Предпосылки формирования теории относительности


Специальная теория относительности (СТО) была создана благодаря трудам Альберта Эйнштейна, Анри Пуанкаре и Генрика Антона Лоренца. Следует также отметить вклад Германа Минковского, который создал общепринятое представление о четырехмерном пространстве-времени.
Данная теория пересмотрела фундаментальные понятия классической физики.

Предпосылки к созданию специальной теории относительности

Предпосылкой к созданию специальной теории относительности стали многочисленные опыты по изучению природы света и его поведению в различных системах.

Попытки распространить принципы относительности Галилея на световые явления, описываемые электромагнитной теории Максвелла, показали, что преобразования Галилея не хранят инвариантные законы электромагнитной теории света. В связи с этим перед физиками логично открывались три возможности считать, что:

  1. Принцип относительности Галилея распространяется только на механику, а в электродинамике существует некая абсолютная система отсчета. Ее связывали с так называемым всепроникающим эфиром.

  2. Принцип относительности Галилея является универсальным. Система уравнений Максвелла без ответа требованиям этому принципу, неверна.

  3. Принцип относительности Галилея имеет универсальный характер, система уравнений Максвелла верна, преобразования Галилея не универсальны.


Выбор между этими тремя возможностями необходимо было сделать на основании экспериментальных данных. Однако опытным путем абсолютная система отсчета (то есть эфир) обнаружена не была; система уравнений Максвелла оказалась верной.

Это означает, что преобразования Галилея стоит признать универсальными, а уравнения механики нужно заменить так, чтобы они соответствовали требованиям новых условий перехода от одной инерциальной системы отсчета к другой.

Последующее постулирование принципов специальной теории относительности

Г. Лоренц, не отвергая гипотезы о существовании неподвижного эфира, разработал теорию, из которой следовало, что определить абсолютную скорость тел (относительно эфира) невозможно. Он нашел преобразования, они названы его именем (их позже уточнил А. Пуанкаре), по которым можно определить наблюдаемые длины и интервалы времени в движущейся системе отсчета. Однако решающую роль в становлении СТО сыграла работа Эйнштейна «К электродинамике движущегося тела», где он дал простой и наглядный анализ понятий пространства и времени, в которых нет места «светоносного эфира», и дал вывод преобразований Лоренца исходя из минимума общих постулатов.


Проанализировав достаточно большое количество опытных данных, Эйнштейн выбрал два наиболее бесспорных положения и построил на них свою теорию относительности. Эти положения называют принципом относительности Эйнштейна и принципом постоянства света.

Оба эти принципа подтверждаются многими экспериментами, которые не входят в число тех, на основании которых они были сформулированы.

Специальная теория относительности пересмотрела фундаментальные понятия классической физики. Для понимания этого нового взгляда необходимо начать с базовых представлений об измерении времени и расстояний. Оказалось, что не все предположения ньютоновской теории наполнены физическим содержанием.

Некоторые важные различия СТО от ньютоновской теории, теряющей силу в СТО:

а) в СТО события, являются одновременными в одной инерциальной системе отсчета, могут быть неодновременными в другой инерциальной системе отсчета;

б) если два наблюдателя движутся друг относительно друга, их часы невозможно синхронизировать. Это существенно отличает СТО, которая согласуется с физическим опытом, от ньютоновского подхода с абсолютным временем, общим для всех систем отсчета.

Источник: studwork.org


О предшественниках теории относительности

Признание высокого теоретико-познавательного и методологического значения  ТО ставят в повестку дня вопрос о внимательном исследовании предпосылок этой теории и вопрос о предшественниках Эйнштейна, ибо вопрос о приоритете время от времени продолжает дискутироваться на страницах научной и научно-популярной печати. Известно, что к специальной теории относительности очень близко подошли Г.А.Лоренц и Анри Пуанкаре. Так, Лоренц доказал, что не существует опыта, с помощью которого можно было бы определить движение тел относительно эфира, т.е. установил “практический принцип относительности”, поскольку это означало невозможность найти движение относительно пространства (абсолютного), т.е., что все движения относительны.

Французский математик и физик Анри Пуанкаре (1834-1912) продолжал исследование вопроса, поднятого Лоренцем, а на международном конгрессе в Сент-Луисе в 1904 г. назвал принцип относительности в числе основных принципов физики. Но теория Лоренца-Пуанкаре еще не была, строго говоря, ТО, хотя Пуанкаре в разработке математического аппарата был даже впереди Эйнштейна. Вдобавок к этому, Пуанкаре считал, что определение одновременности событий в удаленных точках требует принятия постулата о постоянстве скорости света во всех направлениях. Это именно постулат, поскольку экспериментально он не доказуем и не опровергаем (эквивалент “физического бога”). Ведь скорость света мы измеряем по его прохождению “туда и обратно”. Сам наблюдатель не имеет никакого способа узнать, находится ли он в покое или в абсолютном движении. Мы видим, как близко подошел Пуанкаре к ТО.


В сентябре 1905 г., спустя год после появления статей Лоренца, а также Пуанкаре, появилась статья Эйнштейна “К электродинамике движущихся тел”, которая приводила к тем же результатам в электромагнетизме, но содержала новый (физический, философский) взгляд на пространство и время. Как известно, свойствами пространства исстари занималась геометрия.

Безуспешность ряда ученых доказать пятый постулат Евклида привела к идее о его недоказуемости и о возможности построения геометрии, основанной на других постулатах. Одним из первых к этой идее пришел Карл Фридрих Гаусс (1777-1855). Он считал, в отличие от Канта, что представления о пространстве не являются априорными, а имеют опытное происхождение. Однако, не желая дискуссий, Гаусс не публиковал свои работы.

В 1826 г. Николай Иванович Лобачевский (1795-1856) сделал сообщение на заседании физико-математического факультета Казанского университета об открытии им неевклидовой геометрии, а в 1829 г. опубликовал в “Казанском вестнике” работу “Начала геометрии”. Он считал, что свойства пространства неотделимы от движения (материи).


В 1854 г. Георг Риман (1826-1866) прочел лекцию “О гипотезах, лежащих в основании геометрии”. У него свойства пространства тоже зависели от материальных процессов. Первоначально появление неевклидовой геометрии не затронуло физику. Зато потом….

 Английский математик Уильям Клиффорд (1845-1879) в 70-х гг. 19 в. считал, что многие физические законы могут быть объяснены тем, что отдельные области пространства подчиняются неевклидовой геометрии.

Он предложил нечто вроде полевой теории материи, в которой материальные частицы представляют собой сильно искривленные области пространства, подобные холмам на ровной местности. Он считал, что “в физике нет ничего, кроме изменений кривизны пространства”. А это уже предчувствие Эйнштейна с его полевой теорией материи.

Эрнст Мах, роль которого в инициировании теории относительности признана самим Эйнштейном, считал движение относительным, а системы Птолемея и Коперника равноправными, хотя последнюю проще и практичнее. “Пространство и время суть упорядоченные системы рядов ощущений” — писал он. Некоторые идеи Маха оказались плодотворными и для ОТО, ведь абсолютное пространство Ньютона оказалось не наблюдаемым.


 


Источник: oborudka.ru

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель (см. Эффект Кориолиса). Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.

Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности.


Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.

Специальная теория относительности

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них — эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения — напротив, сжимается.
от эффект, известный как сокращение Лоренца—Фицджеральда, был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851–1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853–1928). Сокращение Лоренца—Фицджеральда объясняет, почему опыт Майкельсона—Морли по определению скорости движения Земли в космическом пространстве посредством замеров «эфирного ветра» дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится.

Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение. В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами.
яснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц — иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона.

Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет ее (подробнее эта мысль рассматривается во Введении).

Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира — этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности.
орость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом (см. Уравнения Максвелла). В силу принципа относительности скорость света в вакууме c одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так.

Благодаря своей особой роли в законах природы скорость света занимает центральное место и в общей теории относительности.

Общая теория относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга — как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно — или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит — то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения. Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация — это следствие деформации («искривления») упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время «прогибается» под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром — Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, — например, незначительные отклонения Меркурия от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона, или искривление электромагнитного излучения далеких звезд при его прохождении в непосредственной близости от Солнца.

На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

Источник: elementy.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.