Строение телескопа схема


Говорят, что если человек приобрел телескоп и использует его для наблюдений, то через некоторое время он обязательно захочет другой, получше. Так случилось и со мной. У меня есть телескоп PowerSeeker 127мм, но захотелось лучшего. По этой причине я даже было дело собрался точить свое зеркало, но позже обнаружил, что на AliExpress можно за недорого приобрести 200мм зеркало. Главное зеркало вместе с диагональным выходили где-то 6000 рублей с доставкой. Это очень дешево. На снимке выше, как раз такое зеркало, только что прибывшее по почте из Китая.

Купить-то купил, но это же не готовый телескоп. Нужна труба, держатель главного зеркала, диагонального, юстировки, фокусер. Как их изготовить самостоятельно? Решил, что по возможности буду печатать необходимые детали на 3D принтере. Но для этого их нужно еще спроектировать. Или найти дизайн в интернете.

Если поискать в интернете, то, конечно, «телескопы уже печатали». Вот примеры проектов:

  1. Gaze Across the Solar System with a 3D-Printed, Raspberry Pi Telescope
  2. Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts

По разным причинам мне эти проекты не очень понравились. Я решил, что буду проектировать части телескопа сам. Чтобы жизнь медом не казалась я отчего-то решил, что буду делать проект во FreeCAD. До этого момента я уже делал кое-что в Компас 3D (я делал Marble-Machine). И теперь я подумал, что FreeCAD должен быть не сложнее… На самом деле, мне пришлось посмотреть довольно много обучающих роликов по FreeCAD в youtube, прежде чем я смог сделать что-то осмысленное. Проектирование во FreeCAD мне кажется сильно отличается от проектирования в Компасе, тут используется новая для меня технология констрейнтов (не знаю вдруг и в Компасе так можно было да я не знал?). Констрейнты задают все необходимые размеры: длину отрезков, параллельность или перпендикулярность, угол, радиус дуги, буквально все. По констрейнтам солвер FreeCAD вычисляет может ли он построить заданную фигуру или нет. Если нет, то видимо не хватает каких-то уточняющих параметров, которые нужно добавлять. Для меня это было интересно и необычно. Однако, в целом, идея констрейнтов мне пришлась по душе.

Рассчет телескопа я делал в онлайн калькуляторе «Расчёт телескопа системы Ньютона».

Строение телескопа схема

На рисунке выше обозначены некоторые необходимые для постройки телескопа параметры. Для каждой значимой величины калькулятор высчитывает необходимое значение, нужно только задать исходные: плотность стекла главного зеркала, диаметр, фаску, диаметр и длину трубы и прочее.


Рассчет заставил посмотреть поближе на задачу. Я уже читал книгу Сикорука «Телескопы для любителей астрономии» и в общих чертах многое себе представлял. Так, я знал, что большие и тонкие зеркала правильнее всего устанавливать по специальной схеме разгрузки. Например, для моего нового 200 миллиметрового зеркала весом 1306 граммов выходило, что оно должно лежать на шести точках. Программа делает рассчет так, что на каждую точку разгрузки приходится одинаковый вес части зеркала, при этом, тяжелое зеркало не должно критически изгибаться под собственным весом, ведь изгиб зеркала — это искажения.

Строение телескопа схема

Еще большие зеркала разгружают на 9, 18 и более точек. Как при этом физически изготовить эти шесть точек разгрузки? При шеститочечной разгрузке делаются специальные «коромысла», две точки зеркала опираются на одну точку — ось вращения коромысла.

Сразу скажу, что по ссылке приведенной выше, тот же «Open Source DIY Telescope..» не использует 6 точек разгрузки, а использует только три. Я же хотел сделать все более правильно, хотя, конечно, у меня нет абсолютно никакой уверенности, что у меня получилось задуманное. Я надеюсь реальные испытания покажут был я прав или нет.

Начал проектирование я с самых массивных деталей держателя главного зеркала.
стно скажу, что я не люблю печатать массивные детали на 3D принтере. Это чрезвычайно долго и не всегда получается, например, внезапно может отключиться электричество. Кроме того, эти большие детали должны быть крепкими, и значит должны иметь большую степень заполнения. Это я буду очень долго печатать такое. Поэтому с самого начала я подумал, что массивные детали закажу на производстве с ЧПУ фрезером, а остальное буду делать сам.

Первая деталь — опора держателя главного зеркала. Она же — крепление зеркала в трубу и часть юстировочного механизма:

Строение телескопа схема

Отверстие по центру необходимо для вентиляции зеркала. При выходе с телескопом на улицу зеркало должно принять температуру окружающей среды. Поэтому нужна хорошая вентиляция внутреннего пространства трубы.

Вторую деталь я называю «треугольник»:

Строение телескопа схема

Разработка многих деталей во FreeCAD ведется в два этапа — сперва вычерчивается так называемый «скетч» — это проекция детали на плоскость, потом из него выполняется например выдавливание (Pad) или выемка (Pocket). Скетч выглядит как настоящий чертеж, где задаются все параметры. Для моего треугольника скетч выглядит вот так:

Строение телескопа схема


Я по неопытности задавал каждый параметр вручную и только потом понял, что это не очень грамотно. На самом деле правильнее было бы задавать одинаковые параметры в виде переменных и таким образом получилась бы полностью параметрическая модель. Ну чтож, век живи — век учись. Обратите внимание, что в окне «Solver messages» отобразается зеленым цветом «Fully constrained sketch». Это значит, что для вычислителя FreeCAD все ясно и он может однозначно определить геометрию детали по заданным параметрам.

Треугольник — простая деталь с одной операцией типа «выдавливание», в терминах FreeCAD — это операция «Pad».

Треугольник висит на трех юстировочных винтах над опорой. За счет этих винтов может слегка наклоняться относительно опоры. В опоре и в треугольнике я предусмотрел отверстия, куда потом будут запресовываться высокие гайки М6.

И опору и треугольник мне вырезали на ЧПУ станке из клеенной ДВП. Получилось вот так:

Строение телескопа схема

У каждой вершины треугольника два винта. Один тянет на себя, другой толкает от себя. В совокупности это позволяет наклонять треугольник и соответственно главное зеркало относительно опоры при настройке телескопа. Вот вид с обратной стороны:

Строение телескопа схема

Итак, как я уже сказал, я решил многие детали печатать на 3D принтере. Разработанное мною во FreeCAD коромысло должно выглядеть вот так:


Строение телескопа схема

В коромысло с двух сторон я впресовываю металлический шариковый подшипник. Эти подшипники обеспечивают плавное покачивание коромысла на своей точке опоры. Таких коромысел должно быть три.

Во FreeCAD я спроектировал и другие части крепления зеркала: держатель коромысел и и боковые ограничители. Потом я попытался собрать все детали в единую 3D модель, чтобы увидеть, как это все будет выглядеть:

Строение телескопа схема

Как я понял FreeCAD поддерживает систему так называемых Addon — специальных модулей расширения. Один из возможных внешних модулей расширения — это Workbench a2plus, который как раз и позволяет моделировать сборку из нескольких деталей. Мне пришлось опять учиться и смотреть обучающие ролики на youtube, чтобы в каком-то минимуме освоить a2plus. интересно, что этот инструмент, так же, как и сам FreeCAD использует систему констрейнтов, которые позволяют привязывать уже в 3D пространстве отдельные детали между собой. Снимок экрана выше как раз показывает такую сборку.

Простейший пример соединения деталей через констрейнт в a2plus показан на рисунке ниже:

Строение телескопа схема

Я выбираю два круглых ребра двух разных деталей через клавишу Ctrl и на тулбаре выбираю кнопку circularEdge constraint. Это позволяет мне разместить эти детали на одной оси на заданном расстоянии. После этого коромысло оказывается привязанным.

В реальной жизни вся сборка получилась вот такая:


Строение телескопа схема

Зеркало должно без усилий вставляться и просто лежать на коромыслах, при этом не болтаться из стороны в сторону. Все эти печатанные детали выполнялись со 100% заполнением для максимальной прочности.

Лежать «разгружаясь на 6 точек» по моей задумке зеркало должно вот так:

Строение телескопа схема

Установленное и закрепленное клипсами зеркало (на поверхности капли спирта, отмывал от случайных отпечатков пальцев):

Строение телескопа схема

Потом вся эта конструкция была вставлена в заранее изготовленную трубу и закреплена.

Кроме оправы главного зеркала пришлось разрабатывать во FreeCAD и печатать узел крепления и юстировки диагонального зеркала, а так же фокусер. Честно говоря фокусер вызывает у меня наибольшие опасения. Пока не придумал, как надежно сделать подачу фокусера и в настоящее время он у меня держится просто за счет трения. Вот оправа фокусера:

Строение телескопа схема

Внутрь я вклеил 3 фторопластовых тонких полосочки и уже потом туда вставляется сам фокусер, а уже в него окуляр:


Строение телескопа схема

Мне так не терпелось испытать телескоп, что я установил фокусер просто на двусторонний скотч. Да и монтировки у меня пока нет. Просто хотелось увидеть хоть что нибудь. Пока нет монтировки я могу положить телескоп на сушилку белья и смотреть только на удаленные дома и антенны:

Строение телескопа схема

В целом, мне кажется, что работает! Отъюстировал быстро с помощью лазерного коллиматора — никаких особых проблем здесь не возникло. Кирпичи на пятиэтажке напротив выглядят весьма детально. Антенны тоже.

Следующий этап марлезонского балета — это изготовление монтировки Добсона и полевые испытания. Но это уже другая история.

Что касается FreeCAD, я рад что познакомился с ним. Он не вызывает у меня отрицательных эмоций, вполне рабочий инструмент. Я понимаю, что знаю его слишком мало и почти ничего не умею. Но я вижу, что документация есть, обучающие ролики есть. Смысл в освоении этого инструмента так же есть.

Источник: habr.com

Дело не в увеличении?

Есть люди, которые думают, что чем больше увеличивает телескоп, тем «круче». Кто-то считает, что он приближает к нам удалённые объекты. И то, и другое мнение является ошибочным. Основная задача этого оптического инструмента — собрать излучение волн электромагнитного спектра, к которым относится и свет, видимый нами. Кстати, в понятие электромагнитного излучения входят и другие волны (радио-, инфракрасные, ультрафиолет, рентген и т. д.). Современные телескопы могут улавливать все эти диапазоны.


Итак, суть функций телескопа заключается не в том, во сколько раз он увеличивает, а в том, какое количество света он может собрать. Чем больше света соберёт линза или зеркало, тем чётче будет нужная нам картинка.

Для создания хорошего изображения оптическая система телескопа концентрирует световые лучи в одной точке. Она называется фокусом. Если свет не будет сфокусирован в ней, мы получим размытую картинку.

Какими бывают телескопы?

Как устроен телескоп? Различают несколько основных их видов:

  • рефракторы. В конструкции рефрактора используют только линзы. Его работа основана на преломлении световых лучей;
  • рефлекторы. Они полностью состоят из зеркал, при этом, схема телескопа выглядит так: объектив — это главное зеркало, а есть ещё и вторичное;
  • катадиоптрики или смешанного типа. Они состоят как из линз, так и из зеркал.

Как работают рефракторы

Оптическая схема рефрактора

Объектив любого рефрактора выглядит в виде двояковыпуклой линзы. Её задача — сбор световых лучей и концентрация их в одной точке (фокусировка). Увеличение исходного изображения мы получаем через окуляр. Линзы, которые используют в современных моделях телескопов, являются сложными оптическими системами. Если ограничиться применением только одной крупной линзой, выпуклой с двух сторон, это чревато сильными погрешностями получаемого изображения.


Во-первых, изначально лучи света не могут чётко собраться в одну точку. Такое явление получило название сферической аберрации, в результате которой невозможно получение картинки с одинаковой резкостью на всех её участках. При использовании наведения можно увеличить резкость в центре изображения, но мы получим размытые края — и наоборот.

Кроме сферической, рефракторы также «грешат» хроматической аберрацией. Искажение цветового восприятия происходит потому, что в состав света, исходящего от космических объектов, входят лучи разного цветового спектра. Когда они проходят сквозь объектив, то не могут преломляться одинаково, следовательно, рассеиваются по разным участкам оптической оси инструмента. Результатом становится сильное искажение цвета получаемого изображения.

Специалисты-оптики хорошо научились «бороться» с аберрациями разного рода. С этой целью они изготавливают оптические системы рефракторов, состоящие из разных линз. Таким образом коррекция картинки становится реальной, но усилий подобная работа требует немалых.

Принцип работы рефлекторов


Оптическая схема рефлектора

Появление телескопов-рефлекторов в астрономии неслучайно, так как хроматическая аберрация у «зеркалок» отсутствует вовсе, а сферические искажения можно откорректировать, изготовив главное зеркало в форме параболы. Такое зеркало получило название параболического. Вторичное зеркальце, которое тоже входит в его конструкцию, предназначено для того, чтобы отклонять лучи света, отражаемые главным зеркалом и выводить картинку в верном направлении.

Именно главное зеркало, имеющее форму параболы, обладает уникальным свойством чётко сводить все световые лучи в один фокус.

Зеркально-линзовые телескопы

Оптическая схема катадиоптрика

В оптическую конструкцию зеркально-линзовых телескопов входят и линзы, и зеркала одновременно. В качестве объектива здесь служит зеркало сферической формы, а линзы предназначены для устранения всех возможных аберраций. Если сравнить зеркально-линзовые телескопы с рефракторами и рефлекторами, можно сразу обратить внимание на то, что у катадиоптриков короткая и компактная труба. Это обусловлено системой многократного переотражения световых лучей. Если использовать разговорный язык астрономов-любителей, фокус у таких телескопов словно находится в «сложенном состоянии». Благодаря компактности и лёгкости катадиоптриков они пользуются высокой популярностью в астрономической среде, однако стоят такие телескопы гораздо дороже, чем простой рефрактор или обычная «зеркалка» системы Ньютона.

Источник: poznavajamir.ru

Строение телескопа. Строение Нептуна. Видеоуроки астрономии

Выпуск 31

В своём очередном видеоуроке астрономии профессор расскажет о строении телескоп,а также о том, какое строение имеет планета Нептун.

Строение телескопа

Телескоп — прибор, предназначенный для наблюдения небесных тел. У всех на свете телескопов одинаковый принцип строения и работы. Они собирают слабый свет, идущий от далёких звёзд, и концентрирует его в глазу наблюдателя. Любой оптический телескоп по принципу его строения состоит из трубы, треноги или фундамента, на который устанавливается труба, монтировки с осями наведения на объект и, конечно же, непосредственно оптики — окуляра и объектива. В зависимости от оптической схемы все телескопы можно разделить на три больших группы: зеркальные, линзовые и зеркально-линзовые телескопы. В строении зеркальных телескопов используются зеркала в качестве светособирающего элемента. У линзовых телескопов в качестве светособирающих элементов используются линзы. И, наконец, у зеркально-линзовых телескопов — зеркала и линзы.

Строение Нептуна

Нептун — восьмая и самая дальняя планета Солнечной системы. Нептун также является четвёртой по диаметру и третьей по массе планетой. Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше таковых у Земли. Планета была названа в честь римского бога морей. Синим цветом планета обязана метану, который находится в верхних слоях атмосферы Нептуна. Кроме метана в строении атмосферы Нептуна обнаружены водород и гелий. Высокую пропорцию состава и строения атмосферы планеты образуют льды: водного, аммиачного, метанового. Ядро Нептуна, как и Урана, состоит главным образом изо льдов и горных пород. В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы, по некоторым оценкам, их скорости могут достигать 2100 км/ч. У Нептуна есть кольцевая система, хотя гораздо менее существенная, чем, к примеру, у Сатурна. Кольца Нептуна имеют определённое строение — это ледяные частицы, покрытые силикатами, или основанным на углероде материалом, — наиболее вероятно, это он придаёт им красноватый оттенок.

Источник: radostmoya.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.