Что относится к твердым телам


Все окружающее нас вещи обладают различными свойствами и характеристиками. Это зависит от многих факторов, в том числе от физического состояния. Помимо жидкостей различают твердые тела.

Виды твердых тел. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Виды твердых тел. Автор24 — интернет-биржа студенческих работ

Все твердые тела можно раздели на две большие группы по различному состоянию:

  • кристаллические;
  • аморфные.

Кристаллические и аморфные твердые тела

Кристаллическими называют тела, которые обладают особой структурой молекулярных связей между собой. Все частицы в таком исполнении составляют кристалл и расположены в определенном порядке. Расстояние между частицами также определенное. Подобные связи еще называют кристаллической решеткой. Она представляет собой совокупность атомов и различных узлов и молекул, которые составляют твердое вещество в целом.


Подобные соединения славятся очень большой прочностью, а из металлических материалов с классической кристаллической решеткой сегодня строятся самые сложные инженерные сооружения, включая мосты, здания и иные строения. Прочность кристаллических тел отличается высокой степенью практического применения в различных сферах человеческой деятельности. Однако реальная прочность кристаллов оказалось гораздо меньше расчетной прочности, так как на их поверхности обнаружены многочисленные дефекты в основе кристаллической решетки.

Готовые работы на аналогичную тему

  • Курсовая работа Виды твердых тел 470 руб.
  • Реферат Виды твердых тел 250 руб.
  • Контрольная работа Виды твердых тел 190 руб.

Аморфными твердыми телами называют такие тела, которые обладают одинаковыми физическим свойствами по всем направлениям. Подобное свойство также называют изотропностью. Такие аморфные тела характеризуются беспорядочным расположением элементов молекулярной связи. Они состоят из бесконечного количества соединений атомов и молекул. В кристаллических телах внутренняя структура резко контрастирует с аморфными телами

Кристаллические тела делятся на:

  • монокристаллы;
  • поликристаллы.

Монокристаллы характеризуются периодичностью по своей структуре и многократному повторению связей во всем объеме.

Для поликристаллов основополагающим стало наличие кристаллитов. Они выглядят, как множество сросшихся между собой хаотически расположенных маленьких кристаллов.

Структура кристаллов


Структура кристаллов. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Структура кристаллов. Автор24 — интернет-биржа студенческих работ

С кристаллической структурой веществ человек сталкивается постоянно в ежедневном режиме. Мы ходим зимой по снегу или льду, имеющим в своей основе чистую структуру кристалла. Она формируется из кристаллической воды. Многая пища состоит из кристалликов соли или сахара.

Такая многогранная натура твердых телах характеризуется несколькими схожими и постоянно повторяющимися элементами внутренней конструкции. Атомы и иные молекулярные связи располагаются в отдельных кристаллических решетках, при этом все выглядит предельно упорядоченно. Складывается система похожих многогранников. Таким образом, можно искусственным образом воспроизвести подобные молекулярные связи.

Упорядоченное расположение всех частиц в узлах кристаллической решетки придает правильную и красивую форму с симметричным расположением сторон и углов. Впервые такую структуру смогли показать и объяснить только 200 лет назад.

Для роста кристаллов необходимо создать определенные условия.


нтр кристаллизации становится своеобразной точкой отсчета будущего каркаса вещества. Его можно создать искусственным или естественным способом. Для этого в прозрачном растворе наблюдают за движением ионов или молекул. Они ведут себя достаточно непредсказуемым образом и постоянно сталкиваются, при этом идет формирование новых протосвязей – зародышей будущего кристаллического твердого тела. При повторных взаимодействиях можно увидеть, что приобретаются формы структуры мельчайшего кристаллика, который станет элементом ячейки тела. Под скоплением частиц происходит постепенный рост решетки, при этом появляется тот самый центр кристаллизации. Его основой могут быть самые разнообразные вещества, которые содержатся и плавают в сосуде. В процессе роста появляются дополнительные связи и происходит превращение в большое твердое тело с кристаллической основой.

Типы кристаллических твердых веществ

Твердое состояние вещества предполагает наличие у тел кристаллической решетки. Подобные тела делятся на несколько типов:

  • в кристаллической решетке с атомами частицы твердого вещества связаны ковалентной связью;
  • в молекулярной кристаллической решетке между частицами существует небольшая связь;
  • в узлах ионной кристаллической решетки положительно заряженные частицы чередуются с отрицательно заряженными;
  • в металлической кристаллической решетке в узлах присутствуют только ионы химических веществ, которые заряжены положительно.

Особенности твердых веществ

По характеру движения электронов на внешнем уровне атомов твердого тела можно установить его электрические специфические свойства и признаки. Сегодня выделяют несколько видов таких тел в зависимости от типа связи атомов.

При ионной связи атомов основной характерной чертой стала сила электростатического притяжения. Такие вещества способны отражать и поглощать свет в инфракрасной плоскости. При небольшой температуре ионная связь отличается малой электропроводностью.

Ковалентная связь осуществляется за счет электронной пары. Она принадлежит обоим атомам. Подобная связь также делится на простую, двойную и тройную по наличию числа пар электронов. Наиболее твердые кристаллы относятся к ковалентной связи.

Металлическая связь возникает при возникновении больших атомов. Она образуется при помощи процесса объединения валентных электронов атомов. Большие атомы способны отдавать свои электроны, что способствует формированию сложных соединений. Так образуются металлы и другие сложные твердые вещества. Вещества с металлической связью разнообразны по физическим свойствам. Среди них выделяют жидкие металлы, мягкие, очень твердые.

При молекулярной связи, которая образуется в кристаллах, образуется отдельными молекулами вещества. Силы, при которых происходят процессы, обладают значительной степенью стабильности. Молекулы притягиваются друг относительно друга только слабым межмолекулярным притяжением. При нагревании вещества подобные недолговечные связи утрачивают свою актуальность и разрушаются.

Водородная связь может возникнуть между поляризованными положительно заряженными атомами молекулы и той частью, которая является частью отрицательно поляризованной частицей или ее частью.

Источник: spravochnick.ru

Виды твердых веществ


Все твердые вещества подразделяют на две группы.

  1. Аморфные, в которых отдельные частицы располагаются хаотично. Другими словами: в них нет четкой (определенной) структуры. Эти твердые вещества способны плавиться в каком-то установленном промежутке температур. К самым распространенным из них можно отнести стекло и смолу.
  2. Кристаллические, которые, в свою очередь, подразделяются на 4 типа: атомные, молекулярные, ионные, металлические. В них частицы располагаются только по определенной схеме, а именно в узлах кристаллической решетки. Ее геометрия в разных веществах может сильно различаться.

Твердые кристаллические вещества преобладают над аморфными по своей численности.

Типы кристаллических твердых веществ

В твердом состоянии практически все вещества имеют кристаллическую структуру. Они отличаются своим строением. Кристаллические решетки в своих узлах содержат различные частицы и химические элементы. Именно в соответствии с ними они и получили свои названия. У каждого типа имеются характерные для него свойства:


  • В атомной кристаллической решетке частицы твердого вещества связаны ковалентной связью. Она отличается своей прочностью. Благодаря этому такие вещества отличаются высокой температурой плавления и кипения. К этому типу относятся кварц и алмаз.
  • В молекулярной кристаллической решетке связь между частицами отличается своей слабостью. Вещества такого типа характеризуются легкостью закипания и плавления. Они отличаются летучестью, благодаря которой имеют определенный запах. К таким твердым телам относятся лед, сахар. Движения молекул в твердых веществах этого типа отличаются своей активностью.
  • В ионной кристаллической решетке в узлах чередуются соответствующие частицы, заряженные положительно и отрицательно. Они удерживаются электростатическим притяжением. Данный тип решетки существует в щелочах, солях, основных оксидах. Многие вещества этого вида легко растворяются в воде. Благодаря достаточно прочной связи между ионами они тугоплавки. Практически все они не имеют запаха, поскольку для них характерна нелетучесть. Вещества с ионной решеткой неспособны проводить электрический ток, поскольку в их составе нет свободных электронов. Типичный пример ионного твердого вещества – поваренная соль. Такая кристаллическая решетка придает ей хрупкость. Это связано с тем, что любой ее сдвиг может привести к возникновению сил отталкивания ионов.
  • В металлической кристаллической решетке в узлах присутствуют только ионы химических веществ, заряженные положительно. Между ними есть свободные электроны, через которые отлично проходит тепловая и электрическая энергия. Именно поэтому любые металлы отличаются такой особенностью, как проводимость.

Общие понятия о твердом теле

Твердые тела и вещества – это практически одно и то же. Этими терминами называют одно из 4 агрегатных состояний. Твердые тела имеют стабильную форму и характер теплового движения атомов. Причем последние совершают малые колебания рядом с положениями равновесия. Раздел науки, занимающийся изучением состава и внутренней структуры, называют физикой твердого тела. Существуют и другие важные области знаний, занимающиеся такими веществами. Изменение формы при внешних воздействиях и движении называют механикой деформируемого тела.

Благодаря различным свойствам твердых веществ они нашли применение в разных технических приспособлениях, созданных человеком. Чаще всего в основе их употребления лежали такие свойства, как твердость, объем, масса, упругость, пластичность, хрупкость. Современная наука позволяет использовать и другие качества твердых веществ, которые можно обнаружить исключительно в лабораторных условиях.

Что такое кристаллы

Кристаллы – это твердые тела с расположенными в определенном порядке частицами. Каждому химическому веществу соответствует своя структура. Его атомы образуют трехмерно-периодическую укладку, называемую кристаллической решеткой. Твердые вещества обладают различной симметрией структуры. Кристаллическое состояние твердого тела считается устойчивым, поскольку имеет минимальное количество потенциальной энергии.


Подавляющее большинство твердых материалов (природных) состоит из огромного числа беспорядочно ориентированных отдельных зерен (кристаллитов). Такие вещества называют поликристаллическими. К ним относят технические сплавы и металлы, а также множество горных пород. Монокристаллическими называют одиночные природные или синтетические кристаллы.

Чаще всего такие твердые тела образуются из состояния жидкой фазы, представленного расплавом или раствором. Иногда их получают и из газообразного состояния. Этот процесс называют кристаллизацией. Благодаря научно-техническому прогрессу процедура выращивания (синтеза) различных веществ получила промышленный масштаб. Большинство кристаллов имеет естественную форму в виде правильных многогранников. Их размеры бывают самыми разными. Так, природный кварц (горный хрусталь) может весить до сотен килограммов, а алмазы – до нескольких грамм.

В аморфных твердых телах атомы находятся в постоянном колебании вокруг хаотически находящихся точек. В них сохраняется определенный ближний порядок, но отсутствует дальний. Это обусловлено тем, что их молекулы расположены на расстоянии, которое можно сравнить с их размером. Наиболее часто встречающимся в нашей жизни примером такого твердого вещества является стеклообразное состояние. Аморфные вещества часто рассматриваются как жидкость с бесконечно большой вязкостью. Время их кристаллизации иногда так велико, что и вовсе не проявляется.


Именно вышеперечисленные свойства данных веществ делают их уникальными. Аморфные твердые тела считаются нестабильными, поскольку со временем могут перейти в кристаллическое состояние.

Молекулы и атомы, из которых состоит твердое вещество, упакованы с большой плотностью. Они практически сохраняют свое взаимоположение относительно иных частиц и держатся вместе благодаря межмолекулярному взаимодействию. Расстояние между молекулами твердого вещества в различных направлениях именуют параметром кристаллической решетки. Структура вещества и ее симметричность определяют множество свойств, таких как электронная зона, спайность и оптика. При воздействии на твердое вещество достаточно большой силы эти качества могут быть в той или иной степени нарушены. При этом твердое тело поддается остаточной деформации.

Атомы твердых тел совершают колебательные движения, которыми обусловлено обладание ими тепловой энергией. Поскольку они ничтожно малы, их можно наблюдать только при лабораторных условиях. Молекулярное строение твердого вещества во многом влияет на его свойства.

Изучение твердых веществ

Особенности, свойства данных веществ, их качества и движение частиц изучаются различными подразделами физики твердого тела.

Для исследования используются: радиоспектроскопия, структурный анализ при помощи рентгена и другие методы. Так изучаются механические, физические и тепловые свойства твердых веществ. Твердость, сопротивление нагрузкам, предел прочности, фазовые превращения изучает материаловедение. Оно в значительной степени перекликается с физикой твердых тел. Существует и другая важная современная наука. Исследование существующих и синтезирование новых веществ проводятся химией твердого состояния.

Особенности твердых веществ


Характер движения внешних электронов атомов твердого вещества определяет многие его свойства, например, электрические. Существует 5 классов таких тел. Они установлены в зависимости от типа связи атомов:

  • Ионная, основной характеристикой которой является сила электростатического притяжения. Ее особенности: отражение и поглощение света в инфракрасной области. При малой температуре ионная связь отличается малой электропроводностью. Примером такого вещества является натриевая соль соляной кислоты (NaCl).
  • Ковалентная, осуществляемая за счет электронной пары, которая принадлежит обоим атомам. Такая связь подразделяется на: одинарную (простую), двойную и тройную. Эти названия говорят о наличии пар электронов (1, 2, 3). Двойные и тройные связи называют кратными. Существует еще одно деление этой группы. Так, в зависимости от распределения электронной плотности выделяют полярную и неполярную связь. Первая образуется разными атомами, а вторая – одинаковыми. Такое твердое состояние вещества, примеры которого — алмаз (С) и кремний (Si), отличается своей плотностью. Самые твердые кристаллы относятся именно к ковалентной связи.
  • Металлическая, образующаяся путем объединения валентных электронов атомов. В результате чего возникает общее электронное облако, которое смещается под воздействием электрического напряжения. Металлическая связь образуется тогда, когда связываемые атомы большие. Именно они способны отдавать электроны. У многих металлов и сложных соединений данной связью образуется твердое состояние вещества. Примеры: натрий, барий, алюминий, медь, золото. Из неметаллических соединений можно отметить следующие: AlCr2, Ca2Cu, Cu5Zn8. Вещества с металлической связью (металлы) разнообразны по физическим свойствам. Они могут быть жидкими (Hg), мягкими (Na, K), очень твердыми (W, Nb).
  • Молекулярная, возникающая в кристаллах, которые образуются отдельными молекулами вещества. Ее характеризуют промежутки между молекулами с нулевой электронной плотностью. Силы, связывающие атомы в таких кристаллах, значительны. При этом молекулы притягиваются друг к другу только слабым межмолекулярным притяжением. Именно поэтому связи между ними легко разрушаются при нагревании. Соединения между атомами разрушаются намного сложнее. Молекулярная связь подразделяется на ориентационную, дисперсионную и индукционную. Примером такого вещества является твердый метан.
  • Водородная, которая возникает между положительно поляризованными атомами молекулы или ее части и отрицательно поляризованной наименьшей частицей иной молекулы либо другой части. К таким связям можно отнести лед.

Свойства твердых веществ

Что нам известно на сегодняшний день? Ученые давно изучают свойства твердого состояния вещества. При воздействии на него температур изменяется и оно. Переход такого тела в жидкость называют плавлением. Трансформация твердого вещества в газообразное состояние называется сублимацией. При понижении температуры происходит кристаллизация твердого тела. Некоторые вещества под действием холода переходят в аморфную фазу. Этот процесс ученые называют стеклованием.

При фазовых переходах изменяется внутренняя структура твердых тел. Наибольшую упорядоченность она приобретает при понижении температуры. При атмосферном давлении и температуре Т > 0 К любые вещества, существующие в природе, затвердевают. Только гелий, для кристаллизации которого нужно давление в 24 атм, составляет исключение из этого правила.

Твердое состояние вещества придает ему различные физические свойства. Они характеризуют специфическое поведение тел под воздействием определенных полей и сил. Эти свойства подразделяют на группы. Выделяют 3 способа воздействия, соответствующие 3 видам энергии (механической, термической, электромагнитной). Соответственно им существует 3 группы физических свойств твердых веществ:

  • Механические свойства, связанные с напряжением и деформацией тел. По этим критериям твердые вещества делят на упругие, реологические, прочностные и технологические. В покое такое тело сохраняет свою форму, но оно может изменяться под действием внешней силы. При этом его деформация может быть пластической (начальный вид не возвращается), упругой (возвращается в первоначальную форму) или разрушительной (при достижении определенного порога происходит распад/разлом). Отзыв на прилагаемое усилие описывают модулями упругости. Твердое тело сопротивляется не только сжатию, растяжению, но и сдвигам, кручению и изгибам. Прочностью твердого тела называют его свойство сопротивляться разрушению.
  • Термические, проявляющиеся при воздействии тепловых полей. Одно из самых важных свойств – температура плавления, при которой тело переходит в жидкое состояние. Оно отмечается у кристаллических твердых веществ. Аморфные тела обладают скрытой теплотой плавления, поскольку их переход в жидкое состояние при повышении температуры происходит постепенно. По достижении определенной теплоты аморфное тело теряет упругость и приобретает пластичность. Это состояние означает достижение им температуры стеклования. При нагревании происходит деформация твердого тела. Причем оно чаще всего расширяется. Количественно это состояние характеризуется определенным коэффициентом. Температура тела влияет на такие механические характеристики, как текучесть, пластичность, твердость и прочность.
  • Электромагнитные, связанные с воздействием на твердое вещество потоков микрочастиц и электромагнитных волн большой жесткости. К ним условно относят и радиационные свойства.

Зонная структура

Твердые вещества классифицируются и по так называемой зонной структуре. Так, среди них различают:

  • Проводники, отличающиеся тем, что зоны их проводимости и валентности перекрываются. При этом электроны могут перемещаться между ними, получая малейшую энергию. К проводникам относятся все металлы. При приложении к такому телу разности потенциалов образуется электрический ток (благодаря свободному передвижению электронов между точками с наименьшим и большим потенциалом).
  • Диэлектрики, зоны которых не перекрываются. Интервал между ними превышает 4 эВ. Для проведения электронов из валентной в проводимую зону необходима большая энергия. Благодаря таким свойствам диэлектрики практически не проводят ток.
  • Полупроводники, характеризующиеся отсутствием зон проводимости и валентности. Интервал между ними меньше 4 эВ. Для перевода электронов из валентной в проводимую зону необходима энергия меньшая, чем для диэлектриков. Чистые (нелегированные и собственные) полупроводники плохо пропускают ток.

Движения молекул в твердых веществах обуславливают их электромагнитные свойства.

Другие свойства

Твердые тела подразделяются и по своим магнитным свойствам. Есть три группы:

  • Диамагнетики, свойства которых мало зависят от температуры или агрегатного состояния.
  • Парамагнетики, являющиеся следствием ориентации электронов проводимости и магнитных моментов атомов. Согласно закону Кюри, их восприимчивость убывает пропорционально температуре. Так, при 300 К она составляет 10-5.
  • Тела с упорядоченной магнитной структурой, обладающие дальним порядком атомов. В узлах их решетки периодически располагаются частицы с магнитными моментами. Такие твердые тела и вещества часто используются в разных сферах деятельности человека.

Самые твердые вещества в природе

Какие же они? Плотность твердых веществ во многом определяет их твердость. За последние годы ученые открыли несколько материалов, которые претендуют на звание «наиболее прочного тела». Самое твердое вещество – это фуллерит (кристалл с молекулами фуллерена), который примерно в 1,5 раза тверже алмаза. К сожалению, он пока доступен только в крайне малых количествах.

На сегодняшний день самое твердое вещество, которое в дальнейшем, возможно, будет использоваться в промышленности, – лонсдейлит (гексагональный алмаз). Он на 58% тверже бриллианта. Лонсдейлит – аллотропная модификация углерода. Его кристаллическая решетка очень напоминает алмазную. Ячейка лонсдейлита содержит 4 атома, а бриллианта – 8. Из широко используемых кристаллов на сегодня самым твердым остается алмаз.

Источник: FB.ru

Твердое тело является одним из трех основных состояний материи, наряду с жидкостью и газом. Материя — это вещество вселенной, атомы, молекулы и ионы, которые составляют все физические вещества. В твердом теле, эти частицы плотно упакованы вместе и не могут свободно перемещаться внутри вещества. Молекулярное движение для частиц в твердом теле ограничено очень малыми колебаниями атомов вокруг их фиксированных положений; поэтому твердые тела имеют фиксированную форму, которую трудно изменить. Твердые тела также имеют определенный объем, то есть они сохраняют свой размер независимо от того, как вы пытаетесь их изменить. 

Твердые вещества делятся на две основные категории: кристаллические твердые вещества и аморфные твердые вещества, основанные на том, как расположены частицы.

Кристаллические твердые вещества

Кристаллические твердые вещества или кристаллы рассматриваются как настоящие твердые тела. Минералы представляют собой кристаллические твердые вещества. Обычная поваренная соль является одним из примеров такого твердого вещества. В кристаллических твердых телах атомы, ионы или молекулы расположены упорядоченно и симметрично во всем кристалле. Самая маленькая повторяющаяся структура твердого тела называется элементарной ячейкой, которая похожа на кирпич в стене. Элементарные ячейки объединяются в сеть, называемую кристаллической решеткой. Существует 14 типов решеток, называемых решетками Браве (названных в честь Августа Браве, французского физика 19-го века), и они классифицируются на семь кристаллических систем, основанных на расположении атомов — кубическую, гексагональную, тетрагональную, ромбоэдрическую, орторомбическую, моноклинную и триклинную.

Кроме регулярного расположения частиц, твердые тела обладают несколькими другими характерными свойствами. Они, как правило, вообще несжимаемы, а это означает то, что их нельзя сжать в более мелкую форму. Из-за повторяющейся геометрической структуры кристалла, все связи между частицами имеют равную силу. Это значит, что кристаллическое твердое тело будет иметь определенную точку плавления, поскольку применение тепла одновременно разрушит все связи.

Кристаллические твердые вещества также проявляют анизотропию. Это означает, что такие свойства, как показатель преломления (сколько света изгибается при прохождении вещества), проводимость (насколько хорошо он проводит электричество) и прочность на растяжение (сила, необходимая для его разрыва), будут варьироваться в зависимости от направления, от которого была применена сила. Кристаллические твердые вещества также проявляют свойство расщепления — при разрыве части будут иметь выровненную поверхность или прямые края.

Типы кристаллических твердых веществ

Существует четыре типа кристаллических твердых тел: ионные твердые тела, молекулярные твердые тела, сетевые ковалентные твердые тела и металлические твердые тела.

Ионные твердые тела

Ионные соединения образуют кристаллы, которые состоят из противоположно заряженных ионов — положительно заряженного катиона и отрицательно заряженного аниона. Из-за сильного притяжения между противоположными зарядами требуется много энергии для преодоления ионных связей. Это означает, что ионные соединения имеют очень высокую температуру плавления, часто между 300 и 1000 градусов по Цельсию.

Хотя сами кристаллы являются твердыми, хрупкими и непроводящими, большинство ионных соединений можно растворить в воде, образуя раствор свободных ионов, который будет проводить электричество. Они могут быть простыми двойными солями, такими как хлорид натрия NaCl или поваренная соль, где один атом металлического элемента — натрия, связан с одним атомом неметаллического элемента — хлора. Они также могут состоять из многоатомных ионов, таких как нитрат аммония NH4NO3. Многоатомные ионы представляют собой группы атомов, которые разделяют электроны — это называется ковалентная связь, они функционируют в соединении, как если бы они составляли один заряженный ион.

Молекулярные твердые вещества

Молекулярные твердые вещества состоят из ковалентно связанных молекул, притягиваемых друг к другу электростатическими силами — это называется Силы ВандерВаальса. Поскольку ковалентная связь предполагает совместное использование электронов, а не прямой перенос этих частиц, общие электроны могут проводить больше времени в электронном облаке более крупного атома, вызывая слабую или смещающуюся полярность. Это электростатическое притяжение между двумя полюсами — диполями, значительно слабее, чем ионное или ковалентное связывание, поэтому молекулярные твердые тела, как правило, мягче, чем ионные кристаллы, и имеют более низкие точки плавления — многие из них будут плавиться при температуре менее 100°C. Большинство молекулярных твердых веществ неполярны. Эти неполярные молекулярные твердые вещества не будут растворяться в воде, но будут растворяться в неполярном растворителе, таком как бензол и октан. Полярные молекулярные твердые вещества, такие как сахар, легко растворяются в воде. Молекулярные твердые тела являются непроводящими.

Примеры молекулярных твердых веществ — лед, сахар, галогены, такие как твердый хлор Cl2, соединения, состоящие из галогена и водорода, такие как хлористый водород HCl. Фуллерены также являются молекулярными твердыми веществами.

Ковалентные твердые вещества

В сплошной структуре твердого тела нет отдельных молекул. Атомы ковалентно связаны в непрерывной сети, что в свою очередь приводит к кристаллической структуре. Каждый атом ковалентно связан со всеми окружающими атомами. Ковалентные твердые тела обладают свойствами, аналогичными свойствам ионных твердых тел. Они очень твердые с чрезвычайно высокими температурами плавления, обычно выше 1000 градусов по Цельсию. В отличии от ионных соединений, они не растворяются в воде и не проводят электричество.

Примеры ковалентные твердых веществ — алмазы, аметисты и рубины.

Металлические твердые вещества

Металлы представляют собой непрозрачные, блестящие твердые вещества, которые являются пластичными. Они мягкие и могут быть сформированы или спрессованы в тонкие листы, или даже втянуты в провода. Валентные электроны не передаются и не распределяются, поскольку находятся в ионной и ковалентной связи. Электронные облака соседних атомов перекрываются, так что электроны становятся делокализованными. Электроны перемещаются с относительной свободой от одного атома к другому по всему кристаллу.

Металл можно описать как решетку положительных катионов в "море" отрицательных электронов. Эта подвижность электронов означает, что металлы обладают высокой проводимостью тепла и электричества. Металлы, как правило, имеют высокие точки плавления, хотя заметными исключениями являются ртуть, температура плавления которой составляет минус 38,8 градуса по Цельсию, и фосфор с температурой плавления 44 градуса по Цельсию.

Сплав представляет собой твердую смесь металлического элемента с другим веществом. Хотя чистые металлы могут быть чрезмерно податливыми и тяжелыми, сплавы являются более используемыми. Бронза — сплав меди и олова, а сталь — сплав железа, углерода и других добавок.

Аморфные твердые вещества

В аморфных твердых телах ("твердые тела без формы") частицы не имеют повторяющейся структуры решетки. Примерами аморфных твердых веществ являются стекло, резина, гели и большинство пластмасс. Аморфное твердое вещество не имеет определенной температуры плавления. Оно плавится постепенно в определенном диапазоне температур, потому что связи не разрываются все сразу. Аморфное твердое вещество расплавится в мягкое, податливое состояние (свечной воск или расплавленное стекло), прежде чем полностью превратиться в жидкость. 

Аморфные твердые тела не имеют характерной симметрии, поэтому они не имеют ровных плоскостей при разрезании — края могут быть изогнуты. Они называются изотропными, поскольку такие свойства, как показатель преломления, проводимость и прочность на растяжение, равны независимо от направления, в котором применяется сила. 

👍 👍 👍

Источник: zen.yandex.ru

Тип кристиаллической решетки твердых веществ

Тип решетки зависит от того, какие частицы находятся в узлах решетки. Существует 4 основных типа пространственных решеток — ионная, молекулярная, атомная и металлическая.

С повышением температуры энергия колебаний частиц твердого вещества увеличивается, и когда она превышает энергию межмолекулярного притяжения, кристаллическая решетка разрушается — происходит плавление.

Ионная структура

Вещества с ионной структурой, например хлорид натрия, обычно имеют довольно высокие температуры плавления. Это свойство вытекает из сильного взаимодействия между противоположно заряженными ионами решетки. В тоже время ионные вещества достаточно хрупкие. Силой, приложенной кристаллу извне, можно сместить слои ионов, так что одинаково заряженные ионы окажутся друг напротив друга. Они начнут отталкиваться, слои раздвигаться, и кристаллическая решетка в этом месте разрушится. Растворы и расплавы таких соединений хорошо проводят электрический ток.

Кристаллическая решетка хлорида натрия

На рисунке пространственная модель кубической решетки кристалла хлорида натрия. Здесь показаны относительные размеры двух типов ионов и их расположение в пространстве.

Молекулярная структура твердых веществ

В узлах атомной решетки находятся атомы. Молекулы состоят из атомов, связанных прочной ковалентной связью. Например, молекулы йода состоит из двух атомов, связанных одинаковой ковалентной связью. Связи между молекулами и твердых веществ не столь прочны.

Молекула йода I2. Твердый йод состоит из молекул йода, связанных в регулярную кристаллическую решетку. Каждая молекула йода состоит из 2 прочно связанных между собой атомов йода.

Кристаллическая решена твердого йода

Йод в твердом состоянии достаточно мягкий элемент, поскольку связи между его молекулами слаб.

Как выглядит твердый йод

Твердые вещества с молекулярной структурой плавятся, как правило, при низких температурах. При плавлении ковалентные связи не рвутся, разрушаются только связи между слабо взаимодействующими друг с другом молекулами.

Атомная структура

Свободный углерод известен в двух модификациях — алмаз и графит. И алмаз и графит состоит только из атомов углерода, однако эти два вещества имеют совершенно разные структуры. В графите атом углерода соединен с 3 другими атомами короткими прочными ковалентными связями. 4-ый электрон остается свободным, что обусловливает электропроводность графита. Шестиугольные кольца образуют плоские слои.

Связи между слоями довольно слабые, и слои могут скользить один относительно другого. Именно поэтому графит используют как твердый смазочный материал. В алмазе каждый атом углерода соединен прочными ковалентными связями с 4 другими атомами. Миллиарды атомов связаны в трехмерную кристаллическую решетку необычной прочности, что делает алмаз самым твердым из известных веществ.

Строение кристаллических решеток алмаза и графита

Несомненно, алмаз встречается намного реже, чем графит, и гораздо ценнее его. И алмаз и графит состоят только из атомов углерода, однако эти 2 вещества имеют совершенно разные структуры, и следовательно, совершенно разные своства. На рисунке показана структура кристаллической решетки алмаза.

Строение атомов поваренной соли

Кристаллы из поваренной соли состоят из ионов натрия и хлорид ионов. На рисунке атомы показаны в виде шариков. Шарики условно разнесены, чтобы усло была видна трехмерная структура кристалла.

Карандашный грифель сделан из графита. Слабые силы притяжения между слоями атомов углерода позволяют слоям скользить относительно друг-друга, вот поэтому на бумаге и остается графитовый след.

Металлическая структура твердых веществ

В узлах веществ с металлической решеткой находятся положительные ионы и атомы металлов, а между узлами — электроны. Атомы плотно упакованы слоями, причем атомы одного слоя приходятся на углубление соседнего слоя. Взаимодействия между атомами в такой структуре довольно сильны, и большинство металлов имеют высокие температуры плавления.

Множество электронов могут свободно перемещаться по всему кристаллу металла, и поэтому называются свободными электронами. Свободные электроны имеют отрицательный заряд и притягивают катионы металлов, в результате чего кристаллическая решетка металлов является устойчивой. Свободные электроны могут свободно переносить теплоту и электричество, поэтому они являются причиной главных физических свойств, отличающих металлы от неметаллов, — высокой электро- и теплопроводности.

Атомы металла в твердом состоянии плотно упакованы. Внешние электроны свободно передвигаются и равномерно распределены между всеми атомами. Единое электронное облако прочно связывает атомы друг с другом.

При прохождении электрического тока через металл суммарный поток электронов имеет определенное направление — от отрицательного полюса к положительному.

Проводимость графита — редкий пример проводника неметалла

Электрический ток — это направленный поток заряженных частиц. Такими заряженными частицами могут быть ионы или электроны, способные свободно передвигаться. В некоторых случаях способность материала проводить или не проводить электрический ток позволяет судить о его структуре.

Графит проводит ток, поскольку каждый атом углерода в его структуре соединен ковалентно только с 3 другими атомами. Таким образом, 1 (4-ы) электрон у каждого атома остается относительно свободным, принимая участия в образовании связи, «размазанной» по всему слою атомов. Такая связь называется делокализованной. Она является источников электронов, способных свободно передвигаться по слоям графита проводить электрический ток.

Интересное видео, в котором наглядно показана не только проводимость графита, но и образование электрической дуги между графитовыми стержнями.

Когда вещества с ионными связями (соли) расплавлены или растворены в воде, кристаллическая решетка разрушается, ионы становятся свободными и могут проводить электричество. Это явление помогло в свое время ученым понять, что ионные вещества состоят из заряженных частиц.

Интересные опыты с диоксидом углерода или твердым льдом

На видео проведен эксперимент, в котором 90 сухого льда высыпают в надувной бассейн.

При -78,5 0С твердый диоксид углерода (сухой лед) превращается в углекислый газ, минуя жидкое состояние. Если бросить сухой лед в воду, он начнет испаряться. Смесь сухого льда и воды используют для сценических эффектов (густой туман).

Источник: www.sciencedebate2008.com

Кристаллические и аморфные твердые тела

Кристаллическими называют тела, которые обладают особой структурой молекулярных связей между собой. Все частицы в таком исполнении составляют кристалл и расположены в определенном порядке. Расстояние между частицами также определенное. Подобные связи еще называют кристаллической решеткой. Она представляет собой совокупность атомов и различных узлов и молекул, которые составляют твердое вещество в целом.

Подобные соединения славятся очень большой прочностью, а из металлических материалов с классической кристаллической решеткой сегодня строятся самые сложные инженерные сооружения, включая мосты, здания и иные строения. Прочность кристаллических тел отличается высокой степенью практического применения в различных сферах человеческой деятельности. Однако реальная прочность кристаллов оказалось гораздо меньше расчетной прочности, так как на их поверхности обнаружены многочисленные дефекты в основе кристаллической решетки.

Готовые работы на аналогичную тему

  • Курсовая работа Виды твердых тел 490 руб.
  • Реферат Виды твердых тел 270 руб.
  • Контрольная работа Виды твердых тел 220 руб.

Аморфными твердыми телами называют такие тела, которые обладают одинаковыми физическим свойствами по всем направлениям. Подобное свойство также называют изотропностью. Такие аморфные тела характеризуются беспорядочным расположением элементов молекулярной связи. Они состоят из бесконечного количества соединений атомов и молекул. В кристаллических телах внутренняя структура резко контрастирует с аморфными телами

Кристаллические тела делятся на:

  • монокристаллы;
  • поликристаллы.

Монокристаллы характеризуются периодичностью по своей структуре и многократному повторению связей во всем объеме.

Для поликристаллов основополагающим стало наличие кристаллитов. Они выглядят, как множество сросшихся между собой хаотически расположенных маленьких кристаллов.

Структура кристаллов

Структура кристаллов. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Структура кристаллов. Автор24 — интернет-биржа студенческих работ

С кристаллической структурой веществ человек сталкивается постоянно в ежедневном режиме. Мы ходим зимой по снегу или льду, имеющим в своей основе чистую структуру кристалла. Она формируется из кристаллической воды. Многая пища состоит из кристалликов соли или сахара.

Такая многогранная натура твердых телах характеризуется несколькими схожими и постоянно повторяющимися элементами внутренней конструкции. Атомы и иные молекулярные связи располагаются в отдельных кристаллических решетках, при этом все выглядит предельно упорядоченно. Складывается система похожих многогранников. Таким образом, можно искусственным образом воспроизвести подобные молекулярные связи.

Упорядоченное расположение всех частиц в узлах кристаллической решетки придает правильную и красивую форму с симметричным расположением сторон и углов. Впервые такую структуру смогли показать и объяснить только 200 лет назад.

Для роста кристаллов необходимо создать определенные условия. Центр кристаллизации становится своеобразной точкой отсчета будущего каркаса вещества. Его можно создать искусственным или естественным способом. Для этого в прозрачном растворе наблюдают за движением ионов или молекул. Они ведут себя достаточно непредсказуемым образом и постоянно сталкиваются, при этом идет формирование новых протосвязей – зародышей будущего кристаллического твердого тела. При повторных взаимодействиях можно увидеть, что приобретаются формы структуры мельчайшего кристаллика, который станет элементом ячейки тела. Под скоплением частиц происходит постепенный рост решетки, при этом появляется тот самый центр кристаллизации. Его основой могут быть самые разнообразные вещества, которые содержатся и плавают в сосуде. В процессе роста появляются дополнительные связи и происходит превращение в большое твердое тело с кристаллической основой.

Типы кристаллических твердых веществ

Твердое состояние вещества предполагает наличие у тел кристаллической решетки. Подобные тела делятся на несколько типов:

  • в кристаллической решетке с атомами частицы твердого вещества связаны ковалентной связью;
  • в молекулярной кристаллической решетке между частицами существует небольшая связь;
  • в узлах ионной кристаллической решетки положительно заряженные частицы чередуются с отрицательно заряженными;
  • в металлической кристаллической решетке в узлах присутствуют только ионы химических веществ, которые заряжены положительно.

Особенности твердых веществ

По характеру движения электронов на внешнем уровне атомов твердого тела можно установить его электрические специфические свойства и признаки. Сегодня выделяют несколько видов таких тел в зависимости от типа связи атомов.

При ионной связи атомов основной характерной чертой стала сила электростатического притяжения. Такие вещества способны отражать и поглощать свет в инфракрасной плоскости. При небольшой температуре ионная связь отличается малой электропроводностью.

Ковалентная связь осуществляется за счет электронной пары. Она принадлежит обоим атомам. Подобная связь также делится на простую, двойную и тройную по наличию числа пар электронов. Наиболее твердые кристаллы относятся к ковалентной связи.

Металлическая связь возникает при возникновении больших атомов. Она образуется при помощи процесса объединения валентных электронов атомов. Большие атомы способны отдавать свои электроны, что способствует формированию сложных соединений. Так образуются металлы и другие сложные твердые вещества. Вещества с металлической связью разнообразны по физическим свойствам. Среди них выделяют жидкие металлы, мягкие, очень твердые.

При молекулярной связи, которая образуется в кристаллах, образуется отдельными молекулами вещества. Силы, при которых происходят процессы, обладают значительной степенью стабильности. Молекулы притягиваются друг относительно друга только слабым межмолекулярным притяжением. При нагревании вещества подобные недолговечные связи утрачивают свою актуальность и разрушаются.

Водородная связь может возникнуть между поляризованными положительно заряженными атомами молекулы и той частью, которая является частью отрицательно поляризованной частицей или ее частью.

Источник: spravochnick.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.