Энтропия рабочего тела


2-й закон термодинамики. Энтропия. Определение энтропии. Эффективность теплового двигателя. Тепловой цикл Карно. Неубывание энтропии.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики :

  1. Кельвина и Планка: Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)
  2. Клаузиуса: Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает. Второй закон связан с понятием энтропии (S).

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии — стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями , определена в пересчете на абсолютные температуры

  • η = ( Th — Tc ) / Th = 1 — Tc / Th
    • где
    • η = эффективность
    • Th = верхняя граница температуры (K)
    • Tc = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности Tc должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, Tc должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0 Необратимый процесс
  • Изменение энтропии= 0 Двусторонний процесс (обратимый)
  • Изменение энтропии < 0 Невозможный процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия в системе постоянного объема определяется как :

  • dS = dH / T
    • где
    • S = энтропия (кДж/кг*К)
    • H = энтальпия (кДж/кг) (иногда вместо dH записывают dQ = количество теплоты, сообщенное системе )
    • T = абсолютная температура (K — градусы Кельвина) 

Изменение энтропии системы вызвано изменением содержания тепла в ней. Изменение энтропии равно изменению тепла системы деленной на среднюю абсолютную температуру ( Ta):

Источник: dpva.ru


Энтропией называется параметр состояния, который зависит от приведенной теплоты (отношение q /T). Изменение энтропии вычисляется по формуле:

где q1,2 количество теплоты, подведенной к рабочему телу или отведенной от него;

Tср – средняя температура подведенной (или отведенной) теплоты.

Это соотношение определяет изменение энтропии от начального значения энтропии S1 до конечного значения S2

1) при q1,2 > 0 (теплота подводится к рабочему телу) изменение энтропии положительно: S2– S1> 0, S2> S1, так как средняя термодинамическая температура должна быть всегда положительной, т. е. Tср > 0. Иными словами, энтропия тела возрастает;

2) при q1,2 < 0 (теплота отводится от рабочего тела) изменение энтропии отрицательно: S2– S1 <0, S2 < S1 т. е. энтропия тела снижается;

3) при q1,2 = 0 (адиабатический процесс) изменение энтропии равно нулю: S2 – S1= 0, S2 = S1 т. е. энтропия тела остается постоянной. Процесс, в ходе которого значение энтропии не меняется, называется изоэнтропийным.


Для идеального газа получаем следующие выводы.

1. При изотермическом процессе вместо Tср достаточно в уравнение энтропии подставлять значения температуры Т, так как T1= T2 = const.

2. Изменение энтропии при изохорном процессе равно:

S2 – S1 = 2,3m?v lg(T2 / T1).

3. Изменение энтропии при изобарном процессе равно:

S2 – S1 = 2,3m?p lg(T2 / T1).

где ?V – удельная теплоемкость в процессе с постоянным объемом;

?p– удельная теплоемкость в процессе с постоянным давлением.

Таким образом, энтропия может увеличиваться (уменьшаться) при подведении (отведении) теплоты к произвольно взятому рабочему телу либо оставаться неизменной в случае отсутствия теплообмена. При совершении цикла энтропия рабочего тела также увеличиваетсяпри получении теплоты от источника либо уменьшается при отдаче теплоты источнику.

В реальныхпроцессах вследствие явления необратимости работоспособность теплового устройства снижается. Мерой таких потерь является энтропия: ее возрастание прямо зависит от потери количества работы.

Следующая глава >

Источник: tech.wikireading.ru


  1. ↑ Наглядность, понятность, очевидность и простота есть суждения относительные, зависящее как от обыденности понятия, так и от уровня знаний человека. Крестьяне с детства знали лошадь, и она для них наглядна и понятна. Для теплотехников наглядна и понятна тепловая машина, а не лошадь. В. Томсон как-то на лекции спросил студентов: «Знаете ли вы, кто такой математик?» Написав на аудиторной доске:
    +   e x 2 d x = π {displaystyle int limits _{-infty }^{+infty } e^{-x^{2}}{mathrm {d} x}={sqrt {pi }}}


    , Томсон повернулся к студентам и, указывая на эту формулу, сказал: «Математик — тот, для кого это так же очевидно, как для вас то, что дважды два — четыре»[103].

  2. ↑ Описательная характеристика энтропии как термической (тепловой) координаты состояния не отменяет того факта, что в системе Гухмана энтропия входит в число основных неопределяемых понятий теории.
  3. ↑ Чтобы дать содержательную дефиницию какому-либо понятию, нужно указать, частным случаем какого более общего понятия оно является. Если более фундаментального понятия не существует, то понятие в конце цепочки дефиниций является неопределяемым — базовым (первичным, исходным, начальным) понятием аксиоматической системы, несводимым к более простым.

    любой науке имеются такие первичные понятия, те элементарные кирпичики, из которых строятся все остальные, производные понятия, и которым не даются содержательные дефиниции в самой научной дисциплине. Примерами неопределяемых базовых понятий служат: в математике — множество, в физике — пространство, время, масса, энергия и др. Невозможность дать понятию или переменной содержательной дефиниции без выхода за границы изучаемой дисциплины, во-первых, не означает запрета на использование для базового понятия/переменной описательных дефиниций, и, во-вторых, свойства базовых понятий/переменных описываются аксиомами рассматриваемой теории. Иными словами, набор базовых понятий/переменных научной дисциплины зависит от выбора системы изложения/построения этой дисциплины, а полный набор её аксиом образует систему содержательных дефиниций базовых понятий/переменных теории.
  4. ↑ Слово «почти» служит напоминанием о том, что любую систему построения/изложения термодинамики, в которой энтропия есть понятие вторичное (выводимое из понятий более общих), можно в принципе преобразовать в другую систему — «безэнтропийную термодинамику», — в которой энтропию как понятие необязательное уже не используют.
  5. ↑ В связи со сказанным представляют интерес воспоминания И. К. Кикоина, посещавшего в студенческие годы семинар В. А. Фока и рассказавшего историю про поиск решения сложной задачи по электростатике: «…в конце концов, получили длиннющее дифференциальное уравнение.
    о занимало всю доску. За математическими выкладками мы следили очень внимательно, так что с математикой всё было в порядке, а вот усмотреть физический смысл, скрытый за этой длинной формулой, мы не могли. Кто-то из студентов спросил Владимира Александровича: “А какой физический смысл имеет это уравнение?”. — Он на нас посмотрел с укором и сказал: “А физический смысл этого уравнения заключается в том, что оно имеет решение”»[113].

Источник: ru.wikipedia.org

Энтропией называется параметр состояния, который зависит от приведенной теплоты (отношение q /T). Изменение энтропии вычисляется по формуле:

где q1,2 количество теплоты, подведенной к рабочему телу или отведенной от него;

Tср – средняя температура подведенной (или отведенной) теплоты.

Это соотношение определяет изменение энтропии от начального значения энтропии S1 до конечного значения S2

1) при q1,2 > 0 (теплота подводится к рабочему телу) изменение энтропии положительно: S2– S1> 0, S2> S1, так как средняя термодинамическая температура должна быть всегда положительной, т. е. Tср > 0. Иными словами, энтропия тела возрастает;


2) при q1,2 < 0 (теплота отводится от рабочего тела) изменение энтропии отрицательно: S2– S1 <0, S2 < S1 т. е. энтропия тела снижается;

3) при q1,2 = 0 (адиабатический процесс) изменение энтропии равно нулю: S2 – S1= 0, S2 = S1 т. е. энтропия тела остается постоянной. Процесс, в ходе которого значение энтропии не меняется, называется изоэнтропийным.

Для идеального газа получаем следующие выводы.

1. При изотермическом процессе вместо Tср достаточно в уравнение энтропии подставлять значения температуры Т, так как T1= T2 = const.

2. Изменение энтропии при изохорном процессе равно:

S2 – S1 = 2,3m?v lg(T2 / T1).


3. Изменение энтропии при изобарном процессе равно:

S2 – S1 = 2,3m?p lg(T2 / T1).

где ?V – удельная теплоемкость в процессе с постоянным объемом;

?p– удельная теплоемкость в процессе с постоянным давлением.

Таким образом, энтропия может увеличиваться (уменьшаться) при подведении (отведении) теплоты к произвольно взятому рабочему телу либо оставаться неизменной в случае отсутствия теплообмена. При совершении цикла энтропия рабочего тела также увеличиваетсяпри получении теплоты от источника либо уменьшается при отдаче теплоты источнику.

В реальныхпроцессах вследствие явления необратимости работоспособность теплового устройства снижается. Мерой таких потерь является энтропия: ее возрастание прямо зависит от потери количества работы.

Следующая глава >

Источник: tech.wikireading.ru

Термодинамическая энтропия

Термодинамическая энтропия

К макроскопическим параметрам термодинамической системы относятся давление, объём и температура. Однако существует ещё одна важная физическая величина, которую используют для описания состояний и процессов в термодинамических системах. Её называют энтропией.

Что такое энтропия

Термодинамическая энтропия

Впервые это понятие ввёл в 1865 г. немецкий физик Рудольф Клаузиус. Энтропией он назвал функцию состояния термодинамической системы, определяющую меру необратимого рассеивания энергии.

Что же такое энтропия?

Прежде чем ответить на этот вопрос, познакомимся с понятием «приведенной теплоты». Любой термодинамический процесс, проходящий в системе, состоит из какого-то количества переходов системы из одного состояния в другое. Приведенной теплотой называют отношение количества теплоты в изотермическом процессе к температуре, при которой происходит передача этой теплоты.

Q’ = Q/T.

Для любого незамкнутого термодинамического процесса существует такая функция системы, изменение которой при переходе из одного состояния в другое равно сумме приведенных теплот. Этой функции Клаузиус дал название «энтропия» и обозначил её буквой S, а отношение общего количества теплоты ∆Q к величине абсолютной температуры Т назвал изменением энтропии.

Термодинамическая энтропия 

Обратим внимание на то, что формула Клаузиуса определяет не само значение энтропии, а только её изменение.

Что же представляет собой «необратимое рассевание энергии» в термодинамике?

Одна из формулировок второго закона термодинамики выглядит следующим образом: «Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой«. То есть часть теплоты превращается в работу, а какая-то её часть рассеивается. Этот процесс необратим. В дальнейшем рассеиваемая энергия уже не может совершать работу. Например, в реальном тепловом двигателе рабочему телу передаётся не вся теплота. Часть её рассеивается во внешнюю среду, нагревая её.

В идеальной тепловой машине, работающей по циклу Карно, сумма всех приведенных теплот равна нулю. Это утверждение справедливо и для любого квазистатического (обратимого) цикла. И неважно, из какого количества переходов из одного состояния в другое состоит такой процесс.

Если разбить произвольный термодинамический процесс на участки бесконечно малой величины, то приведенная теплота на каждом таком участке будет равна δQ/T. Полный дифференциал энтропии dS = δQ/T.

Энтропию называют мерой способности теплоты необратимо рассеиваться. Её изменение показывает, какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты.

В замкнутой изолированной системе, не обменивающейся теплом с окружающей средой, при обратимых процессах энтропия не изменяется. Это означает, что дифференциал dS = 0. В реальных и необратимых процессах передача тепла происходит от тёплого тела к холодному. В таких процессах энтропия всегда увеличивается (dS ˃ 0). Следовательно, она указывает направление протекания термодинамического процесса.

Формула Клаузиуса, записанная в виде dS = δQ/T, справедлива лишь для квазистатических процессов. Это идеализированные процессы, являющиеся чередой состояний равновесия, следующих непрерывно друг за другом. Их ввели в термодинамику для того, чтобы упростить исследования реальных термодинамических процессов. Считается, что в любой момент времени квазистатическая система находится в состоянии термодинамического равновесия. Такой процесс называют также квазиравновесным.

Конечно, в природе таких процессов не существует. Ведь любое изменение в системе нарушает её равновесное состояние. В ней начинают происходить различные переходные процессы и процессы релаксации, стремящиеся вернуть систему в состояние равновесия. Но термодинамические процессы, протекающие достаточно медленно, вполне могут рассматриваться как квазистатические.

На практике существует множество термодинамических задач, для решения которых требуется создание сложной аппаратуры, создание давления в несколько сот тысяч атмосфер, поддержание очень высокой температуры в течение длительного времени. А квазистатические процессы позволяют рассчитать энтропию для таких реальных процессов, предсказать, как может проходить тот или иной процесс, реализовать который на практике очень сложно.

Закон неубывания энтропии 

Второй закон термодинамики на основании понятия энтропии формулируется так: «В изолированной системе энтропия не уменьшается». Этот закон называют также законом неубывания энтропии.

Если в какой-то момент времени энтропия замкнутой системы отличается от максимальной, то в дальнейшем она может только увеличиваться, пока не достигнет максимального значения. Система придёт в состояние равновесия.

Клаузиус был уверен, что Вселенная представляет собой замкнутую систему. А раз так, то её энтропия стремится достичь максимального значения. Это означает, что когда-нибудь все макроскопические процессы в ней прекратятся, и наступит «тепловая смерть». Но американский астроном Эдвин Пауэлл Хаблл доказал, что Вселенную нельзя назвать изолированной термодинамической системой, так как она расширяется. Советский физик академик Ландау считал, что закон неубывания энтропии к Вселенной применять нельзя, так как она находится в переменном гравитационном поле. Современная наука пока не в состоянии дать ответ на вопрос, замкнутой ли системой является наша Вселенная или нет.

Источник: ency.info


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.