Теория большого взрыва суть теории


Теория большого взрыва кратко. История теории большого взрыва.

Самое раннее упоминание большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном весто слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего млечного пути.

Теория большого взрыва кратко. История теории большого взрыва.В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что вселенная скорее находится в состоянии расширения.


В 1924 году измерения Эдвина хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2, 5-метровый телескоп хукера в обсерватории маунт Вилсон. К 1929 году хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом хаббла.

В 1927 году бельгийский математик, физик и католический священник Жорж леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса вселенной была сосредоточена в одной точке (атоме.

Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея большого взрыва казалась больше теологической, нежели научной. В адрес леметра звучала критика о предвзятости на основе религиозных предубеждений.

Следует отметить, что в то же время существовали и другие теории. Например, модель вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.


После второй мировой войны между сторонниками стационарной модели вселенной (которая фактически была описана астрономом и физиком Фредом хойлом) и сторонниками теории большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно хойл вывел фразу «Большой Взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.

В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории большого взрыва и все чаще ставили под сомнение модель стационарной вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили большой взрыв в качестве лучшей теории происхождения и эволюции вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.

Среди этих решений, например, работа Стивена хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели большого взрыва. В 1981 году физик Алан гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.


В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном оортом), также было необходимо найти объяснение тому, почему вселенная по-прежнему ускоряется.

Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или Cobe), космический телескоп хаббла, Wilkinson Microwave Anisotropy Probe (Wmap) и космическая обсерватория планка, тоже внесло бесценный вклад в исследование вопроса.

Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим Меркам на это потребуется не так уж и много времени.

Доказательства теории большого взрыва красное смещение и Реликтовое излучение. Утомленный свет


Доказательства теории большого взрыва красное смещение и Реликтовое излучение. Утомленный свет

Эдвин Хаббл заметил, что длины волн света далеких галактик смещаются в направлении красной части спектра, если сравнивать со светом, излученным звездными телами поблизости, что говорит об утрате фотонами энергии. «Красное смещение» объясняется в контексте расширения после Большого Взрыва как функция эффекта Доплера. Сторонники моделей стационарной вселенной вместо этого предположили, что фотоны света теряют энергию постепенно по мере движения через космос, переходя к длинным волнам, менее энергетическим в красном конце спектра. Эту теорию впервые предложил Фриц Цвикки в 1929 году.

С утомленным светом связывают целый ряд проблем. Во-первых, нет никакого способа изменить энергию фотона без изменения его импульса, что должно приводить к эффекту размытия, который мы не наблюдаем. Во-вторых, он не объясняет наблюдаемые паттерны излучения света сверхновых, которые прекрасно соотносятся с моделью расширяющейся вселенной и специальной относительности. Наконец, большинство моделей утомленного света базируются на нерасширяющейся вселенной, но это приводит к спектру фонового излучения, который не соответствует нашим наблюдениям. В численном выражении, если бы гипотеза утомленного света была корректной, вся наблюдаемая радиация космического фона должна была бы приходить из источников, которые ближе к нам, чем галактика Андромеды (ближайшая к нам галактика), а все, что за ней, было бы для нас невидимо.


Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?

Чтобы начать, начните.
— Уильям Вордсворт

Большой взрыв – одно из величайших научных достижений XX века. Сложно представить, но году в 1900-м мы считали, что вся Вселенная – всё, что существует – состоит из нашего Млечного пути и звёзд, планет и туманностей внутри него, и всё это подчиняется ньютоновскому закону гравитации.
Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?

 

Как далеко мы продвинулись за столь короткое время! Большинство из нас слышало с ранних лет, что Вселенная возникла из Большого взрыва, и хотя такое название легко запомнить, кто из нас знает, как объяснить это явление детям, задающим о нём вопросы? В конце концов, большинство из нас с трудом его понимает, учитывая, какая это обескураживающая концепция!

Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?Думаю, что её могут постигнуть дети даже 8 лет от роду, и возможно, ещё меньшего возраста. Представьте себе следующее:
Вселенная – это гонка, а Большой взрыв – это стартовый пистолет.
Если бы вы были ребёнком и хотели бы посоревноваться против взрослого, разве было бы честным начинать гонку с той же позиции и пробегать ту же дистанцию?
Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?Конечно, нет. Если бы мы захотели дать вам шанс на выигрыш, мы бы дали вам фору, чтобы соревнование было честнее.
Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?Это не значит, что гонка получилась бы честной на 100%. Если фора будет слишком большой, вы легко победите, а если слишком маленькой – взрослые догонят вас задолго до финиша. Но если мы не знаем, как быстро вы бегаете, и как быстро бегают взрослые, участвующие в гонке, мы знаем, что фора даст вам шанс.


Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?Во Вселенной гонка идёт не пешком, и соревнуетесь не вы и не взрослый соперник, бегущий к финишу. Гонка идёт между всеми крохотными частичками материи – маленькими частичками, из которых состоим все мы – и гравитацией, той силой, что удерживает нас внизу, где бы мы ни были на Земле.
Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?Так же, как ребёнок с форой, каждый кусочек материи во Вселенной начинает гонку, имея шанс выиграть.
Мы с вами живём здесь потому, что тут, на Земле, вокруг Солнца, в нашей галактике Млечный путь, гравитация победила! Все маленькие кусочки материи, начавшие разбегаться друг от друга, были стянуты гравитацией вместе. За миллиарды лет и после того, как появилось и исчезло множество звёзд, одна небольшая часть галактики сформировала нас!

Теория большого взрыва для детей. Как бы вы рассказали историю Вселенной 8-10 летнему ребёнку?Но большая часть космоса пуста, и галактики разделяют огромные расстояния! Большинство галактик разбегается друг от друга слишком быстро для того, чтобы гравитация могла стянуть их вместе, и большая часть материи разбегается от галактик и друг от друга. Только в нескольких местах удача улыбнулась гравитации, и она победила; в большинстве случаев маленькие кусочки материи имели слишком большую фору, и теперь они убегают. Сегодня большинство из них находятся слишком далеко друг от друга!
Вселенная – это большое соревнование между маленькими кусочками материи, начавшими разбегаться друг от друга, и гравитацией, пытающейся стянуть их вместе. Мы – зрители, появившиеся очень поздно; у нас тут в Млечном пути гравитация давно победила. На самом деле, по Вселенной разбросаны миллиарды мест размером с галактику, где гравитация победила!
Но в большинстве мест материя разбежалась, и большинство отдельных галактик тоже успешно разбегаются друг от друга.
Если бы мы появились раньше, мы бы увидели процесс этой гонки: соревнования между гравитацией, пытающейся стянуть вместе кусочки Вселенной и изначальной быстрой материей, пытающейся убежать. И чем раньше мы перенесёмся в своих мыслях по времени, тем ближе мы будем к началу гонки, которым и был Большой взрыв.
Вселенная – это гонка, а Большой взрыв – это стартовый пистолет.

Критика теории большого взрыва. КРИТИКА СОВРЕМЕННОЙ ТЕОРИИ БВ


Емельянов Н. В.

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального «сингулярного» состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Интересно было бы понять, а в чём выражалась эта температура? Подобное говорят, когда нечего сказать. Начнём с самого начала. А от куда и из чего возникло это первичное тело, из которого родилась вселенная. Единственным источником энергии для такого тела могла быть только предыдущая вселенная. Энергия ведь не может ни появляться, ни исчезать. А могло ли первичное тело быть маленьким? Конечно же нет. Сомнительно, что бы такая галактика как наша, могла упасть на тело, размером даже с нашу Солнечную систему, не говоря уже о более малом теле. Да большая часть вещества предыдущей вселенной просто вращалась бы вокруг подобного тела. Да и сомнительно, что бы можно было всё вещество вселенной сжать даже до размеров нашей Солнечной Системы. О более малом теле я и не говорю. В нашей вселенной больше всего находится гелия и водорода. Предыдущая вселенная, в конце своей жизни, должна была состоять, по большей части, из тяжёлых элементов. Это доказывает, что большая часть вещества предыдущей вселенной прошло через горнило БВ. Большая часть вещества, но не всё вещество участвовало в БВ. Каждая старая вселенная, оставляет часть вещества для новой вселенной. Поэтому мы вправе предположить, что первичное тело было размером больше любой самой большой галактики.

Видео Теория Большого взрыва: как зародилась Вселенная


Суть теории большого взрыва. В чём суть теории Большого взрыва?

Суть теории большого взрыва. В чём суть теории Большого взрыва?Отвечает астрофизик, доктор физико-математических наук, главный научный сотрудник Института астрономии РАН (ИНАСАН) Николай Чугай :

— В астрофизике под Большим взрывом понимают взрывной процесс, в котором родилась наша Вселенная. В основе этой идеи лежит наблюдаемый факт разбегания галактик, обнаруженный в конце двадцатых годов прошлого века американским астрофизиком Хабблом . Разбегание галактик означает, что в прошлом вселенная была плотной.

В сороковых годах XX века стало понятно, — это прежде всего пришло в голову российскому астрофизику Георгию Гамову , который работал в США — что Вселенная в далёком прошлом была не только плотной, но и очень горячей, настолько, что в ней могли происходить термоядерные реакции синтеза химических элементов из смеси протонов, нейтронов и электронов. Ядро водорода состоит из одного протона, поэтому можно сказать, что, согласно мысли Гамова, вначале был только водород. Это и в современной Вселенной наиболее распространённый химический элемент. Всё остальное, в том числе и гелий, — следующий по распространённости элемент — возникло в результате ядерных реакций. Гамов рассчитал условия, при которых в первые несколько минут после взрыва образовалось современное количество гелия, и пришёл к выводу, что за время жизни Вселенной первичное горячее излучение должно было остыть до 5 градусов по шкале Кельвина (ноль этой шкалы соответствует температуре -273 градуса по Цельсию). В 1964 году эта догадка блестяще подтвердилась: американские радиоастрономы Пензиас и Вилсон обнаружили это излучение в сантиметровом диапазоне как однородный фон неба. Позднейшие измерения со спутников показали что температура этого фона (реликтового излучения) равна 2,7 градуса Кельвина.

Реликтовое излучение — решаюший аргумент в пользу теории Большого взрыва. Свечение реликтового излучения даёт нам понять очень многие вещи, в том числе и зарождение галактик и скоплений галактик. Дело в том, что сначала Вселенная была абсолютно однородной. Но в процессе расширения небольшие начальные возмущения плотности стали усиливаться благодаря гравитационному самопритяжению, подобно тому, как планета притягивается к Солнцу, камень падает на землю. Сила гравитации заставляет эти неоднородности становиться ещё плотнее. Так образовались галактики и скопления галактик, звёзды и планеты.

Таким образом, Вселенная родилась в результате взрыва, была очень горячей сначала, в процессе расширения остыла, сохранив остаток тепла в виде трехградусного реликтового излучения.

В этом, по сути, и заключается теория Большого взрыва, которая объясняет наблюдаемую Вселенную.

Большой взрыв кратко. Что было до Большого Взрыва?

Теория Большого Взрыва включает очень интересное понятие — сингулярность. Держу пари, это заставляет вас задаться вопросом: что это такое — сингулярность? Астрономы, физики и другие ученые также задаются этим вопросом. Сингулярности, как полагают, есть в ядрах черных дыр. Черная дыра — это область интенсивного гравитационного давления. Это давление, в соответствии с теорией, настолько интенсивно, что вещество сжимается, пока у него не появляется бесконечная плотность. Эту бесконечную плотность и называют сингулярностью . Наша Вселенная, как предполагают, началась как одна из этих бесконечно маленьких, бесконечно горячих и бесконечно плотных сингулярностей. Однако мы еще не подошли к самому Большому Взрыву. Большой Взрыв — это момент, в котором эта сингулярность внезапно «взорвалась» и начала расширяться и создала нашу Вселенную.

Теория «Большого Взрыва» казалось бы подразумевает, что время и пространство существовали прежде, чем возникла наша Вселенная. Однако Стивен Хокинг, Джордж Эллис и Роджер Пенроз (и др.) развивали в конце 1960-х теорию, которая пыталась объяснить, что время и пространство не существовали до расширения сингулярности. Другими словами, ни время, ни пространство не существовали, пока не существовала Вселенная.

Этапы развития Вселенной после большого взрыва. Развитие Вселенной после Большого Взрыва

В одном мгновении видеть вечность…

(Уильям Блейк)

Согласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии, называемом космологической сингулярностью.

Сразу после взрыва вещество стало разлетаться во всех направлениях. С тех самых времен плотность вещества и температура уменьшались. Через 400 000 лет после большого взрыва образовались атомы, вселенная стала прозрачна и внешне было похожа на ту, что мы видим сегодня. На самом деле внешний вид той молодей вселенной еще довольно сильно отличался от теперешнего. Вселенная было совершенно темной. Не было ни звезд, ни галактик, ни планет. Только отдельно летающие атомы и реликтовое излучение. Такое существование вселенной продолжалось несколько сотен миллионов лет .

Описанная картина горячей Вселенной на ранней стадии развития была предложена ученым Джорджем (Г. А.) Гамовым в знаменитой работе, которую Гамов написал в 1948 г. вместе со своим аспирантом Ральфом Альфером. вселенная большой взрыв космологический

Вся Вселенная как целое могла продолжать расширяться и охлаждаться, но в тех областях, плотность которых была немного выше средней, расширение замедлялось из-за дополнительного гравитационного притяжения. В результате некоторые области перестали расширяться и начали сжиматься. В процессе сжатия под действием гравитационного притяжения материи, находящейся снаружи этих областей, могло начаться их медленное вращение. С уменьшением размеров коллапсирующей области ее вращение ускорялось, подобно тому, как ускоряется вращение фигуриста на льду, когда он прижимает руки к телу. Когда наконец коллапсирующая область стала достаточно малой, скорости ее вращения должно было хватить для уравновешивания гравитационного притяжения — так образовались вращающиеся дискообразные галактики. Те области, которые не начали вращаться, превратились в овальные объекты, называемые эллиптическими галактиками. Коллапс этих областей тоже прекратился, потому что, хотя отдельные части галактики стабильно вращались вокруг ее центра, галактика в целом не вращалась.

Что было до большого взрыва. # чтиво | Что было до Большого взрыва?

    Сложно представить время за 13,7 миллиардов лет до сегодняшнего дня, когда вся вселенная представляла собой сингулярность. Согласно теории Большого взрыва , одной из главных претендентов на роль объяснения того, откуда появилась Вселенная и вся материя в космосе — и сам космос, — все было сжато в точку, меньшую, чем субатомная частица. Но если это еще можно принять, задумайтесь вот о чем: что же было до того, как случился большой взрыв ?

    Что было до большого взрыва. # чтиво | Что было до Большого взрыва?

    Этот вопрос современной космологии уходит корнями еще в четвертое столетие нашей эры. 1600 лет назад теолог Августин Блаженный пытался понять природу Бога до сотворения Вселенной. И знаете, к чему он пришел? Время было частью Божьего творения, и просто не было никакого «до».

    Один из лучших физиков 20 века Альберт Эйнштейн пришел практически к таким же выводам в разработке своей теории относительности. Достаточно обратить внимание на влияние массы на время. Гигантская масса планеты искажает время, заставляя его течь медленнее для человека на поверхности, нежели для космонавта на орбите. Разница слишком мала, чтобы быть очевидной, но на самом деле человек, стоящий у большого камня, стареет медленнее, чем тот, кто стоит в поле. Но чтобы стать моложе на секунду, понадобится миллиард лет. Сингулярность до большого взрыва обладала всей массой вселенной, что фактически ставило время в тупик.

    Исходя из такой логики, заголовок статьи можно назвать ошибочным, ну или, как минимум, безграмотным. По теории относительности Эйнштейна, время появилось на свет ровно в тот момент, когда сингулярность начала расширяться и вышла за пределы сжатой бесконечности.

    Всё? Вопрос решен? Как бы не так. Этот вопрос остается одним из самых сложных и волнительных. Спустя десятилетия после смерти Эйнштейна развитие квантовой физики и множество новых теорией воскресили сутолоки о природе вселенной до Большого взрыва. Давайте посмотрим.

    Браны, циклы и другие идеи

    Вот вам пища для ума: что, если наша Вселенная является потомком другой, старшей Вселенной? Некоторые астрофизики полагают, что пролить свет на эту историю поможет реликтовое излучение, оставшееся от большого взрыва: космический микроволновый фон.

    Впервые астрономы зафиксировали реликтовое излучение в 1965 году, и оно породило определенные проблемы в теории большого взрыва — проблемы, которые заставили ученых ненадолго (до 1981 года) заморочиться и вывести инфляционную теорию. Согласно этой теории, в первые мгновения своего существования Вселенная начала чрезвычайно быстро расширяться. Также теория объясняет температуру и плотность флуктуаций реликтового излучения и подсказывает, что эти флуктуации должны быть одинаковыми.

    Но как выяснилось, нет. Последние исследования дали понять, что Вселенная на самом деле однобока, и в некоторых областях флуктуаций больше, чем в других. Некоторые космологи считают, что это наблюдение подтверждает, что у нашей Вселенной была «мать».

    В теории хаотической инфляции эта идея приобретает размах: бесконечный прогресс инфляционных пузырьков порождает обилие вселенных, и каждая из них порождает еще больше инфляционных пузырьков в огромном количестве мультивселенных.

    Тем не менее, существуют модели, которыми пытаются объяснить образование сингулярности до большого взрыва. Если вы думаете о черных дырах   как о гигантских мусоросборниках, они являются главными кандидатами первоначального сжатия, поэтому наша расширяющаяся вселенная вполне может быть белой дырой — выходным отверстием черной дыры, и каждая черная дыра в нашей вселенной может вмещать в себя отдельную вселенную.

    Другие ученые считают, что в основе формирования сингулярности лежит цикл под названием «большой скачок», в результате которого расширяющаяся вселенная в итоге коллапсирует сама в себя, порождая другую сингулярность, которая, опять же, порождает другой большой взрыв. Этот процесс будет вечным, и все сингулярности и все схлопывания не будут представлять собой ничего другого, кроме как переход в другую фазу существования вселенной.

    Последнее объяснение, которое мы рассмотрим, использует идею циклической Вселенной, любезно порожденной теорией струн. Она предполагает, что новая материя и потоки энергии появляются каждые триллионы лет, когда две мембраны или браны, лежащие за пределами наших измерений, сталкиваются между собой.

    Что было до Большого взрыва? Вопрос остается открытым. Может быть, ничего. Может, другая вселенная или другая версия нашей. Может, океан вселенных, в каждой из которых свой набор законов и констант, диктующих природу физической реальности.

    Источник: science.ru-land.com

    Большой взрыв и советский след

    К середине 1940-х годов стало ясно, что большую часть видимой материи во Вселенной составляют водород и гелий. Яркие звезды и галактики состоят из водорода примерно на 75% и из гелия примерно на 24%. Водород — самый простой элемент: каждый его атом состоит всего из одного протона и одного электрона, поэтому физики не могли понять, как же сформировались прочие элементы.

    Первым ученым, который применил космологические идеи в попытке понять происхождение химических элементов, стал Георгий Гамов — физик — эмигрант из СССР. Получив подтверждение того, что Вселенная непрерывно расширяется — тогда это открытие только было сделано — Гамов первым поддержал идею, что она образовалась из исходного плотного и горячего состояния под влиянием того, что мы сегодня называем Большим взрывом.

    Гамов предположил, что сначала был горячий, плотный газ. И он состоял из нейтронов — очень нестабильных частиц, которые быстро распадаются и образуют атомы водорода. А сталкиваясь друг с другом, они могут образовывать еще и гелий. Однако в теории был пробел.

    Гамов вместе со своим аспирантом Альфером выяснил, что получить так гелий действительно несложно. Однако более тяжелые элементы, которые тоже присутствуют во Вселенной, просто не успели бы сформироваться — Вселенная остыла б раньше, чем бы завершился процесс. Гамова это не смутило. Никогда не сомневавшийся в своих силах ученый заявил, что его теория объясняет происхождение 99% видимой Вселенной, так что остальное — всего лишь детали, которые можно оставить для выяснения другим исследователям.

    Теория стационарной Вселенной

    Несмотря на то, что Гамов вместе с коллегами сделал ключевой шаг в космологии уже потому, что впервые доказал возможность проведения научных расчетов в рамках теории Большого взрыва, оставались белые пятна. Вопрос происхождения всех элементов, помимо водорода и гелия, висел в воздухе.

    Неясность с происхождением элементов  и ядерным синтезом стала одной из причин, по которой в том же 1948 году Германом Бонди, Томми Голдом и Фредом Хойлом была выдвинута альтернатива Большому взрыву — теория стационарной Вселенной.

    В основе их концепции лежала идея, что хотя Вселенная и расширяется (скопления звезд, называемые галактиками, отходят дальше друг от друга), она не образовалась в конкретный момент времени из некоего горячего и плотного состояния — а всегда имела приблизительно нынешний вид.

    По мере расширения в промежутках между галактиками возникает новая материя в виде атомов водорода, которая затем включается в новые звезды и галактики. Далее внутри звезд происходит ядерный синтез. Хойл обнаружил, что, хотя ядерный синтез внутри звезд действительно объяснял возникновение пресловутого 1% материи, объяснить происхождение всего гелия во Вселенной с его помощью было невозможно.

    Для интерпретации всех элементов в видимой Вселенной необходимо было использовать еще и идею ядерного синтеза согласно теории Большого взрыва…

    Альтернативная теория Большого взрыва

    Роберт Дикке, американский физик, известен своими работами в области астрофизики, атомной физики, космологии и гравитации. И одной интересной идеей. Совсем коротко идею Дикке можно назвать «Большой взрыв, но не такой, каким мы его знаем».

    Дикке смущала мысль, что вся материя во Вселенной могла быть создана за долю секунды во время Большого взрыва, но ему не казалось правдоподобным и то, что материя создается непрерывно в промежутках между галактиками. Впрочем, существовал еще и третий вариант — так называемая циклическая Вселенная.

    Согласно этой теории, количество материи во Вселенной остается неизменным, но после фазы расширения наступает фаза сжатия: Вселенная доходит до горячего и плотного состояния, как перед Большим взрывом, и вновь расширяется, возрождаясь, словно Феникс.

    Однако, понял Дикке, если бы эта модель была реальной, то не было бы двух видов звезд — Населения I и Населения II, молодых и старых звезд. А они были. Значит, Вселенная вокруг нас все-таки развилась из горячего и плотного состояния. Даже если это был не единственный в истории Большой взрыв.

    Удивительно, правда? Вдруг этих взрывов было несколько? Десятки, сотни? Науке еще предстоит это выяснить. Дикке предложил своему коллеге Пиблсу просчитать необходимую для описанных процессов температуру и вероятную температуру остаточного излучения в наши дни. Примерные расчеты Пиблса показали, что сегодня Вселенная должна быть наполнена микроволновым излучением с температурой менее 10 К, и Ролл с Уилкинсоном уже готовились искать это излучение, когда раздался звонок…

    Трудности перевода

    Однако тут стоит перенестись в другой уголок земного шара — в СССР. Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович, один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова (советского физика, живушего в США), и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов.

    Он даже знал о статье Эда Ома в «Техническом журнале Bell System», который примерно высчитал температуру реликтового излучения, но неверно интерпретировал выводы автора. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К — это температура оставшегося фона.

    Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем.

    В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена. Это и стало причиной столь обидной ошибки.

    Источник: blog.mann-ivanov-ferber.ru

    Хронология событий в теории Большого Взрыва

    bb

    Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

    Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.

    Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10-43 до 10-11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

    Эпоха сингулярности

    sing

    Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

    Планковская эра предположительно длилась от 0 до 10-43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

    Приблизительно в период с 10-43 до 10-36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

    В период примерно с 10-36 до 10-32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).

    Эпоха инфляции

    inflation

    С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10-32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.

    Это началось на 10-37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

    В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.

    Эпоха охлаждения

    cooling

    Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

    Например, ученые считают, что на 10-11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10-6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

    Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

    В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.

    Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

    С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10-14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

    Эпоха структуры (иерархическая эпоха)

    structure

    В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

    Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

    Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

    Долгосрочные прогнозы относительно будущего Вселенной

    future

    Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

    Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

    Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10-26 кг материи на м³), Вселенная начнет сжиматься.

    Большой взрыв — в таком виде

    Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

    Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.

    Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

    Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

    История теории Большого взрыва

    fred-hoyle

    Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.

    В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.

    В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.

    В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).

    Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.

    Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.

    После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу «большой взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.

    В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.

    Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.

    В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.

    Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.

    Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.

    Источник: Hi-News.ru

    Последователь цифровой физики Джон Арчибальд Уилер писал: «Не было бы неразумным представить, что информация находится в ядре физики так же, как в ядре компьютера. Всё из бита. Иными словами, всё сущее — каждая частица, каждое силовое поле, даже сам пространственно-временной континуум — получает свою функцию, свой смысл и, в конечном счёте, само своё существование».

    Теория стационарной Вселенной

    Согласно недавно восстановленной рукописи Альберта Эйнштейна, великий ученый отдал дань уважения британскому астрофизику Фреду Хойлу за теорию о том, что пространство может расширяться в течение неопределенного времени, сохраняя равномерную плотность, если постоянно будет появляться новая материя в процессе спонтанной генерации. В течение многих десятилетий многие считали идеи Хойла ерундой, но недавно обнаруженный документ показывает, что Эйнштейн как минимум серьезно рассматривал его теорию.

    Теорию стационарной Вселенной была предложена в 1948 году Германом Бонди, Томасом Голдом и Фредом Хойлом. Она вышла из идеального космологического принципа, который гласит, что вселенная выглядит по существу одинаково в каждой точке в любое время (в макроскопическом смысле). С философской точки зрения он привлекателен, поскольку тогда у вселенной нет начала и конца. Теория была популярна в 50-60-х годах. Столкнувшись с указаниями на то, что Вселенная расширялась, ее сторонники предположили, что во вселенной постоянно рождается новая материя, в постоянном, но умеренном темпе — несколько атомов на кубический километр в год.

    Наблюдения квазаров в далеких (и старых, с нашей точки зрения) галактиках, которых в наших звездных окрестностях не существует, охладили энтузиазм теоретиков, и ее окончательно развенчали, когда ученые обнаружили космическое фоновое излучение. Тем не менее, хотя теория Хойла не принесла ему лавров, он провел серию исследований, которые показали, как во вселенной появились атомы тяжелее гелия. (Они появились в процессе жизненного цикла первых звезд при высоких температурах и давлении). По иронии судьбы, он также был одним из создателей термина «большой взрыв».

    Теория большого взрыва суть теории

    Утомленный свет

    Эдвин Хаббл заметил, что длины волн света далеких галактик смещаются в направлении красной части спектра, если сравнивать со светом, излученным звездными телами поблизости, что говорит об утрате фотонами энергии. «Красное смещение» объясняется в контексте расширения после Большого Взрыва как функция эффекта Доплера. Сторонники моделей стационарной вселенной вместо этого предположили, что фотоны света теряют энергию постепенно по мере движения через космос, переходя к длинным волнам, менее энергетическим в красном конце спектра. Эту теорию впервые предложил Фриц Цвикки в 1929 году.

    С утомленным светом связывают целый ряд проблем. Во-первых, нет никакого способа изменить энергию фотона без изменения его импульса, что должно приводить к эффекту размытия, который мы не наблюдаем. Во-вторых, он не объясняет наблюдаемые паттерны излучения света сверхновых, которые прекрасно соотносятся с моделью расширяющейся вселенной и специальной относительности. Наконец, большинство моделей утомленного света базируются на нерасширяющейся вселенной, но это приводит к спектру фонового излучения, который не соответствует нашим наблюдениям. В численном выражении, если бы гипотеза утомленного света была корректной, вся наблюдаемая радиация космического фона должна была бы приходить из источников, которые ближе к нам, чем галактика Андромеды (ближайшая к нам галактика), а все, что за ней, было бы для нас невидимо.

    Вечная инфляция

    Большинство современных моделей ранней Вселенной постулируют короткий период экспоненциального роста (известный как инфляция), вызванный энергией вакуума, в процессе которого соседствующие частицы оказались быстро разделенными огромными областями пространства. После этой инфляции, энергия вакуума распалась на горячий плазменный бульон, в котором образовались атомы, молекулы и так далее. В теории вечной инфляции этот процесс инфляции никогда не заканчивался. Вместо этого пузыри пространства прекратили бы раздуваться и вступили бы в низкоэнергетическое состояние, чтобы после расшириться в инфляционном пространстве. Такие пузыри были бы подобны пузырям пара в кипящей кастрюле с водой, только в этот раз кастрюля постоянно увеличивалась бы.

    По этой теории наша Вселенная — один из пузырьков множественной вселенной, характеризующейся постоянной инфляцией. Один из аспектов этой теории, который можно было бы проверить, это допущение, что две вселенные, которые будут достаточно близко, чтобы встретиться, вызовут нарушения в пространстве-времени каждой вселенной. Лучшей поддержкой такой теории будет обнаружение доказательства такого нарушения на фоне реликтового излучения.

    Первую инфляционную модель предложил советский ученый Алексей Старобинский, но на западе известной она стала благодаря физику Алану Гуту, который предположил, что ранняя вселенная могла переохладиться и позволить экспоненциальному росту начаться еще до Большого Взрыва. Андрей Линде взял эти теории и разработал на их основе теорию «вечного хаотического расширения», согласно которой вместо необходимости Большого Взрыва, при необходимой потенциальной энергии, расширение может начаться в любой точки скалярного пространства и происходить постоянно во всей мультивселеннной.

    Вот что говорит Линде: «Вместо вселенной с одним законом физики, вечная хаотическая инфляция предполагает самовоспроизводяющуюся и вечно существующую мультивселенную, в которой все возможно».

    Мираж четырехмерной черной дыры

    Стандартная модель Большого Взрыва утверждает, что Вселенная взорвалась из бесконечно плотной сингулярности, но это не облегчает задачу объяснения ее почти однородной температуры, учитывая относительно короткое время (по меркам космоса), которое прошло со времен этого жестокого события. Некоторые считают, что это могла бы объяснить неизвестная форма энергии, которая привела к тому, что вселенная расширилась быстрее скорости света. Группа физиков из Института теоретической физики Периметра предположила, что вселенная может быть по сути трехмерным миражом, созданным на горизонте событий четырехмерной звезды, коллапсирующей в черную дыру.

    Ниайеш Афшорди и его коллеги изучали предложение 2000 года, сделанное командой Университета Людвига Максимилиана в Мюнхене, на тему того, что наша Вселенная может быть лишь одной мембраной, существующей в «объемной вселенной» с четырьмя измерениями. Они решили, что если эта объемная вселенная также содержит четырехмерные звезды, они могут вести себя подобно своим трехмерным коллегам в нашей вселенной — взрываясь в сверхновые и коллапсируя в черные дыры.

    Трехмерные черные дыры окружены сферической поверхностью — горизонтом событий. В то время как поверхность горизонта событий трехмерной черной дыры двумерна, форма горизонта событий четырехмерной черной дыры должна быть трехмерной — гиперсферой. Когда команда Афшорди смоделировала смерть четырехмерной звезды, она обнаружила, что извергаемый материал образовал трехмерную брану (мембрану) вокруг горизонта событий и медленно расширился. Команда предположила, что наша Вселенная может быть миражом, сформированным из обломков внешних слоев четырехмерной коллапсирующей звезды.

    Поскольку четырехмерная объемная вселенная может быть намного старше, или даже бесконечно старой, это объясняет однородную температуру, наблюдаемую в нашей Вселенной, хотя некоторые из последних данных свидетельствуют о том, что могут быть отклонения, вследствие которых традиционная модель подходит лучше.

    Зеркальная Вселенная

    Одна из запутанных проблем физики такова, что почти все принятые модели, включая гравитацию, электродинамику и относительность, работают одинаково хорошо в описании Вселенной, независимо от того, идет время вперед или назад. В реальном же мире мы знаем, что время движется лишь в одном направлении, и стандартное объяснение этому в том, что наше восприятие времени есть лишь продукт энтропии, в процессе которой порядок растворяется в беспорядке. Проблема этой теории в том, что из нее вытекает, что наша Вселенная начала с высокоупорядоченного состояния и низкой энтропии. Многие ученые несогласны с понятием низкоэнтропийной ранней вселенной, фиксирующей направление времени.

    Джулиан Барбур из Оксфордского университета, Тим Козловски из Университета Нью-Брансвик и Флавио Меркати из Института теоретической физики Периметра разработали теорию, согласно которой гравитация привела к тому, что время стало течь вперед. Они изучили компьютерное моделирование частиц в 1000 точек, взаимодействующих между собой под влиянием ньютоновой гравитации. Выяснилось, что независимо от их размера или размера, частицы в конечном итоге образуют состояние низкой сложности с минимальным размером и максимальной плотностью. Затем эта система частиц расширяется в обоих направлениях, создавая две симметричных и противоположных «стрелы времени», а с ней и более упорядоченные и сложные структуры по обе стороны.

    Это позволяет предположить, что Большой Взрыв привел к созданию не одной, а двух вселенных, в каждой из которых время течет в противоположную от другой сторону. По мнению Барбура:

    «Эта ситуация с двумя будущими будет демонстрировать единое хаотичное прошлое в обоих направлениях, означая, что будет по сути две вселенных, по каждую сторону центрального состояния. Если они будут достаточно сложными, обе стороны будут поддерживать наблюдателей, которые смогут воспринимать течение времени в обратном направлении. Любые разумные существа определят свою стрелу времени как удаление от центрального состояния. Они будут думать, что мы сейчас живем в их далеком прошлом».

    Теория большого взрыва суть теории

    Конформная циклическая космология

    Сэр Роджер Пенроуз, физик Оксфордского университета, считает, что Большой Взрыв не был началом Вселенной, а лишь переходом по мере того, как она проходит через циклы расширения и сжатия. Пенроуз предположил, что геометрия пространства изменяется со временем и становится все более запутанной, как описывает математическое понятие тензора кривизны Вейля, который начинается с нуля и увеличивается со временем. Он считает, что черные дыры действуют, уменьшая энтропию Вселенной, и когда последняя достигает конца расширения, черные дыры поглощают материю и энергию и, в конце концов, друг друга. По мере распада материи в черных дырах, она исчезает в процессе излучения Хокинга, пространство становится однородным и наполненным бесполезной энергией.

    Это приводит к понятию конформной инвариантности, симметрии геометрий с разными масштабами, но одной формы. Когда Вселенная уже не сможет соответствовать изначальным условиям, Пенроуз считает, что конформное преобразование приведет геометрию пространства к сглаживанию, и деградировавшие частицы вернутся к состоянию нулевой энтропии. Вселенная коллапсирует сама в себя, готовая разразиться новым Большим Взрывом. Отсюда следует, что Вселенная характеризуется повторяющимся процессом расширения и сжатия, который Пенроуз поделил на периоды под названием «эоны».

    Панроуз и его партнер, Ваагн (Ваге) Гурзадян из Ереванского физического института в Армении, собрали спутниковые данные NASA о реликтовом излучении и заявили, что нашли 12 четких концентрических колец в этих данных, которые, по их мнению, могут быть доказательством гравитационных волн, вызванных столкновением сверхмассивных черных дыр в конце предыдущего эона. Пока это главное доказательство теории конформной циклической космологии.

    Теория большого взрыва суть теории

    Холодный Большой Взрыв и сжимающаяся Вселенная

    Стандартная модель Большого Взрыва говорит, что после того, как вся материя взорвалась из сингулярности, она раздулась в горячую и плотную Вселенную и начала медленно остывать в течение миллиардов лет. Но эта сингулярность создает ряд проблем, когда ее пытаются впихнуть в общую теорию относительности и квантовую механику, поэтому космолог Криштоф Веттерих из Университета Гейдельберга предположил, что Вселенная могла начаться с холодного и огромного пустого пространства, которое становится активным лишь потому, что сжимается, а не расширяется в соответствии со стандартной моделью.

    В этой модели, красное смещение, наблюдаемое астрономами, может быть вызвано увеличением массы вселенной по мере сжатия. Свет, излученный атомами, определяется массой частиц, больше энергии проявляется по мере движения света в голубую часть спектра и меньше — в красную.

    Главная проблема теории Веттериха в том, что ее невозможно подтвердить измерениями, поскольку мы сравниваем лишь соотношения различных масс, а не самих масс. Один физик пожаловался, что эта модель сродни утверждению, что не Вселенная расширяется, а линейка, которой мы ее измеряем, сжимается. Веттерих говорил, что не считает свою теорию заменой Большому Взрыву; он лишь отмечал, что она соотносится со всеми известными наблюдениями Вселенной и может быть более «естественным» объяснением.

    Теория большого взрыва суть теории

    Круги Картера

    Джим Картер — ученый-любитель, разработавший личную теорию о вселенной, основанную на вечной иерархии «цирклонов», гипотетических круглых механических объектов. Он считает, что всю историю Вселенной можно объяснить как поколения цирклонов, развивающихся в процессе воспроизводства и деления. К такому выводу ученый пришел после наблюдения идеального кольца пузырьков, выходящих из его дыхательного аппарата, когда он занимался подводных плаванием в 1970-х годах, и отточил свою теорию экспериментами с участием контролируемых колец дыма, мусорных баков и резиновых листов. Картер считал их физическим воплощением процесса под названием цирклонная синхронность.

    Он говорил, что цирклонная синхронность являет собой лучшее объяснение создания Вселенной, нежели теория Большого Взрыва. Его теория живой вселенной постулирует, что хотя бы один атом водорода существовал всегда. В начале один атом антиводорода плавал в трехмерной пустоте. У этой частицы была такая же масса, как и у всей вселенной, и состояла она из положительно заряженного протона и отрицательно заряженного антипротона. Вселенная пребывала в завершенной идеальной дуальности, но отрицательный антипротон гравитационно расширялся чуть быстрее, чем положительный протон, что приводило к потере им относительной массы. Они расширялись по направлению друг к другу, пока отрицательная частица не поглотила положительную, и они не сформировали антинейтрон.

    Антинейтрон тоже был несбалансирован по массе, но в конечном итоге вернулся в равновесие, что привело к расщеплению его на два новых нейтрона из частицы и античастицы. Этот процесс вызвал экспоненциальный рост числа нейтронов, некоторые из которых уже не расщеплялись, а аннигилировали в фотоны, которые легли в основу космических лучей. В конечном итоге вселенная стала массой стабильных нейтронов, которые существовали определенное время перед распадом, и позволили электронам впервые объединиться с протонами, образовав первые атомы водорода и наполнив вселенную электронами и протонами, активно взаимодействующими с образованием новых элементов.

    Немного безумия не повредит. Большинство физиков считает идеи Картера бредом неуравновешенного, который даже не подлежит эмпирическому обследованию. Эксперименты Картера с кольцами дыма использовались в качестве доказательства ныне дискредитированной теории эфира 13 лет назад.

    Теория большого взрыва суть теории

    Плазменная Вселенная

    Если в стандартной космологии гравитация остается главной управляющей силой, в плазменной космологии (в теории электрической вселенной) большая ставка делается на электромагнетизм. Одним из первых сторонников этой теории был русский психиатр Иммануил Великовский, который написал в 1946 году работу под названием «Космос без гравитации», в которой заявил, что гравитация — это электромагнитный феномен, вытекающий из взаимодействия между зарядами атомов, свободными зарядами и магнитных полей солнца и планет. В дальнейшем эти теории прорабатывал уже в 70-х годах Ральф Юргенс, утверждавший, что звезды работают на электрических, а не на термоядерных процессах.

    Существует много итераций теории, но ряд элементов остается одним. Теории плазменной вселенной утверждают, что Солнце и звезды электрически питаются дрейфовыми токами, что некоторые особенности планетарной поверхности вызываются «сверхмолниями» и что хвосты комет, марсианские пыльные дьяволы и образование галактик — все это электрические процессы. По этим теориям, глубокий космос заполнен гигантскими нитями электронов и ионов, которые скручиваются вследствие действия электромагнитных сил в космосе и создают физическую материю вроде галактик. Плазменные космологи допускают, что Вселенная бесконечна в размере и возрасте.

    Одной из самых влиятельных книг на эту тему стала «Большого Взрыва никогда не было», написанная Эриком Лернером в 1991 году. Он утверждал, что теория Большого Взрыва неправильно предсказывает плотность легких элементов вроде дейтерия, лития-7 и гелия-4, что пустоты между галактиками слишком велики, чтобы их можно было объяснить временными рамками теории Большого Взрыва, и что яркость поверхности далеких галактик наблюдается как постоянная, тогда как в расширяющейся вселенной эта яркость должна уменьшаться с расстоянием вследствие красного смещения. Он также утверждал, что теория Большого Взрыва требует слишком много гипотетических вещей (инфляция, темная материя, темная энергия) и нарушает закон сохранения энергии, поскольку Вселенная якобы родилась из ничего.

    Напротив, говорит он, теория плазмы правильно предсказывает изобилие легких элементов, макроскопическую структуру Вселенной и поглощение радиоволн, являющихся причиной космического микроволнового фона. Многие космологи утверждают, что лернеровская критика космологии Большого Взрыва базируется на понятиях, которые считались неправильными на момент написания его книги, и на его объяснениях, что наблюдения космологов Большого Взрыва приносят больше проблем, чем могут решить.

    Теория большого взрыва суть теории

    Бинду-випшот

    Пока мы не затрагивали религиозные или мифологические истории сотворения вселенной, но сделаем исключение для индуистской истории создания, поскольку ее можно с легкостью увязать с научными теориями. Карл Саган однажды сказал, что это «единственная религия, в которой временные рамки отвечают современной научной космологии. Ее циклы переходят от наших обычных дня и ночи до дня и ночи Брахмы, длиной в 8,64 миллиарда лет. Дольше, чем существовала Земля или Солнце, почти половина времени с момента Большого Взрыва».

    Ближайшая к традиционной идее Большого Взрыва вселенной обнаруживается в индуистской концепции бинду-випшот (буквально «точка-взрыв» на санскрите). Ведические гимны древней Индии гласили, что бинду-випшот произвел звуковые волны слога «ом», который означает Брахмана, Абсолютную Реальность или Бога. Слово «Брахман» имеет санскритский корень brh, означающий «большой рост», что можно связать с Большим Взрывом, согласно писанию Шабда Брахман. Первый звук «ом» интерпретируется как вибрация Большого Взрыва, обнаруженная астрономами в форме реликтового излучения.

    Упанишады объясняют Большой Взрыв как одно (Брахман), желающее стать многим, чего он и достиг за счет большого взрыва как усилия воли. Создание часто изображается как лила, или «божественная игра», в том смысле, что вселенная создавалась как часть игры, и запуск в виде большого взрыва тоже был ее частью. Но разве игра будет интересной, если в ней будет всеведущий игрок, знающий, как она будет проходить?

    Источник: masterok.livejournal.com


    You May Also Like

    About the Author: admind

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.