаллической структуры и свойств. Так как перемещение молекул в твёрдом теле возможно только при условии сообщения им некоторой подвижности, то процесс перехода вещества из одной модификации в другую осуществляется под действием двух факторов: давления и температуры. Из этого следует, что каждая модификация существует при строго определенных условиях (параметрах), и совместное их существование одновременно невозможно, кроме как в точке пересечения кривых упругости их паров и температур, т. е. в точке превращения.

Фуллерены это недавно открытая форма углерода, отличная от известных ранее графита и алмаза.

Наиболее распространенным среди фуллеренов является фуллерен С60, который представляет из себя молекулу из 60 атомов углерода, образующих замкнутую сферическую поверхность, составленную из правильных шести- и пятиугольников, — молекулярный аналог европейского футбольного мяча. Фуллерены — аллотропные молекулярные формы углерода, в к-рых атомы расположены в вершинах правильных шести- и пятиугольников, покрывающих поверхность сферы или сфероида. Такие молекулы могут содержать 28, 32, 50, 60, 70, 76 и т. д. атомов С.

Главной особенностью фуллеренов является их повышенная реакционная активность. Они легко захватывают атомы других веществ и образуют материалы с принципиально новыми свойствами. На их основе возникла новая стереохимия углеродов, позволяющая целенаправленно создавать новые органические молекулы и, следовательно, вещества с заданными формами и свойствами. Фуллерены могут быть использованы как “нанокирпичики” для конструирования материалов с заданными параметрами.

Перечень основных областей применения фуллеренов:

Новые классы сверхпроводников, полупроводников, магнетиков, сегнетоэлектриков, нелинейных Новые фуллереновые технологии синтеза алмазов и алмазоподобных соединений сверхвысокой твердости.

Новые классы полимеров с заданными механическими, оптическими, электрическими, магнитными свойствами для записи и хранения информации.
Новые типы катализаторов и сенсоров для определения состава жидких и газовых сред.
Новые классы антифрикционных покрытий и смазок, в том числе, на основе фторсодержащих соединений фуллеренов. Новые виды топлив и добавок к топливам. Капсулы для безопасного захоронения радиоактивных отходов. Новые классы соединений для фармакологии и медицины, в том числе, противовирусные и нейротропные препараты, сорбенты для гемосорбции.

Фуллерены — это «химически стабильные замкнутые поверхностные структуры углерода, в которых атомы углерода расположены в вершинах правильных шестиугольников или пятиугольников, регулярным образом покрывающих поверхность сферы или сфероида».

Химическая термодинамика – наука, изучающая условия устойчивости систем и законы. В химической термодинамике изучается применение законов термодинамики к химическим и физико-химическим явлениям.

В ней рассматриваются главным образом:

1) тепловые балансы процессов, включая тепловые эффекты физических и химических процессов;

2) фазовые равновесия для индивидуальных веществ и смесей;

3) химическое равновесие.
Аморфные вещества это химия

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

— Реакция должна протекать либо при постоянном объёме Q(изохорный процесс), либо при постоянном давлении Q(изобарный процесс).

— В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моль вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции: С(тв) + 2H2(г) = CH4(г) + 74.9 кДж/моль.

Реакции, при которых теплота выделяется (энтальпия уменьшается), называются экзотермическими. Реакции, при которых теплота поглощается (энтальпия растет), называются эндотермическими. Обычно экзотермическими являются те реакции, при которых продукты обладают более прочными химическими связями, чем исходные вещества, а эндотермические — наоборот.

уравнения химических реакций с указанием теплового эффекта называют термохимическими уравнениями. Помимо теплового эффекта, в термохимических уравнениях часто указывается также фазовое состояние и полиморфная модификация веществ.

Если имеется несколько реакций, итоговый тепловой эффект рассчитывают по закону Гесса.

Источник: studopedia.ru

Структура аморфных тел

В телах, находящихся в аморфном состоянии, отсутствует четкий порядок расположения атомов. Существует только, так называемый ближний порядок, когда ближайшие атомы располагаются относительно упорядоченно. По своей структуре аморфные вещества похожи на жидкости.

Внутреннее строение (решетка) кристаллического твердого тела и структура аморфного тела

Рис. 1. Внутреннее строение (решетка) кристаллического твердого тела и структура аморфного тела.

Аморфное состояние вещества, в отличие от кристаллического, не является устойчивым. По прошествии некоторого времени аморфное вещество постепенно переходит в кристаллическое. Правда, это время измеряется годами и десятилетиями.

Примеры аморфных тел

Аморфными являются огромное количество веществ. Вот только некоторые, хорошо известные вещества: парафин, воск, сургуч, эбонит, шоколад, канифоль, смола, стекло, плексиглас, каучук, стекло, различные пластмассы.

Рис. 2. Примеры аморфных веществ.

Свойства аморфных тел

В силу своего строения, в отличие от кристаллических тел, аморфные тела обладают следующими основными свойствами:

  • Аморфные вещества изотропны по всем направлениям. Это означает, что все физические свойства (тепловые, электрические, оптические, механические) аморфных тел оказываются абсолютно одинаковы независимо от направления.
  • Текучесть — это пример свойства этих тел, который визуально можно наблюдать в виде потеков на стекле, долго простоявшем в окне.
  • Отсутствие определенной температуры плавления. Фазовый переход в жидкое состояние происходит постепенно, по мере размягчения аморфного тела.
  • В аморфном состоянии вещество обладает большей внутренней энергией, чем в кристалле. Поэтому аморфные тела обладают способностью переходить в кристаллическое состояние. Хорошо известный пример этого явления — помутнение стекла с течением времени. Это помутнение связано с появлением внутри стекла мелких кристалликов, оптические параметры которых иные, чем окружающей их аморфной среды.

Рис. 3. Графики перехода аморфного и кристаллического тел в жидкое состояние.

Источник: obrazovaka.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.