Квантовая теория относительности


В сентябре 1909 года великий физик впервые представил широкой публике главный труд своей жизни — теорию относительности. Дело было в австрийском Зальцбурге. Спустя 110 лет АиФ.ru рассказывает своим читателям о том, чем же крута теория, о которой все знают, но которую мало кто понимает.

Поверить в это было сложно

Статью, которая стала отправной точкой для разработки теории относительности, Эйнштейн опубликовал ещё в сентябре 1905 года. Правда, тогда она интересовала лишь узкий круг специалистов в области теоретической физики.

Работа называлась «К электродинамике движущихся тел». В ней молодой физик сформулировал постулаты специальной теории относительности, а через 10 лет последовала общая теория, в которой он пересмотрел представления о пространстве и времени (по сути, перевернул их)&nbs.
оверить.

В математическом плане работа 1905 года была проста, чем отличалась от работ предшественников Эйнштейна  Пуанкаре и Лоренца. Она сводилась к двум постулатам (или принципам). Первый — принцип относительности, носящий имя самого Эйнштейна. Второй — принцип постоянства скорости света. Первый лаконично можно сформулировать так: законы природы одинаковы во всех системах координат, которые движутся прямолинейно и равномерно относительно друг друга. Второй: луч света в вакууме движется с одинаковой скоростью, независимо от того, испускается он покоящимся или движущимся объектом.

А теперь попробуем объяснить на понятных примерах.

Как стать в три раза худее

Представьте, что у вас есть космический корабль, на носу которого установлена пушка, стреляющая частицами света — фотонами.
садитесь в корабль и летите на огромной скорости мимо планеты, на которой, пристально вглядываясь в небо, стоит ваш приятель. Вы заряжаете световую пушку и начинаете стрелять — фотоны улетают от вас со скоростью 300 тыс. км/с. А с какой скоростью они будут лететь мимо вашего приятеля? По логике, со скоростью света, к которой приплюсована скорость космического корабля. То есть быстрее скорости света! Так вот, Эйнштейн предположил (и впоследствии это подтвердилось), что скорость света всегда остаётся неизменной. И ваш приятель, вооружившись секундомером, увидит, что относительно него фотоны пролетают за секунду всё те же 300 тыс. км, будто бы ваш корабль стоит на месте, а не несётся в космическом пространстве.
Это кажется парадоксальным, но это так. И из данного постулата следуют всякие удивительные выводы. Например, что, двигаясь на высоких скоростях, объекты сокращаются в размерах (человек, летящий со скоростью 280 тыс. км/с, станет раза в три худее). Или что в межзвёздном космическом путешествии время для астронавта будет идти медленнее, и он вернётся из него более молодым, чем его брат-близнец, оставшийся на Земле. И даже то, что для разных наблюдателей — подвижного и неподвижного — одни те же события могут происходить в разные моменты времени.


В последующие годы Альберт Эйнштейн совершенствовал собственную теорию, обобщив её для гравитационных полей (потому она и стала называться общей). Он отказался от мысли Ньютона, который считал, что всё пространство заполнено гравитационным полем, определяющим движение небесных тел, и предложил иной подход: гравитация — не физическое явление, а геометрическое. Между полем тяготения и геометрией пространства-времени существует неразрывная связь: чем массивней астрономический объект, тем сильнее его гравитация искривляет пространство и замедляет время. 

Вот ещё одна простая аналогия. Если вы положите на заправленную кровать шар для боулинга, он продавит ровную поверхность покрывала, искривив её. Катнув затем шар поменьше (скажем, бильярдный), вы заметите, что он отклоняется от прямой траектории под воздействием изгибов. Можно ли говорить, что его притягивает более массивный шар? Конечно, нет. Причина в том, что сама поверхность, по которой он катится, стала кривой. Точно так же, согласно мысли Эйнштейна, Земля не притягивается Солнцем, а движется в его сторону в искривлённом трёхмерном пространстве. 

Где находится лифт?

Другой принцип, использованный в знаменитой теории, получил название «принцип эквивалентности». Он говорит нам о том, что ускорение и гравитация по сути одно и то же. И чтобы понять его, вам придётся войти в гипотетический лифт, о котором вы ничего не знаете. Точнее, не знаете, что находится снаружи, за его стенами.


Допустим, вы оказались в лифте в состоянии невесомости. Что это значит? Одно из двух: либо лифт падает под действием гравитации Земли, либо он… находится в космосе. Чтобы выяснить правду, вам придётся выглянуть из кабины.

Можно представить и обратное: вы стоите в лифте, на вас действует сила тяжести. Но вам неясно: то ли лифт неподвижно висит в шахте многоэтажного дома где-то на Земле, то ли он движется с ускорением в космическом пространстве. Обе эти ситуации вы воспримете одинаково, не в силах отличить ускорение от гравитации. Эйнштейн пришёл к выводу, что тела под воздействием гравитации не ускоряются, а движутся равномерно, только в искривлённом пространстве массивных объектов — планет, звёзд и пр. 

Впоследствии теория относительности получила множество экспериментальных подтверждений и привела к грандиозным открытиям в астрофизике. Благодаря ей учёные смогли понять, что такое чёрные дыры, Большой взрыв, замедление времени и многое другое. И даже увидеть объекты далёкого космоса, скрытые за другими объектами. Для астрономов это было всё равно, что смотреть сквозь стены. 

Источник: aif.ru


Чаще всего вопросы, которые задают в течение дня, поставлены довольно конкретно. Вы обедали? Который час? Слышали новую песню Джастина Бибера? Но когда мы начинаем задумываться о куда более серьезных вопросах — например, могут ли быть объединены квантовая механика и общая теория относительность — наша самоуверенность падает. Что делает квантмех с планетами? Только в ОТО энергия эквивалентна массе, умноженной на квадрат скорости света? Погодите, массе или движению? Или минуты. Это минуты, разве нет?

Не переживайте. Хотя на этот вопрос крайне сложно ответить, сам вопрос прост, как поиск смысла в попсовой песне. Прежде чем мы начнем решать неразрешимую вселенную, давайте разберем компоненты.

Для начала возьмем квантовую механику. С нее хорошо начать, потому что она изучает нечто крайне малое — вещество и излучение на атомных и субатомных уровнях. Когда ученые начали понимать атомы, стало понятно, что старая физика нуждается в поправках. Потому что когда ученые смотрели на атомы, они вели себя не так, как вселенная. К примеру, электроны не вращаются вокруг ядра подобно планете, вращающейся вокруг солнца — если бы это было так, они бы уже упали на ядро.

Стало очевидно, что классическая физика не работает на атомных масштабах. Квантовая механика возникла от необходимости понять, почему маленькие явления случаются не так, как большие в науке. В результате этого мы выяснили, что фотон может выступать в качестве частицы (которая несет массу и энергию) и волны (которая несет только энергию). Это стало прорывом. Фотон может быть в двух формах одновременно. А это значит, что самые маленькие части Вселенной ведут себя непредсказуемо.


Все относительно
Теперь мы понимаем, что квантовая механика существенно подорвала наше понимание вселенной (особенно на мелких масштабах). Частицы, к примеру, могут быть волнами. Ко всеобщему удовольствию появился и принцип неопределенности квантовой механики, который подсказывает, что мы не можем знать одновременно положение частицы и скорость ее движения.

Эйнштейну это крайне не понравилось. Сама идея того, что мы не можем определить, где частица или что она делает, должна быть очень тревожной для физика, который пытается определить, как работает вселенная — что и делал Эйнштейн, работая над общей теорией относительности.

И опять: не переживайте. У общей теории относительности было две больших идеи: одна о пространстве и времени, другая о гравитации. Как мы видим, пространство и время находятся в фоновом режиме. Они фиксированы. Они существуют хронологически (и отчасти монолитны). В общей теории относительности пространство и время представляют собой одно целое, так называемое пространство-время. Но если пространство-время и может быть большим и единым, оно не находится в фоновом режиме. В теории общей относительности на пространство-время может влиять материя. Это означает, что вы и существующая материя меняете пространство и время.


Ну да, не совсем. На самом деле, только большие вещи создают пространство-временные искривления. Солнце, например. Что это означает? Меньшие планеты «падают» на Солнце. И это приводит нас к гравитации. В самом деле, общая теория относительности означает не только то, что Эйнштейн похлопал Ньютона по спине и сказал «да, сэр, гравитация это круто!». Напротив, Эйнштейн дал нам причину для гравитации — искривление пространства-времени, которое вызывает гравитацию и заставляет вселенную быть такой, какая она есть.

В чем же проблема? Эйнштейн показал нам умопомрачительную картину работы вселенной, квантовая механика показала нам, как работают частицы на атомном и субатомном уровне. К сожалению, одно не объясняет другое. Значит, должна быть большая теория, которая объединит их… или нет.

Состоит ли наш мир из струн?
Мы не можем понять, как квантовая механика и общая теория относительности могут объединиться, если они еще не сделали этого до сих пор. Потому что если одна из сторон права, другая не будет работать как нужно.

Эйнштейн сказал, что пространство-время гладко и равномерно, и только большие вещи могут искажать его. Квантовая механика говорит, что мельчайшие частицы вселенной постоянно и непредсказуемо флуктуируют и меняются.

Если квантовая механика верна и все находится в постоянном движении, гравитация не будет работать так, как предсказывал Эйнштейн. Пространство-время будет находиться в постоянном противоречии со всем вокруг и будет вести себя соответствующим образом. Кроме того, квантовая механика говорит, что вы не сможете установить порядок с полной уверенностью. Вы будете предсказывать вероятности.


С другой стороны, если ОТО верна, материя не флуктуирует так дико и постоянно. В какой-то момент у вас будет возможность знать, где находится материя и куда движется. Но это противоречит квантовой механике.

Но не переживайте, ученые и физики все еще пытаются найти способ примирить два враждующих лагеря. Одним из фаворитов является теория струн, в которой говорится, что вместо частицы действует точка, на самом деле являющаяся струной. Это означает, что она может волноваться и двигаться, и скручиваться и многое другое. Также она может передавать гравитацию на квантовом уровне. Это дает возможность нащупать ходы для объединения квантмеха с ОТО. Но имейте в виду, что теория струн никогда не была подтверждена ни одним экспериментов — и много дебатов разворачивается на тему, может ли она в принципе подтвердиться.

Если такой монументальный эксперимент и будет, то, скорее всего, на ускорителе частиц. Там могут быть обнаружены суперпартнеры. Суперпартнеры — это часть теории струн, которая говорит о том, что у каждой частицы есть суперсимметричная частица-партнер, которая нестабильна и обладает другим спином (к примеру, электрон и селектрон или гравитон и гравитино). К счастью для нас, в 2010 году мы нашли подтверждения того, что существует бозон Хиггса, а он работает в пользу теории струн.


Спин также может помочь нам в экспериментах с квантовой запутанностью. В небольших масштабах она работает на ура, но ученые очень хотят отправить фотоны в космос и обратно, чтобы измерить, как это работает на большом расстоянии.

Мы также можем взять черные дыры и с их помощью создать «теорию всего». В черной дыре хранятся как крупные вещи (звезды), так и мелкие (частицы с квантово-механическим объяснением). Если мы сможем определить, что происходит, когда большое становится маленьким, мы просто примирим квантовую механику и общую теорию.

Источник: earth-chronicles.ru

Квантовая теория относительности

Несмотря на то, что мы достигли определенных успехов в понимании внутреннего устройства вселенной (бозон Хиггса, ага), в наших знаниях все еще есть зияющие пробелы. В конце концов, почему у нас до сих пор нет Теории Великого Объединения и Теории Всего?.. И почему Общая теория относительности Эйнштейна никак не может подружиться с квантовой механикой?

Кстати говоря, а зачем нам их вообще дружить?

Все наши знания о законах вселенной можно разделить на две большие группы. В одной окажется квантовая механика, из которой выросла Стандартная Модель вместе со всеми своими фундаментальными частицами и тремя взаимодействиями: электромагнитным, сильным и слабым. В другую группу попадет ОТО, разработанная Эйнштейном, описывающая четвертое фундаментальное взаимодействие — гравитацию, а также черные дыры, расширение вселенной и даже путешествия во времени.


Могут ли они сосуществовать вместе?

Вы наверно уже догадались, что мы точно не знаем, как квантовая механика и ОТО могут объединиться в квантовую гравитацию. Не смотря на больше количество любопытных теорий о том, как это можно сделать, я не буду сейчас на них останавливаться, а просто попытаюсь объяснить, зачем это вообще нужно.

Два Королевства

Квантовая механика и ОТО обычно применяются на очень различных масштабах. Например, квантовая механика долгое время оставалась загадкой для ученых потому, что ее эффекты становятся значимыми лишь на масштабах отдельных атомов. Если у вас хорошее воображение, вы сможете представить, как с помощью квантовой механики можно описать плотность, скажем, кота, но сделать это можно лишь с большой натяжкой.

Эффекты ОТО, в свою очередь, становится заметными в сильных гравитационных полях. Например, время возле поверхности Земли течет медленнее, а свет огибает скопления галактик. Эти явления могут быть, в целом, проигнорированы, но только до тех пор, пока мы не захотим разобраться, к примеру, что происходит на поверхности нейтронных звезд. Одним словом, ОТО работает на больших масштабах, начиная от звездных систем и заканчивая всей Вселенной.

Но существуют очень интересные места, где ОТО и квантовая механика пересекаются.

Например, в черных дырах, отличных астрофизических лабораториях. При сравнительно небольших размерах они обладают чрезвычайно сильным гравитационным полем. Более того, первые попытки совместить гравитационные и квантовые эффекты впервые были предприняты как раз на границе черных дыр. Например, известное Излучение Хоккинга, которое, кстати говоря, через миллиарды лет должно испарить даже самые массивные черные дыры и неизбежно привести к тепловой смерти вселенной.

В общем, описывать их снаружи у нас более-менее получается. Но чем глубже мы приближаемся к их центру, тем меньше мы понимаем, что же там происходит на самом деле.

Сингулярности

Если вы бросите что-либо за горизонт событий черной дыры, то оно никогда не вернется назад. Более того, в мире, где гравитация — главный игрок, все, что попадает в черную дыру, в конце концов, окажется заключенным в буквальном смысле точку — так называемую «сингулярность». В момент большого взрыва существовала такая же проблема: невероятно большая плотность заключенная в невероятно малом пространстве. В первое мгновение, вероятно, бесконечно малом.

Мы никогда не наблюдали «чистую сингулярность» напрямую — и есть серьёзные причины полагать, что никогда и не будем. Это довольно печально с точки зрения ее изучения, но, тем не менее, не так плохо, учитывая, что нас не разорвет гравитационными силами.

Согласно предсказаниям ОТО, черные дыры имеют буквально нулевой радиус, но в квантовой механике происходит нечто совсем другое. В ней существует принцип неопределенности, который, помимо всего прочего, утверждает, что мы принципиально не сможем определить абсолютно точное положение какой-бы то ни было частицы материи. На практике это означает, что те сущности, которые мы называем «частицами» не могут быть сколь угодно малы. Согласно квантовой механике, как бы мы не старались, массу равную массе солнца не удастся заключить в область размером меньше 10^-73 метра. Этот размер умопомрачительно мал, но, тем не менее, не равен нулю.

Если бы это была единственная нестыковка между квантовым миром и гравитацией (которая, к тому же, наверно, уже была известна читателям), можно было бы простить их за скептицизм по отношению к масштабам трагедии.

Но настоящие проблемы между ОТО и квантовой механикой начинаются гораздо раньше этих масштабов в 10^-73 метра.

Классическая и Квантовая Теории.

ОТО — это классическая теория поля, которая описывает вселенную как непрерывное распределение чисел — абсолютно детерминированных чисел — если, конечно, у вас есть достаточно точные инструменты для их измерения. Эти числа могут рассказать все об искривлении пространства-времени, везде и всегда. Само же искривление, в свою очередь, всецело описывается массой и энергией. Джон Уилер точно заметил:

Масса говорит пространству-времени как изгибаться, пространство-время говорит массе как двигаться

Но квантовые теории абсолютно другие! В квантовом мире частицы взаимодействуют друг с другом с помощью других частиц — переносчиков взаимодействия. Электромагнитные силы, к примеру, используют фотоны, сильное взаимодействие — глюоны, слабое — W и Z бозоны.

Нам не нужно нырять в черные дыры, чтобы увидеть конфликт между классической и квантовой теориями. Вспомните известный «Эксперимент с двумя щелями». В нем луч с электронами (или фотонами, или любыми другими частицами) проходит сквозь экран с двумя узкими прорезями. Ввиду квантовой неопределённости не существует способа определить конкретную прорезь, через которую пролетает электрон. Он в буквальном смысле проходит через обе щели одновременно. Даже само по себе это явление довольно странно, но в контексте гравитации оно становится абсолютно непонятным. Если электрон проходит в одно отверстие, он должен создавать слегка иное гравитационное поле, чем если бы он прошел через другое.

Еще более странным является то, что согласно эксперименту Уиллера с отложенным выбором, возможно создать такие условия, при которых электрон выберет щель в прошлом, после ретроспективных наблюдений по окончанию эксперимента. С ума сойти, правда?

Другими словами, мир гравитации должен быть абсолютно детерминированный; в квантовой механике этого как раз и не происходит.

Гравитация особенна

Есть еще более глубокая проблема. В отличии, скажем, от электричества, которое взаимодействует только с заряженными частицами, гравитация, похоже, взаимодействует со всем. Все виды масс и энергий поддаются влиянию гравитации и создают гравитационные поля. Также, в отличие от электричества, не существует отрицательных масс, которые бы смогли нейтрализовать положительные.

Мы можем представить квантовую теорию гравитации, по крайней мере, в принципе. Так же, как и у основных сил, у нас будет частица-переносчик взаимодействия, заочно названная гравитоном, которая и будет передавать сигнал.

Мы даже можем представить эксперименты, проводимые на все меньших и меньших масштабах, в которых мы будем наблюдать все больше и больше виртуальных гравитонов между частицами. Проблема в том, что на малых масштабах энергии становятся все больше и больше. Например, ядро атома разрушить гораздо сложнее, чем оторвать от него электрон.

На самых малых расстояниях рой гравитонов с огромной энергией должен создавать невероятную плотность энергии, и вот тут-то начинаются проблемы. Гравитация в теории должна взаимодействовать со всеми формами энергии, а так как мы генерируем бесконечно больше количество высокозаряженных частиц, они должны создавать сильнейшее гравитационное поле. Наверно, вы уже видите, в чем проблема. В конце концов, все подсчеты заканчиваются веером бесконечностей, лезущих отовсюду.

В электромагнетизме и других квантовых взаимодействиях, при переходе к очень малым масштабам результаты расчетов становятся крайне обескураживающими. Это расстояние, известное также как планковая длина, во много раз меньше атома — всего 10^-35м. Я в очередной раз замечу, что сейчас абсолютно непонятно, как же законы природы должны работать в масштабах меньше этого расстояния. Квантовая механика говорит, что в этом микромире могут то и дело абсолютно случайно возникать и исчезать крошечные черные дыры, таким образом предполагая, что пространство-время само по себе далеко не равномерно, если присмотреться к нему поближе.

Мы пытаемся избежать этих нестыковок теорий с помощью процесса, который называется перенормировкой. Перенормировка — это просто заковыристый способ сказать, что мы делаем расчеты только до определенного предела. Она позволяет избавиться от бесконечностей в большинстве теорий и спокойно жить дальше. Т.к. большинство взаимодействий включают в себя лишь разницу двух энергий, не имеет значения, сложили ли вы или вычли константу из всех данных (даже, по всей видимости, если эта константа — бесконечность), результат все равно получается удовлетворительным.

Не все, конечно, с этим согласны. Великий Ричард Фейнман сказал:

Этот трюк который мы делаем… Технически он называется перенормировкой. Но неважно, насколько умным словом он назван, я бы назвал его сумасшествием! Обращение к таким фокус-покусам не дает нам права утверждать, что теория квантовой электродинамики математически консистентна. Удивительно, что до сих пор толком не удалось это доказать; Я думаю, перенормировка c точки зрения математики не может считаться верной в полном смысле этого слова.

Даже не смотря на эти возражения, с гравитацией дела обстоят еще печальнее. Так как гравитация воздействует на все частицы (в отличие от электромагнетизма), эти бесконечные энергии тянут за собой бесконечную кривизну пространства-времени. И даже перенормировка не позволяет нам от нее избавиться.

Что мы знаем?

Не смотря на то, что у нас нет теории квантовой гравитации, у нас есть некоторое представление о том, как она должна выглядеть. Например, в ней точно должен быть гравитон, и поскольку гравитация, кажется, может распространятся повсюду, гравитон (как и фотон) должен обладать нулевой массой, ведь тяжелые переносчики взаимодействия (такие как W и Z бозоны) могут взаимодействовать только на очень небольших расстояниях.

Также между классической и квантовой теориями существуют любопытные связи. Например, электромагнетизм генерируется электрическими зарядами и токами. В математической модели эти источники должны производить частицы — переносчики взаимодействия со спином -1. Такие частицы с нечетным спином должны создавать отталкивающие силы — и действительно, два электрона будут отталкивать друг друга.

Стоит упомянуть, что ОТО также известна как «тензорная теория», т.к. в ней описываются все виды источников в комбинации с давлением, течением и плотностью распределения энергии. Квантовые версии тензорных теорий описывают частицы-переносчики взаимодействия со спином -2, поэтому гравитон тоже должен обладать таким спином. И — сюрприз — переносчики взаимодействия с четным спином притягивают одинаковые частицы, что отлично согласуется с тем, как работает гравитация.

Что ж, ура нам. Мы все-таки знаем что-то о том, как должен выглядить гравитон. Но касательно всех этих бесконечностей — черт, у нас нет ни малейшего представления о том, что же все-таки происходит на самом деле!

Источник: habr.com

Если мы начнём сравнивать теорию относительности с квантовой механикой, то заметим, что создатели квантовой механики — десятки учёных, в то время как единственной центральной фигурой всей теории относительности является Альберт Эйнштейн.

Понимание этой теории поможет в восприятии многих физических явлений. Она способна объяснить,  почему траектория света может искривляться, вопреки принципу Ферма о прямолинейном распространении света, или же почему не стоит опасаться чёрных дыр.

В конце концов, теория относительности объяснила множество парадоксальных явлений, которые раньше не подлежали никакому объяснению со стороны учёных.

Квантовая теория относительности

Любая физика начинается с классической механики, то есть описания макроскопического мира, его объектов и движения этих объектов. Когда объект достигает очень больших скоростей, он перестаёт подчиняться классической механике и начинает подчиняться релятивистской.

Что такое «большие скорости»? Всё сравнивается со скоростью света: если объект движется со скоростью ненамного меньшей скорости света, то он перестаёт подчиняться законам классической механики.

Общая и специальная теория относительности

Существуют общая и специальная теории относительности. Первой появилась специальная — она не учитывает гравитацию, которую, к сожалению, невозможно игнорировать. Общая теория относительности учитывает гравитацию и из неё вытекают интересные следствия, такие как красные гравитационные смещения, гравитационные волны или чёрные дыры.

Есть одна принципиально важная тема для понимания ТО — принцип относительности Галилея:

Физические процессы в инерциальных системах отсчёта (договоримся обозначать их ИСО, системы отсчёта — СО) протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения. 

Если бросить камень и перо вниз в Алматы и в Чикаго одновременно, из одной и той же высоты, пренебрегая сопротивлением воздуха (провести эксперимент в вакууме), то и перо, и камень приземлятся одновременно, из чего вытекает вывод — все покоящиеся системы отсчёта эквивалентны друг другу.

Следующий мысленный эксперимент — вы находитесь в вагоне поезда, который двигается с постоянной скоростью, вагон звукоизолированный, герметичный, в нем нет окон, поезд не трясётся по рельсам, а внутри нет часов. Вы решили заснуть.

Вопрос: как после пробуждения определить, прибыли ли вы или нет?

Ответ: никак. Вывод — система, двигающаяся с постоянной скоростью, эквивалентна покоящейся системе, и можно спокойно переходить из одной в другую, законы физики при этом не изменятся.

Нет смысла утверждать, покоится ли объект, либо двигается, если не уточнить относительно чего он покоится или двигается. Например, лежа на диване, мы покоимся относительно земли, но двигаемся относительно Солнца, так как сама Земля постоянно вращается вокруг Солнца.

Также стоит отметить, что из одной ИСО можно перейти в другую банальным использованием простейших формул. Например, если человек в поезде, движущимся со скоростью 60 км/ч, перемещается со скоростью 5 км/ч в направлении движения поезда, то относительно неподвижного наблюдателя у вокзала, человек в поезде перемещается со скоростью 65 км/ч. Очень просто.

Однако, существовало одно значительное противоречие — свет. Он не подчиняется этим правилам и в любой ИСО двигается с одинаковой скоростью (примерно 300 000 км/сек). То есть,  что для наблюдателя у вокзала, что для пассажира поезда, теперь уже с фонарём в руке, свет бы удалялся с одинаковой скоростью, несмотря на то что может казаться, что относительно неподвижного наблюдателя у вокзала, свет бы удалялся с большей скоростью — не 300 000 км/c, а 300 000 + скорость поезда в секунду.

Эйнштейн решает эту проблему в 1905 году и корректирует классические постулаты Галилея:

  1. Все физические явления — не только механические (только о механических говорилось у Галилея), — протекают одинаково во всех ИСО, то есть добавляются слабое, сильное и электромагнитное взаимодействия.
  2. Существование предельной скорости распространения взаимодействия: любые взаимодействия между телами распространяются в пустоте с универсальной конечной скоростью, не зависящей от движения тел и равной скорости света в вакууме. Иными словами, существует самая большая возможная скорость — скорость света, выше которой не может быть ни одна скорость.

Какие явления описывает специальная теория относительности?

Релятивистский эффект замедления времени

Представьте, две одинаковые ракеты летят с одинаковой скоростью, одна находится над второй. В какой-то момент времени одна ракета посылает световой сигнал второй. Если вы переместитесь во вторую ракету, относительно вас световой сигнал идёт перпендикулярно, однако относительно неподвижного свидетеля, который наблюдает за ситуацией «в целом», свет пройдёт более длинный путь, как бы по диагонали.

Почему длиннее? Вспоминаем геометрию — гипотенуза всегда длиннее катета. Однако, скорость света одинакова в обоих СО, время вроде бы тоже должно быть одинаково, но S2>S1. Противоречие (на рисунке с — скорость света).

Квантовая теория относительности

Значит, в СО движущейся ракеты время замедлилось, потому что в этой СО свет прошёл меньшее расстояние. И это действительно так. При скоростях, близких к скоростям света, время замедляется.

Релятивистский эффект сокращения длины

Допустим, ракета двигается со скоростью, составляющей 83 процента от скорости света (примерно 243 000 км/сек), тогда относительно неподвижного наблюдателя, её длина уменьшится в два раза в направлении движения.

То есть если её скорость направлена вдоль оси Х, то длина также сократится вдоль оси Х, оставаясь неизменной вдоль осей Y и Z (другими словами, сократится только длина, или ширина, или высота, в зависимости от ориентации ракеты, но не все параметры сразу).

Кстати, время для этой ракеты замедлится в два раза. Если же мы перейдём в СО ракеты, то длина останется прежней, однако все окружающие её объекты сократятся в два раза.

Квантовая теория относительности

Звучит всё невероятно. Теория подтвердилась экспериментом только в 1952 году. Есть такие частицы — пионы, время жизни которых составляет 2,6 *10−8 сек, и они двигаются со скоростью света. Если посчитать, какое расстояние пройдёт пион за всю жизнь, двигаясь со скоростью света, то получится, что он пройдёт только 7,5 м.

Однако, установка, которая «плевала» этими пионами, и приёмник находились в 100 метрах друг от друга. То есть, пионы бы не долетели до приёмника без законов СТО. Но если мы подключаем ТО, то время жизни частицы становится в 100 раз больше, то есть она способна пролететь не 7,5 м, а 750 м.

Что же происходит в СО частицы? В СО частицы она также пролетает 7,5 м., однако для неё 100 м. между ней и приёмником превращаются в 1м, согласно эффекту сокращения длины.

Когда статья Эйнштейна о специальной ТО была опубликована, особой огласки она не получила. Эйнштейн думал над тем, как включить гравитацию в свою теорию. На тот момент везде царили законы гравитации Ньютона. Благодаря им открыли Нептун.

Дело в том, что при наблюдении за Ураном выяснили, что при всех силах, которые на него действуют, у Урана должна быть совершенно другая скорость движения. Предположили существование ещё одной планеты за Ураном, которая бы объясняла данное значение скорости. В 1846 году появляется новый телескоп, обнаруживают Нептун, подтверждаются законы Ньютона. 

Однако по Ньютону, если мы сдвинем Солнце, произойдёт моментальное изменение силы, с которой Солнце притягивается к другим объектам. Скорость изменения силы бесконечно большая, что противоречит СТО (так как существует максимальное значение скорости, равное скорости света, бесконечной скорости никак не может быть).

Эйнштейн заметил ещё одну вещь: если наблюдатель находится вблизи массивного тела, то чем ближе он к этому телу, тем медленнее течёт его время. Например, в любом доме на Земле время на первом этаже течет медленнее, чем на втором. Правда, разница оказывается очень маленькой:

3*10−16 сек = 0.0000000000000003 сек

Однозначно со временем что-то не так. Эйнштейн решил, что в этом ключ ко всей его теории. Однако, он оказался неправ. 

Преподаватель Эйнштейна по математике Герман Минковский, обнаружив его работу, выдвинул свою точку зрения: нет смысла отдельно рассматривать пространство и время, физику необходимо рассматривать в четырёхмерном пространстве.

Для нас странно, что длина объекта сокращается при больших скоростях, однако Минковский считал, что нет никакого сокращения длины в четырёхмерном пространстве, и что просто проекция четырехмерного объекта в трёхмерный начинает изменяться. Четвёртой осью в четырёхмерном пространстве считается время.

Чтобы понять, что такое проекция, вспомните свою тень. Ваше тело находится в трехмёрном пространстве, однако ваша тень — на плоскости, то есть в двумерном пространстве. Она и есть проекция вашего трёхмерного тела на двумерную плоскость.

Тень редко передаёт точные пропорции и размеры человека, соответственно, если события, которые происходят в четырёхмерном пространстве, проектировать на наш, трёхмерный, то появляются искажение, допустим, в виде сокращения длины при скоростях, близких к скоростям света.

Мы реально живём в четырёхмерном пространстве?

И да, и нет. Пространство-время искривлено находящимися в нём массой и энергией. Другие же объекты чувствуют искривление пространства-времени и следуют так, как им указывает пространство.

С 1908 по 1914 Эйнштейн предпринял ряд безуспешных попыток построить такую модель гравитации, которая согласовалась бы со СТО. Наконец, в 1915 году он опубликовал ОТО.

Эйнштейн высказал предположение революционного характера: гравитация это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось раньше; оно искривлено распределёнными в нём массой и энергией. Такие тела, как Земля, вовсе не принуждаются двигаться по искривлённым орбитам гравитационной силой; они движутся по линиям, которые в искривлённом пространстве более всего соответствуют прямым в обычном пространстве и называются геодезическими.

Что такое геодезическая линия?

Геодезическая линия — это линия, соответствующая самому короткому пути между двумя точками. Очевидно, что в идеальном двумерном пространстве это просто прямой отрезок, соединяющий две точки. Однако, что будет, если мы начнём поверхность искривлять, добавляя массу, а вместе с ней и энергию? Прямые будут также прогибаться.

В пределах полученной искривлённой плоскости, искривлённая прямая будет уже называться геодезической, и, тем не менее на искривлённой плоскости она будет продолжать соответствовать самому короткому пути.

Допустим, вы совершаете трип по холмистой местности и хотите пройти как можно более короткий путь. У вас есть макет рельефа этой местности. Очень сложно прочертить самый короткий маршрут в этом случае. Но если «сплюснуть» данный рельеф в идеальную плоскость, предварительно отметив начальную и конечную точку, то можно потом просто соединить эти две точки уже в двумерной плоскости — получится прямая; опять искривить плоскость до «холмистой», и вот, пожалуйста — у вас начертанный самый короткий путь.

Например, поверхность Земли — искривлённое двумерное пространство, так как любую координату можно задать долготой и широтой. Поскольку самый короткий путь между двумя аэропортами — по геодезической, диспетчеры всегда задают пилотам именно такой маршрут.

Согласно ОТО, тела всегда перемещаются по прямым в четырёхмерном пространстве-времени, но мы видим, что в нашем трёхмерном пространстве они движутся по искривлённым траекториям. Понаблюдайте за самолётом над холмистой местностью. Сам он летит по прямой в трёхмерном пространстве, а его тень перемещается по кривой на двумерной поверхности Земли.

Квантовая теория относительности

Как это может выглядеть?

На гифке мы видим синее полотно, олицетворяющее плоскость пространства-времени. Когда мы добавляем груз, ткань искривляется: чем массивнее груз, тем больше искривляется ткань.

А запущенные шарики двигаются по эллиптическим орбитам до тех пор, пока по спирали не провалятся. Они олицетворяют планеты Солнечной системы, но планеты не проваливаются, потому что в космосе нет трения, на которое тратится кинетическая энергия шариков при соприкосновении с полотном.

Квантовая теория относительности

Эйнштейн также «схватился» за нерешённую на тот момент задачу — задачу о смещении перигелия Меркурия. Перигелий — ближайшая к Солнцу точка. Солнце находится в одном из фокусов эллиптической орбиты Меркурия.

Эллиптическая орбита Меркурия поворачивается со временем. По предсказаниям законов гравитации Ньютона, смещение Перигелия должно было составлять 1,28 угловой секунды, но по факту оно составляло 1,38 угловой секунды. (1 угловая секунда = 1/3600 от одного градуса).

Можно было бы списать на погрешность измерений, но погрешность составляла только 0,01 угловой секунды — ошибиться на 0,1 угловой секунды было невозможно. В конце концов, после открытия ОТО из уравнений теории вытекало именно такое значение смещения, которое фактически наблюдалось.

Таким образом, теория подтвердилась экспериментально и это был далеко не первый раз. Теория внесла колоссальный вклад в науку того времени, будучи проигнорированной научным сообществом на своём зародыше, она окончательно сместила Ньютоновскую средневековую физику, на которую уповали все учёные. 

Подробнее о следствиях ОТО мы расскажем в следующей статье.

 

Источник: the-steppe.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.