Вес тела картинки


Понятие и определения

Массой (обозначается буквой m) называют одну из физических величин, таких, как объём, определяющих количество вещества в объекте. Существует несколько явлений, которые позволяют её оценить. Среди теоретиков есть мнение, что некоторые из этих явлений могут быть независимы друг от друга, но в ходе экспериментов не обнаружено различий в результатах от способа измерений массы:

  • Инерционная. Определяется сопротивлением тела ускорению силой.
  • Активная и пассивная гравитационные. Измеряется силой взаимодействия гравитационных полей объектов.

Человек чувствует свою массу находясь в контакте с другой поверхностью. Это может быть стулом, земной твердью, креслом космонавта во время ускорения в ракете. В этих примерах речь идёт о величине, которую физики называют весом, а субъективно воспринимающимся как кажущийся вес.

Он равен фактической измеряемой массе почти во всех бытовых случаях, за следующими исключениями:

  • Тело получает ускорение с вертикальной составляющей по отношению к земле. Например, в лифте или самолёте.
  • Кроме гравитации Земли, на тело действуют другие силы — центробежная, гравитационная другого от тела, архимедова.

Гравитационный подход

В большинстве случаев при определении понятия веса (принятое обозначение — P, по-латински пишется как pondus) оперируют так называемым гравитационным определением. В учебниках физики формула веса для тела описывает величину как силу, действующую на объект в результате земного притяжения. На языке математики это определяется выражением P=mg, где:

  • m — масса;
  • g — гравитационное ускорение.

Из формулы вытекает, в чём измеряется вес: количественно он рассчитывается в тех же единицах, что и сила. Поэтому, согласно Международной системе единиц (СИ), P измеряется в Ньютонах.

Гравитационное поле Земли не является однородным и варьируется в пределах 0,5% по поверхности планеты. Соответственно, величина g также непостоянна. Общепринятым считается значение, называемое стандартным и равное 9,80665 м/с2. В различных местах на поверхности Земли фактическое ускорение свободного падения составляет (м/с2):

  • экватор — 9,7803;
  • Сидней — 9,7968;
  • Москва — 9,8155;
  • Северный полюс — 9,8322.

В 1901 году третья Генеральная конференция по весам и мерам установила: вес означает количество такой же природы, что и сила, То есть определила его как вектор, так как сила — векторная величина. Тем не менее некоторые школьные учебники физики и сейчас принимают P за скаляр.

Контактное определение

Другой подход описывает явление с позиции понимания какую силу называют весом тела. В этом случае P определяется процедурой взвешивания и означает силу, с которой объект действует на опору. Этот подход предполагает различие результатов в зависимости от деталей.

Например, объект в свободном падении оказывает незначительное воздействие на опору, однако, нахождение в невесомости не меняет вес в соответствии с гравитационным определением. Следовательно, подобный подход требует нахождения исследуемого тела в состоянии покоя, под действием стандартной гравитации без влияния центробежной силы вращения Земли.

Кроме того, контактное определение не исключает искажения от плавучести, которое уменьшает измеренный вес объекта. В воздухе на тела также действует сила, аналогичная влияющей на погружённое в воде. Для объектов с низкой плотностью эффект влияния становится более заметен. Примером тому может служить наполненный гелием воздушный шар, обладающий отрицательным весом. В общем смысле любое воздействие оказывает искажающий эффект на контактный вес, например:


  • Центробежная сила. Поскольку Земля вращается, объекты на поверхности подвергаются воздействию центробежных сил, более выраженных к экватору.
  • Гравитационное влияние других астрономических тел. Солнце и Луна притягивают объекты на земной поверхности в той или иной степени в зависимости от расстояния. Это влияние незначительно на бытовом уровне, но находит заметное отражение в таких явлениях, как морские приливы и отливы.
  • Магнетизм. Сильные магнитные поля способны заставить левитировать некоторые подверженные влиянию объекты.

История понятия

Понятия тяжести и лёгкости в качестве неотъемлемых свойств физических тел упоминаются ещё древнегреческими философами. Платон описывал вес как естественную тенденцию предметов к поиску себе подобных. Для Аристотеля лёгкость была свойством в восстановлении порядка основных элементов: воздуха, земли, огня и воды. Архимед рассматривал вес как качество, противоположное плавучести. Первое контактное определение было дано Евклидом, описывающее величину как лёгкость одной вещи по сравнению с другой, измеряемую балансом.

Когда средневековые учёные обнаружили, что на практике скорость падающего предмета со временем возрастала. Они изменили концепцию веса для сохранения причинно-следственных связей между явлениями. Понятие было разделено для тел в состоянии покоя и находящихся в гравитационном падении.


Значительных результатов в теории добился Галилей, пришедший к выводу, что величина пропорциональна количеству вещества в объекте, а не скорости его движения, как предполагала Аристотелева физика. Открытие Ньютоном закона всемирного тяготения привело к принципиальному отделению веса от фундаментального свойства объектов, связанных с инерцией. Факторы окружающей среды и плавучесть учёный считал искажением условий измерения. Для подобных обстоятельств он ввёл термин кажущийся вес.

В XX веке ньютоновские концепции абсолютного времени и пространства были поставлены под сомнение работами Эйнштейна. Теория относительности поставила всех наблюдателей, движущихся и ускоряющихся, в разные условия. Это привело к двусмысленности относительно того, что именно подразумевается под массой, которая вместе с гравитационной силой стала по существу зависящей от системы отсчёта величиной.

Неоднозначности, порождённые относительностью, привели к серьёзным дебатам в педагогическом сообществе о том, как определять вес для учеников и что им должно называться. Выбор стал лежать между пониманием его как силы, вызванной гравитацией Земли, и контактным определением, вытекающим из акта взвешивания.

Различия с массой


Путаница в понимании того, чем отличается масса от веса, свойственна для людей, не изучающих физику подробно. Этому есть простое объяснение — как правило, эти термины используются в повседневной жизни взаимозаменяемо. В общем случае, если тело находится на поверхности земли и неподвижно, значение массы будет равно скаляру веса в килограммах. Таблица, проясняющая разницу между понятиями, выглядит так:

Масса Вес
Является свойством материи. Постоянна всегда. Зависит от действия силы тяжести.
У материального объекта никогда не бывает равна нулю. Может быть равен нулю при определённых условиях.
Не меняется в зависимости от местоположения. Уменьшается или увеличивается в разных местах Земли или в зависимости от высоты над её поверхностью.
Является скалярной величиной. Вектор с направлением к центру земли или к другому гравитационному центру.
Может быть измерена с помощью баланса Измеряется с помощью пружинных весов.
Как правило, измеряется в граммах и килограммах. Единица у силы и веса одна — Ньютон (обозначается как Н)

Главное отличительное свойство массы заключается в том, что для классической динамики она является конкретной инвариантной величиной для каждого тела. Общая теория относительности описывает переход массы в энергию и наоборот.


Обычно численное значение между m и P на Земле строго пропорционально. На бытовом уровне чтобы узнать вес тела с известной массой, достаточно помнить, что объекты обычно весят в ньютонах приблизительно в 10 раз больше значения m в килограммах.

Способы измерения

Фактически вес можно измерить как силу реакции опоры на массу, появляющуюся в точке приложения. Величина возникновения этой силы по значению равна искомому P. Определить её можно с помощью пружинных весов. Поскольку сила тяжести, вызывающая фиксируемое отклонение на шкале, может варьироваться в разных местах, значения также будут отличаться. Для стандартизации измерительные приборы такого типа всегда калибруются на 9,80665 м/с2 в заводских условиях, а затем повторно в том месте, где будут использоваться.

Для измерения массы применяют рычажный механизм. Поскольку любые изменения в гравитации будут одинаково воздействовать на известные и неизвестные массы, балансный способ позволяет иметь в результате одинаковые значения в любом месте Земли. Весовые коэффициенты в этом случае калибруются и маркируются в единицах массы, поэтому балансировочный рычаг позволяет найти массу, сравнивая воздействие притяжения на искомый объект с воздействием на эталон.


При отсутствии гравитационного поля вдали от крупных астрономических тел, баланс рычага работать не будет, но, например, на Луне он покажет те же значения, что и на Земле. Некоторые подобные инструменты могут быть размечены в единицах веса, но, поскольку они калибруются на заводе-изготовителе для стандартной гравитации, то будут показывать P для условий, под которые они настроены.

Это значит, что рычажные весы не предназначены для измерения локальной силы тяжести, воздействующей на объект. Точный вес можно определить расчётным путём, умножив массу на значение локальной гравитации из соответствующих таблиц.

Источник: nauka.club

Невесомость: что это такое

Невесомость — это состояние, при котором тело не давит на опору или подвес.

Само слово «невесомость» как бы подсказывает нам, что веса здесь быть не должно. При этом непонятно, что с ним тогда происходит. Давайте разбираться.

Вес тела

Вес — это сила, с которой тело действует на опору или подвес. Измеряется вес, как и любая другая сила, в Ньютонах.

«Но погодите! Вес же измеряют в килограммах — я вот вешу 50»

Это не совсем верно. В быту мы часто подменяем понятие «масса» понятием «вес» и говорим: вес чемодана — десять килограммам. В физике это два совершенно разных понятия, которые при этом взаимосвязаны.


Весы

Если у вас неподалеку есть весы — приглашаем в эксперимент! Один нюанс: наша затея сработает именно с механическими весами, но не с электронными. Поехали!

Шаг 1. Если встать на весы ровно и не двигаться — ваш вес будет высчитываться по формуле:

P = mg

P — вес тела [Н]

m — масса [кг]

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с2

Здесь может возникнуть два возражения:

  1. Это же сила тяжести, а не вес. Формула такая же!
  2. На весах масса отображается в килограммах. И если я свою массу умножу на ускорение свободного падения, то явно получу число почти в 10 раз больше, чем показывают весы.

Точка приложения силы. Эта формула и правда аналогична силе тяжести. Вес тела в состоянии покоя численно равен массе тела, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.


формула сила тяжести и вес тела

Весы измеряют силу. Весы работают таким образом, что измеряют вес тела — силу, с которой мы на них действуем, а показывают — массу. Можно сделать вывод, что весы — это динамометр (прибор, измеряющий силу).

Продолжаем эксперимент.

Шаг 2. Теперь пошалим и резко встанем на носочки! Стрелка резко отклонилась влево, а потом вернулась на место. Вы придали себе ускорение, направленное вверх — в то время, как ускорение свободного падения всегда направлено к центру Земли (вниз).

Вес тела картинки

Теперь вес тела вычисляем по формуле:

P = m (g-a)

P — вес тела [Н]

m — масса [кг]

g — ускорение свободного падения [м/с2]

a — ваше ускорение [м/с2]

На планете Земля g = 9,8 м/с2

Шаг 3. Последняя часть эксперимента — резко опуститься на пятки. Теперь вы сильнее давите на весы, потому что придали ускорение, направленное вниз. Стрелка весов отклонится вправо и вернется на место, когда вы придете в состояние покоя.

Вес тела картинки

Формула веса примет вид:

P = m (g+a)

P — вес тела [Н]

m — масса [кг]

g — ускорение свободного падения [м/с2]

a — ваше ускорение [м/с2]

На планете Земля g = 9,8 м/с2


Кстати, если ровно стоять на весах, но взвешиваться в лифте — все будет работать наоборот. Если лифт едет вверх, то он как будто давит весами на человека, стоящего на них, а это как раз ситуация с увеличением веса. А если вниз — весы как будто бы от вас «убегают», чтобы показать меньшее значение.

Этот случай мы можем описать через 2 закон Ньютона. Возьмем лифт, который едет вниз. Обозначим силы на рисунке.

N – сила реакции опоры [Н];

mg – сила тяжести [Н];

a – ускорение, с которым движется лифт [м/с2].

ускорение лифта

N + mg = ma

При проецировании на ось y, направленную вниз, мы получаем:

-N + mg = ma

А теперь нам понадобится третий закон Ньютона — по нему сила реакции опоры равна весу тела:

P = N

-P + mg = ma

P = m(g-a)

Снова невесомость

Ну что, с весом разобрались. А теперь давайте сделаем так, чтобы его не стало и получилась та самая невесомость.

Чтобы привыкнуть к ощущению невесомости в космосе, космонавты тренируется в специальных самолетах-лабораториях:

пример невесомости

Он взлетает и начинает просто падать, чтобы ускорение самолета было равно ускорению свободного падения. В этот момент, в формуле веса из g вычитается равное ему значение и получается 0:

P = m (g-a) = m (9,8 — 9,8) = 0

Вот мы и в невесомости!

Кстати, есть еще вторая и третья космические скорости. Вторая космическая скорость — это скорость, которая нужна, чтобы корабль стал искусственным спутником Солнца, а третья — чтобы вылетел за пределы солнечной системы. Такие дела 🙂



Чтобы стать настоящим космонавтом, без физики не получится точно. Но изучать ее можно не только по скучным формулам и учебникам, но и в интерактивном формате: весело, в удовольствие, эффективно!

Запишите ребенка на бесплатный вводный урок физики в Skysmart: покажем, как у нас все устроено, определим план развития и влюбим в науку!

Источник: skysmart.ru

Удивительно, как много людей, употребляя слова «масса» и «вес», не понимают их различие с точки зрения физики и подразумевают одно и то же. Между тем, это различие принципиально и огромно…

Масса

Начнем с массы. Масса определяет инерционные свойства тела. Что это означает? Инертность – это способность тела сопротивляться изменению его состояния движения под действием силы. Попробуйте остановить катящийся по инерции футбольный мяч. А потом – катящийся с той же скоростью по инерции автомобиль. В последнем случае сделать это гораздо тяжелее, потому что автомобиль обладает большим количеством материи. И можно сказать, что автомобиль обладает большей массой. Измеряется масса в килограммах, а обозначается буквой m. Масса тела всегда постоянна.

Вес

Что касается веса, то это сила. Как и любая другая сила, это векторная величина (имеющая направление действия) и измеряется она в ньютонах. По определению, вес – сила, с которой тело действует на опору или подвес:

Если человек массой 70 кг неподвижно стоит на полу, какие силы на него действуют с точки зрения классической механики? Всего две. Одна из них – сила тяжести, направленная вертикально вниз. Эта та сила, с которой Земля притягивает человека, и она равна произведению массы человека m на ускорение свободного падения g (для Земли – 9,81 м/с2, округлим это значение до 10). Таким образом, эта сила будет равна mg=70*10=700Н. Часто эту силу также измеряют в килограмм-силах, кгс. Ее величина равна весу тела массой в 1 кг, поэтому обыватели часто измеряют вес в килограммах и именно поэтому часто возникает путаница с весом и массой.

Вторая сила – это сила реакции опоры N. Человек давит на пол, а пол этому сопротивляется – ровно с такой же силой, как и сила тяжести. Эта сила направлена в противоположное направление и равна по величине силе тяжести. Суммарная же сила равна F=mg-N=0.

Вы можете спросить – зачем всё это, если сила тяжести и вес – одно и то же? Ничего подобного, это абсолютно разные вещи, просто в данном примере они совпадают. Рассмотрим космонавта, находящегося во взлетающей ракете. На него также действует сила тяжести и сила реакции опоры, но плюс к этому добавляется сила, толкающая космонавта вверх вместе с ракетой. В этом случае сила реакции опоры N будет превышать силу тяжести mg, и вес космонавта возрастет, он испытает перегрузку, хотя сила тяжести и масса космонавта не изменились.

На самом деле, вес для физиков является незначащим термином. С точки зрения физики его правильней называть просто силой, а слово «вес» – это просто дань языковой традиции.

В земных условиях люди обычно приравнивают вес и массу, да и шкала у всех весов откалибрована для земной силы тяжести. Однако, взаимодействие веса и массы очень интересно наблюдать в условиях, отличных от Земли. Так, на Луне сила тяжести меньше земной в 6 раз, соответственно, вес космонавта также будет меньше в 6 раз. При этом масса его останется неизменной. Если мы попробуем забить на Луне гвоздь в доску, то молоток будет весить в 6 раз меньше. Но при ударе по шляпке, он будет воздействовать на гвоздь с той же силой, что и на Земле, потому что масса молотка не изменилась.

Итог. Масса – неотделимое свойство любого тела. Если спортивное ядро массой 7 кг тяжело метнуть на Земле, то точно также тяжело его будет метнуть и в условиях невесомости, несмотря на то, что его вес будет равен нулю.

Если тебе понравилась статья, подписывайся на канал, расскажи о нем в соцсетях, а уж мы постараемся не ударить в грязь лицом )

Источник: zen.yandex.ru

Масса

Масса обозначается символом (m ), является скалярной величиной и в СИ измеряется в килограммах.

Иногда массу в условии некоторых задач задают в граммах или, например, в тоннах. Чтобы перевести массу в килограммы, используют такие формулы:

[ large boxed{ begin{matrix} m = left( text{тонны} right) cdot 10^{3} left( text{кг}right) \ m = left( text{центнеры} right) cdot 10^{2} left( text{кг}right) \ m = left( text{граммы} right) cdot 10^{-3} left( text{кг}right) \ m = left( text{миллиграммы} right) cdot 10^{-6} left( text{кг}right) \ end{matrix}} ]

  • ( large text{(тонны)} ) – подставьте количество тонн вместо этой скобки;
  • ( large text{(центнеры)} ) – вместо этой скобки подставьте количество сотен килограммов;
  • ( large text{(граммы)} ) – подставьте количество граммов вместо этой скобки;
  • ( large text{(миллиграммы)} ) – вместо этой скобки подставьте количество миллиграммов;

От массы зависят инерционные и гравитационные свойства физических тел.

Масса в природе проявляет себя двумя способами. Поэтому, выделяют:

  1. массу инертную и
  2. массу гравитационную.

Инертная масса

Масса инертная влияет на способность тела двигаться по инерции. Такая масса используется в формуле второго закона Ньютона.

Пусть два тела находятся в инерциальной системе отсчета. Если какая-либо сила одинаково ускоряет эти тела, то они обладают одинаковой инертной массой. Здесь «одинаково ускоряет» следует понимать, как «сообщает одинаковые ускорения».

Гравитационная масса

Гравитационная масса определяет силу, с которой тело притягивается к другим телам. Эта масса используется в формуле закона всемирного тяготения.

Различные эксперименты показали, что инертная и гравитационная массы равны с высокой степенью точности. Поэтому, при изучении школьной физики можно просто говорить «масса», не уточняя, о какой именно массе идет речь.

Так же, масса входит в формулы для расчета импульса и механической энергии.

Массой обладают все макроскопические тела, а, так же, такие элементарные частицы, как протоны, нейтроны, электроны и т. д. Однако, существуют и частицы, у которых нет массы покоя, например – фотоны.

Примечание: Фотон – элементарная частица, переносчик электромагнитного взаимодействия, движется со скоростью света, часто проявляет волновые свойства. Подробнее о фотонах вы узнаете в основах квантовой физики.

Сила тяжести

Сила тяжести — это сила, с которой Земля притягивает к себе тело.

(large vec{F_{text{тяж}}} left(Hright) ) — сила тяжести, она действует на тело со стороны планеты (или другого крупного небесного тела, например, астероида, или звезды).

[large vec{F_{text{тяж}}} = m cdot vec{g}]

(large m left(text{кг}right) ) — масса тела;

(large vec{g} left(frac{text{м}}{c^{2}}right) ) — ускорение свободного падения, это не постоянная величина, она может меняться. Читайте подробнее о ускорении свободного падения .

Вес

Вес – это сила. Этой силой тело давит на опору, когда опирается на нее, или растягивает подвес, когда на нем висит.

Является векторной величиной и обозначается символом (vec{P} ).

(vec{P} left(Hright) ) – вес тела, как любая сила в СИ измеряется в Ньютонах.

Вес отличается от массы. Вес, как и любая сила, измеряется в Ньютонах, а масса измеряется в килограммах.

Когда тело опирается о горизонтальную поверхность, его вес равен по модулю силе реакции опоры по третьему закону Ньютона. Поэтому, в задачах для нахождения веса удобно вычислять силу (large vec{N}). Как только мы найдем реакцию опоры (large vec{N}), мы найдем вес тела, давящего на эту опору.

Примечание: Векторы равны по модулю, когда обладают одинаковыми длинами. Так как длина вектора обозначается числом, то физики о равных по модулю векторах сил могут сказать: силы численно равны.

Чем вес отличается от силы тяжести

Вес — это сила, принадлежащая телу. А сила тяжести — это сила, действующая на тело со стороны планеты, или любого другого (крупного) тела.

Что такое невесомость

Подбросим мяч вверх и рассмотрим свободный полет мяча. Пока он в полете, он не давит на опору и не растягивает подвес. Проще говоря, мяч находится в невесомости – то есть, не имеет веса.

Масса есть всегда, а вес может отсутствовать! Как убедимся чуть позже, одна и та же масса может обладать различным весом.

Как изменяется вес тела лифте

Давайте выясним, какой вес имеет тело, находящееся в покоящемся лифте, или в лифте, который будет двигаться вверх или вниз с ускорением, или без него.

Если скорость лифта не изменяется

Сначала рассмотрим покоящийся лифт (рис. 1а), либо движущийся вверх (рис. 1б), или вниз (рис. 1в) с неизменной скоростью.

Примечание: «неизменной», также, значит «постоянной», или «одной и той же».

По первому закону Ньютона, когда действие других тел скомпенсировано, тело, не меняющее свою скорость, находится в инерциальной системе отсчета.

Как видно из рисунка, взаимодействуют два объекта: тело и опора. Тело давит своим весом на опору, а опора отвечает телу (рис. 1) силой своей реакции.

Будем записывать для рассмотренных случаев рисунка 1 векторные силовые уравнения:

[ large N – m cdot g = 0 ]

А в этой статье подробно и с объяснениями написано о том, как составлять силовые уравнения (ссылка).

Прибавив к обеим частям уравнения величину ( m cdot vec{g} ), получим

[ large N = m cdot g ]

По третьему закону Ньютона, вес тела и реакция опоры направлены противоположно и равны по модулю. Поэтому, найдя силу реакции опоры, мы автоматически находим вес тела.

Воспользуемся тем, что ( left|vec{N} right|= left|vec{P} right|), получим

[ large boxed{ P = m cdot g }]

То есть, вес тела в покоящемся лифте, или движущемся вверх или вниз с неизменной скоростью, будет равен ( mg ). Если вектор скорости лифта не изменяется ни по направлению, ни по модулю, лифт можно считать инерциальной системой отсчета.

Если скорость лифта изменяется

Теперь выясним, каким весом будет обладать тело в лифте, движущемся с ускорением (рис. 2).

Примечание: Лифт, движущийся с ускорением, не является инерциальной системой отсчета. Читайте подробнее о инерциальных системах.

Запишем силовые уравнения. Для рисунка 2а, уравнение выглядит так:

[ large N – m cdot g = m cdot a ]

А для рисунка 2б, так:

[ large N – m cdot g = — m cdot a ]

Прибавим теперь к обеим частям уравнений величину ( m cdot g ), получим:

( large N = m cdot a + m cdot g ) – для случая рис. 2а;

( large N = — m cdot a + m cdot g ) – для рис. 2б;

Вынесем массу за скобки

( large N = m cdot left( a + g right) ) – для рис. 2а;

( large N = m cdot left( -a + g right) ) – для рис. 2б;

Учтем, что ( left|vec{N} right|= left|vec{P} right|), окончательно запишем

Для рисунка 2а — движение лифта вверх с ускорением:

[ large boxed{ P = m cdot left( g + a right) }]

Вес тела в движущемся с ускорением вверх лифте, будет равен ( m cdot left( g + a right) ), то есть, превышает величину ( m cdot g ).

Когда лифт движется вниз с ускорением (рис. 2б), вес тела, наоборот — уменьшается:

[ large boxed{ P = m cdot left( g — a right) }]

Напомним, что вес в покоящемся, или движущемся вверх или вниз с неизменной скоростью лифте, в точности равен ( m cdot g ).

Вес тела в движущемся вниз с ускорением лифте, равен ( m cdot left( g — a right) ), это меньше величины ( m cdot g ).

А если при движении вниз ускорение лифта ( vec{a} ) сравняется с ускорением ( vec{g} ), то груз перестанет давить на опору и наступит состояние невесомости, вес тела будет равен нулю.

Значит, одна и та же масса может обладать разным весом, мало того, в некоторых случаях вес вообще может отсутствовать. Масса есть всегда, а вес может отсутствовать!

Что такое перегрузка

Когда вес тела больше силы тяжести, говорят, что возникает перегрузка.

[ large boxed{ P > m cdot g }]

Когда говорят о перегрузке, принято сравнивать ускорение движения вверх с ускорением свободного падения (large vec{g}).

Например, при движении ракеты с ускорением вверх, космонавт может испытывать перегрузки до 7g. Это значит, что его вес увеличивается в 7 раз.

Первый космонавт мира — Юрий Гагарин, упоминал о перегрузке: «…какая-то сила вдавливает меня в кресло все больше и больше. … трудно пошевелить рукой или ногой…».

Подобным образом мы испытываем перегрузки в самолете во время взлета — эти перегрузки вдавливают нас в кресло. Правда, эти перегрузки значительно меньше, чем перегрузки летчиков — спортсменов, или военных, летчиков — космонавтов. Представители этих профессий тренируют свое тело для того, чтобы перегрузки легче переносить.

Подведем итоги

(P = m cdot g ) — вес тела в покоящемся или движущемся вверх или вниз с постоянной скоростью лифте.

( P = m cdot left( g + a right) ) — вес, когда лифт движется с ускорением вверх;

( P = m cdot left( g — a right) ) — вес в движущемся вниз с ускорением;

Если ускорение лифта при его движении вниз ( a = g ), наступит невесомость, вес тела исчезнет ( P = 0 ).

Источник: formulki.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.