Строение радиотелескопа


Оптический телескоп предназначен для того, чтобы с его помощью наблюдать далёкие небесные объекты. Если перевести это слово с греческого языка на русский, оно будет означать «наблюдаю далеко».

Начинающие астрономы-любители, безусловно, интересуются тем, как устроен телескоп и какие виды этих оптических приборов существуют. Новичок, придя в магазин оптики, часто спрашивает продавца: «А вот этот телескоп во сколько раз увеличивает?» Кому-то следующее утверждение может показаться удивительным, но сама постановка вопроса является некорректной.

Дело не в увеличении?

Есть люди, которые думают, что чем больше увеличивает телескоп, тем «круче». Кто-то считает, что он приближает к нам удалённые объекты. И то, и другое мнение является ошибочным. Основная задача этого оптического инструмента — собрать излучение волн электромагнитного спектра, к которым относится и свет, видимый нами. Кстати, в понятие электромагнитного излучения входят и другие волны (радио-, инфракрасные, ультрафиолет, рентген и т. д.). Современные телескопы могут улавливать все эти диапазоны.


Итак, суть функций телескопа заключается не в том, во сколько раз он увеличивает, а в том, какое количество света он может собрать. Чем больше света соберёт линза или зеркало, тем чётче будет нужная нам картинка.

Для создания хорошего изображения оптическая система телескопа концентрирует световые лучи в одной точке. Она называется фокусом. Если свет не будет сфокусирован в ней, мы получим размытую картинку.

Какими бывают телескопы?

Как устроен телескоп? Различают несколько основных их видов:

  • рефракторы. В конструкции рефрактора используют только линзы. Его работа основана на преломлении световых лучей;
  • рефлекторы. Они полностью состоят из зеркал, при этом, схема телескопа выглядит так: объектив — это главное зеркало, а есть ещё и вторичное;
  • катадиоптрики или смешанного типа. Они состоят как из линз, так и из зеркал.

Как работают рефракторы

Оптическая схема рефрактора

Объектив любого рефрактора выглядит в виде двояковыпуклой линзы. Её задача — сбор световых лучей и концентрация их в одной точке (фокусировка). Увеличение исходного изображения мы получаем через окуляр. Линзы, которые используют в современных моделях телескопов, являются сложными оптическими системами. Если ограничиться применением только одной крупной линзой, выпуклой с двух сторон, это чревато сильными погрешностями получаемого изображения.


Во-первых, изначально лучи света не могут чётко собраться в одну точку. Такое явление получило название сферической аберрации, в результате которой невозможно получение картинки с одинаковой резкостью на всех её участках. При использовании наведения можно увеличить резкость в центре изображения, но мы получим размытые края — и наоборот.

Кроме сферической, рефракторы также «грешат» хроматической аберрацией. Искажение цветового восприятия происходит потому, что в состав света, исходящего от космических объектов, входят лучи разного цветового спектра. Когда они проходят сквозь объектив, то не могут преломляться одинаково, следовательно, рассеиваются по разным участкам оптической оси инструмента. Результатом становится сильное искажение цвета получаемого изображения.

Специалисты-оптики хорошо научились «бороться» с аберрациями разного рода. С этой целью они изготавливают оптические системы рефракторов, состоящие из разных линз. Таким образом коррекция картинки становится реальной, но усилий подобная работа требует немалых.

Принцип работы рефлекторов

Оптическая схема рефлектора

Появление телескопов-рефлекторов в астрономии неслучайно, так как хроматическая аберрация у «зеркалок» отсутствует вовсе, а сферические искажения можно откорректировать, изготовив главное зеркало в форме параболы. Такое зеркало получило название параболического. Вторичное зеркальце, которое тоже входит в его конструкцию, предназначено для того, чтобы отклонять лучи света, отражаемые главным зеркалом и выводить картинку в верном направлении.


Именно главное зеркало, имеющее форму параболы, обладает уникальным свойством чётко сводить все световые лучи в один фокус.

Зеркально-линзовые телескопы

Оптическая схема катадиоптрика

В оптическую конструкцию зеркально-линзовых телескопов входят и линзы, и зеркала одновременно. В качестве объектива здесь служит зеркало сферической формы, а линзы предназначены для устранения всех возможных аберраций. Если сравнить зеркально-линзовые телескопы с рефракторами и рефлекторами, можно сразу обратить внимание на то, что у катадиоптриков короткая и компактная труба. Это обусловлено системой многократного переотражения световых лучей. Если использовать разговорный язык астрономов-любителей, фокус у таких телескопов словно находится в «сложенном состоянии». Благодаря компактности и лёгкости катадиоптриков они пользуются высокой популярностью в астрономической среде, однако стоят такие телескопы гораздо дороже, чем простой рефрактор или обычная «зеркалка» системы Ньютона.

Источник: poznavajamir.ru

Принцип действия радиотелескопа


Радиотелескопы состоят из антенны и чувствительного радиоприемника с усилителем (радиометра). Доходящее до Земли радиоизлучение подавляющего большинства небесных тел настолько мало, что для его приема необходимы антенны с полезной площадью в тысячи и десятки тысяч квадратных метров. Конструкции антенн весьма разнообразны. Так, сравнительно небольшими антеннами (до 100 м в диаметре) служат металлические вогнутые зеркала, а также каркасы параболической и цилиндрической формы, покрытые металлической сеткой. Они отражают сфокусированные радиоволны на облучатель, и наведенные в нем электрические токи передаются по проводам на усилитель и далее на самопишущие регистрационные приборы. Антенны устанавливаются на колоннах или решетчатых опорах, могут быть направлены на различные участки неба и автоматически поворачиваться за ними. Эти радиотелескопы могут служить и радиолокаторами, направляющими к Луне и планетам мощные импульсы радиосигналов.

Радиотелескоп состоит из антенной системы, радиометра (приемника радиосигнала) и регистратора сигналов. Радиометр – это приемное устройство, с помощью которого измеряют мощность излучения малой интенсивности в диапазоне радиоволн (длины волн от 0,1 мм до 1000 м). Другими словами радиотелескоп принимает наиболее низкочастотное излучение по сравнению с другими приборами, с помощью которых исследуется электромагнитное излучение (например, инфракрасный телескоп, рентгеновский телескоп и т. д.).


Отражатели наиболее крупных радиотелескопов собираются из плоских металлических зеркал, расположенных сплошной полосой параболического сегмента. Такие радиотелескопы неподвижны (стационарны), а их облучатели способны перемещаться в небольших пределах. Однако это не ограничивает возможностей радиотелескопов, так как в суточном вращении неба каждый небесный объект обязательно проходит в поле их обзора, а радиотелескопы способны принимать радиоизлучение в любое время суток. Один из крупнейших стационарных радиотелескопов был изготовлен в Советском Союзе и установлен вблизи станции Зеленчукской Ставропольского края. Его отражатель собран из 900 плоских металлических зеркал размерами 2×7,4 м и имеет вид замкнутого кольца диаметром 600 м.

У крупного стационарного радиотелескопа диаметром 300 м, установленного в Аресибо (Пуэрто-Рико), антенной параболической формы служит кратер потухшего вулкана; кратер забетонирован и сверху покрыт металлическим слоем.

В Китае недавно создали радиотелескоп, получивший название FAST (Five hundred meter Aperture Spherical Telescope). По диаметру  он несколько меньше Российского, размер  устройства составляет 500 м, но зато он имеет 4,450 тыс. металлических отражателей, что делает его крупнейшим в мире по общей площади антенн. По своей конструкции он аналогичен обсерватории Аресибо, где для установки конструкции использована естественная природная впадина.

Особенности радиотелескопов


Разрешающая способность радиотелескопов тоже зависит от диаметра их антенн и длины воспринимаемых радиоволн. Однако она всегда ниже, чем у оптических телескопов, так как длина радиоволн значительно больше длины световых волн. Но если два радиотелескопа установлены на значительном расстоянии друг от друга, одновременно воспринимают радиоизлучение одного и того же источника и подают сигналы на общий радиометр, то разрешение резко повышается. Два таких спаренных радиотелескопа называются радиоинтерферометром, а при расстоянии между радиотелескопами в тысячи километров — радиоинтерферометром со сверхдлинной базой. Разрешение такого радиоинтерферометра достигает 0,0001″, т. е. в сотни раз превышает разрешение оптических телескопов.

Источник: www.polnaja-jenciklopedija.ru

3

Чтобы получать более резкие радиоизображения, радиотелескопы начали объединять в системы. Антенны могут находиться как на расстоянии нескольких десятках метров, так и нескольких тысячах километров друг от друга.


ли они одновременно работают по одному источнику, то можно, применив определенные методы обработки, получить карту этого источника настолько же резкую, как если бы он наблюдался на радиотелескопе размером, равном расстоянию между антеннами. Такие системы называются радиоинтерферометрами. Далеко расположенные антенны позволяют реализовать угловое разрешение (то есть резкость картинки) в сотни раз лучшее, чем самые лучшие оптические телескопы. Так была преодолена самая большая проблема радиоастрономии — невозможность получить резкую радиокартинку с одиночного радиотелескопа из-за большой длины волны радиоволн.

4

Самый крупный телескоп на территории России — «Ратан-600», что расшифровывается как «радиотелескоп Академии Наук», цифра же 600 обозначает примерное значение диаметра антенны в метрах. Телескоп был построен в СССР ещё в 70-е годы. Его антенна состоит из почти 900 отдельных металлических щитов высотой 11 метров каждый, расположенных по кругу, и нескольких металлических отражателей внутри круга. «Ратан-600» находится на Северном Кавказе в Карачаево-Черкессии, в Специальной астрофизической обсерватории Академии Наук. Есть в нашей стране и ряд телескопов с размером параболической антенны в несколько десятков метров.
иже всего к Москве — радиотелескоп вблизи города Калязин, к северу от столицы, и несколько радиотелескопов, расположенных в Пущинской радиоастрономической обсерватории Астрокосмического центра Физического института РАН им. Лебедева — в 90 км к югу от Москвы (г. Пущино). Уникальный радиоинтерферометр из 256 параболических антенн диаметром 2.5 м для наблюдений за атмосферой Солнца расположен в 220 км от Иркутска.

5

Многие радиоисточники настолько компактны, что даже с помощью интерферометров, находящихся на Земле, невозможно оценить их угловой размер; они воспринимаются как точечные объекты. Поэтому, чтобы различить их внутреннюю структуру, необходимо сделать как можно больше расстояние между отдельными антеннами радиотелескопов, объединенных в радиоинтерферометр. Но, так как Земля имеет конечный размер, ученые обратились к возможности вынести одну из антенн в космос. Самый крупный на сегодня проект космического радиотелескопа был реализован в России — это запуск на орбиту радиотелескопа «Радиоастрон» с десятиметровой раскрывающейся антенной, осуществленный в 2011 г. Он установлен на космическом аппарате «Спектр-Р» (изготовлен в НПО им. Лавочкина), и в настоящее время работает на околоземной орбите. Орбита его сильно вытянута, и на самом большом расстоянии от Земли аппарат удаляется от планеты более чем на 300 тысяч километров, что делает любые помехи, исходящие от Земли, несущественными.
от радиотелескоп в совокупности с наземными антеннами, находящимися в различных странах, работает как интерферометр со сверхдлинной базой. Он может реализовать рекордное угловое разрешение, вплоть до нескольких угловых микросекунд. Для сравнения: 10 микросекунд — это тот угол, под которым толщина человеческого волоса видна с расстояния 1000 километров.

Источник: postnauka.ru

Характеристики радиотелескопов

    Земная атмосфера прозрачна не для всех видов электромагнитного излучения, приходящего из космоса. В ней есть только два широких «окна прозрачности». Центр одного из них приходится на оптическую область, в которой лежит максимум излучения Солнца. Именно к нему в результате эволюции адаптировался по чувствительности человеческий глаз, который воспринимает световые волны с длиной от 350 до 700 нанометров. (На самом деле это окно прозрачности даже немного шире — примерно от 300 до 1 000 нм, то есть захватывает ближний ультрафиолетовый и инфракрасный диапазоны). Однако радужная полоска видимого света — лишь малая доля богатства «красок» Вселенной.
второй половине XX века астрономия стала поистине всеволновой. Достижения техники позволили астрономам вести наблюдения в новых диапазонах спектра. С коротковолновой стороны от видимого света лежат ультрафиолетовый, рентгеновский и гамма-диапазоны. По другую сторону располагаются инфракрасный, субмиллиметровый и радиодиапазон. Для каждого из этих диапазонов есть астрономические объекты, которые именно в нем проявляют себя наиболее рельефно, хотя в оптическом излучении они, может быть, и не представляют собой ничего выдающегося, так что астрономы до недавнего времени их просто не замечали.
    Один из наиболее интересных и информативных диапазонов спектра для астрономии — радиоволны. Излучение, которое регистрирует наземная радиоастрономия, проходит через второе и гораздо более широкое окно прозрачности земной атмосферы — в диапазоне длин волн от 1 мм до 30 м. Ионосфера Земли — слой ионизованного газа на высоте около 70 км — отражает в космос все излучение на волнах длиннее 30 м. На волнах короче 1 мм космическое излучение полностью «съедают» молекулы атмосферы (главным образом кислород и водяной пар).

Радиотелескопы
Аресибо
Обсерватория Грин-Бэнк

    Главная характеристика радиотелескопа — его диаграмма направленности. Она показывает чувствительность инструмента к сигналам, приходящим с разных направлений в пространстве. Для «классической» параболической антенны диаграмма направленности состоит из главного лепестка, имеющего вид конуса, ориентированного по оси параболоида, и нескольких гораздо (на порядки) более слабых боковых лепестков. «Зоркость» радиотелескопа, то есть его угловое разрешение, определяется шириной главного лепестка диаграммы направленности. Два источника на небе, которые вместе попадают в раствор этого лепестка, сливаются для радиотелескопа в один. Поэтому ширина диаграммы направленности определяет размер самых мелких деталей радиоисточника, которые еще можно различить по отдельности.
    Универсальное для телескопостроения правило гласит, что разрешающая способность антенны определяется отношением длины волны к диаметру зеркала телескопа. Поэтому для увеличения «зоркости» телескоп должен быть побольше, а длина волны — поменьше. Но как назло радиотелескопы работают с самыми длинными волнами электромагнитного спектра. Из-за этого даже огромные размеры зеркал не позволяют добиться высокой разрешающей способности. Не самый крупный современный оптический телескоп с диаметром зеркала 5 м может различить звезды на расстоянии всего 0,02 угловой секунды. Невооруженным глазом видны детали около одной минуты дуги. А радиотелескоп диаметром 20 м на волне 2 см дает разрешение еще в три раза хуже — около 3 угловых минут. Снимок участка неба, сделанный любительским фотоаппаратом, содержит больше деталей, чем карта радиоизлучения той же области, полученная одиночным радиотелескопом.
    Широкая диаграмма направленности ограничивает не только остроту зрения телескопа, но и точность определения координат наблюдаемых объектов. Между тем точные координаты нужны для сопоставления наблюдений объекта в разных диапазонах э/магнитного излучения — это непременное требование современных астрофизических исследований. Поэтому радиоастрономы всегда стремились к созданию как можно более крупных антенн. И, как ни удивительно, радиоастрономия в итоге намного обогнала по разрешению оптическую.

Принцип действия радиотелескопов

    Полноповоротные параболические антенны — аналоги оптических телескопов-рефлекторов — оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником — «копить сигнал», как говорят радиоастрономы, — и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк (США) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас — пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.
    Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50-метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.
    Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться. Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке — фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе — они усиливают друг друга, в противофазе — ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друг друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.
    В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)

«Командная игра радиотелескопов»

    Однако можно поступить и по-другому. Вместо того чтобы сводить все лучи в одну точку, мы можем измерить и записать колебания электрического поля, порождаемые каждым из них на поверхности зеркала (или в другой точке, через которую проходит тот же луч), а затем «сложить» эти записи в компьютерном устройстве обработки, учтя фазовый сдвиг, соответствующий расстоянию, которое каждой из волн оставалось пройти до воображаемого фокуса антенны. Прибор, действующий по этому принципу, называется интерферометром, в нашем случае — радиоинтерферометром.
    Интерферометры избавляют от необходимости строить огромные цельные антенны. Вместо этого можно расположить рядом друг с другом десятки, сотни и даже тысячи антенн и объединять принятые ими сигналы. Такие телескопы называются синфазными решетками. Однако проблему «зоркости» они все же не решают — для этого нужно сделать еще один шаг. Как вы помните, с ростом размера радиотелескопа его чувствительность растет гораздо быстрее, чем разрешающая способность. Поэтому мы быстро оказываемся в ситуации, когда мощности регистрируемого сигнала более чем достаточно, а углового разрешения катастрофически не хватает. И тогда возникает вопрос: «Зачем нам сплошная решетка антенн? Нельзя ли ее проредить?» Оказалось, что можно! Эта идея получила название «синтеза апертуры», поскольку из нескольких отдельных независимых антенн, размещенных на большой площади, «синтезируется» зеркало гораздо большего диаметра. Разрешение такого «синтетического» инструмента определяется не диаметром отдельных антенн, а расстоянием между ними — базой радиоинтерферометра. Конечно, антенн должно быть по крайней мере три, причем их не следует располагать вдоль одной прямой. В противном случае разрешение радиоинтерферометра получится крайне неоднородным. Высоким оно окажется только в направлении, вдоль которого разнесены антенны. В поперечном же направлении разрешение по-прежнему будет определяться размером отдельных антенн.
    По этому пути радиоастрономия стала развиваться еще в 1970-х годах. За это время был создан ряд крупных многоантенных интерферометров. У некоторых из них антенны неподвижны, у других могут перемещаться по поверхности земли, чтобы проводить наблюдения в разных «конфигурациях». Такие интерферометры строят «синтезированные» карты радиоисточников с гораздо более высоким разрешением, чем одиночные радиотелескопы: на сантиметровых волнах оно достигает 1 угловой секунды, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.

РадиоТелескопы
РадиоТелескопы
РадиоТелескопы
РадиоТелескопы

    Самая известная система такого типа — «Очень большая решетка» (Very Large Array, VLA) — построена в 1980 году в Национальной радиоастрономической обсерватории США. Ее 27 параболических антенн каждая диаметром 25 м и весом 209 тонн перемещаются по трем радиальным рельсовым путям и могут удаляться от центра интерферометра на расстояние до 21 км. Сегодня действуют и другие системы: Вестерборк в Голландии (14 антенн диаметром 25 м), ATCA в Австралии (6 антенн по 22 м), MERLIN в Великобритании. В последнюю систему наряду с 6 другими инструментами, разбросанными по всей стране, входит и знаменитый 76-метровый телескоп. В России (в Бурятии) создан Сибирский солнечный радиоинтерферометр — специальная система антенн для оперативного изучения Солнца в радиодиапазоне.
    В 1965 году советские ученые Л.И. Матвеенко, Н.С. Кардашев, Г.Б. Шоломицкий предложили независимо регистрировать данные на каждой антенне интерферометра, а потом совместно их обрабатывать, как бы имитируя явление интерференции на компьютере. Это позволяет разносить антенны на сколь угодно большие расстояния. Поэтому метод получил название радиоинтерферометрии со сверхдлинными базами (РСДБ) и успешно используется с начала 1970-х годов. Рекордная длина базы, достигнутая в экспериментах, составляет 12,2 тыс. км, а разрешение на волне порядка 3 мм достигает 0,00008’’ — на три порядка выше, чем у крупных оптических телескопов. Существенно улучшить этот результат на Земле вряд ли удастся, поскольку размер базы ограничивается диаметром нашей планеты.
    В настоящее время систематические наблюдения ведутся несколькими сетями межконтинентальных радиоинтерферометров. В США создана система, включающая в себя 10 радиотелескопов в среднем диаметром 25 м, расположенных в континентальной части страны, на Гавайских и Виргинских островах. В Европе для РСДБ-экспериментов регулярно объединяют 100-метровый Боннский телескоп и 32-метровый в Медичине (Италия), интерферометры MERLIN, Вестерборк и другие инструменты. Эта система называется EVN. Имеется также глобальная Международная сеть радиотелескопов для астрометрии и геодезии IVS. А недавно в России начала действовать собственная интерферометрическая сеть «Квазар» из трех 32-метровых антенн, расположенных в Ленинградской области, на Северном Кавказе и в Бурятии. Важно отметить, что телескопы не закреплены жестко за РСДБ-сетями. Они могут использоваться автономно или переключаться между сетями.
    Интерферометрия со сверхдлинными базами требует очень высокой точности измерений: необходимо зафиксировать пространственное распределение максимумов и минимумов электромагнитных полей с точностью до доли длины волны, то есть для коротких волн до долей сантиметра. И с высочайшей точностью отметить моменты времени, в которые проводились измерения на каждой антенне. В качестве сверхточных часов в экспериментах РСДБ используются атомные стандарты частоты. Но не стоит думать, что у радиоинтерферометров нет недостатков. В отличие от сплошной параболической антенны диаграмма направленности интерферометра вместо одного главного лепестка имеет сотни и тысячи узких лепестков сравнимой величины. Строить карту источника с такой диаграммой направленности — это все равно, что ощупывать клавиатуру компьютера растопыренными пальцами. Восстановление изображения — сложная и, более того, «некорректная» (то есть неустойчивая к малым изменениям результатов измерений) задача, которую, однако, радиоастрономы научились решать.

Достижения радиоинтерферометрии

    Радиоинтерферометры с угловым разрешением в тысячные доли секунды дуги «заглянули» в самые внутренние области наиболее мощных «радиомаяков» Вселенной — радиогалактик и квазаров, которые излучают в радиодиапазоне в десятки миллионов раз интенсивнее, чем обычные галактики. Удалось «увидеть», как из ядер галактик и квазаров выбрасываются облака плазмы, измерить скорости их движения, которые оказались близкими к скорости света. Много интересного было открыто и в нашей Галактике. В окрестностях молодых звезд найдены источники мазерного радиоизлучения (мазер — аналог оптического лазера, но в радиодиапазоне) в спектральных линиях молекул воды, гидроксила (OH) и метанола (CH3OH). По космическим масштабам источники очень малы — меньше Солнечной системы. Отдельные яркие пятнышки на радиокартах, полученных интерферометрами, могут быть зародышами планет.
    Такие мазеры найдены и в других галактиках. Изменение положений мазерных пятен за несколько лет, наблюдавшееся в соседней галактике M33 в созвездии Треугольника, впервые позволило непосредственно оценить скорость ее вращения и перемещение по небу. Измеренные смещения ничтожны, их скорость во многие тысячи раз меньше видимой для земного наблюдателя скорости улитки, ползущей по поверхности Марса. Такой эксперимент пока находится далеко за пределами возможностей оптической астрономии: заметить собственные движения отдельных объектов на межгалактических расстояниях ей просто не под силу. Наконец, интерферометрические наблюдения дали новое подтверждение существования сверхмассивных черных дыр. Вокруг ядра активной галактики NGC 4258 были обнаружены сгустки вещества, которые движутся по орбитам радиусом не более трех световых лет, при этом их скорости достигают тысячи километров в секунду. Это означает, что масса центрального тела — не менее миллиарда масс Солнца, и оно не может быть не чем иным, как черной дырой.
    Целый ряд интересных результатов получен методом РСДБ при наблюдениях в Солнечной системе. Начать хотя бы с самой точной на сегодня количественной проверки общей теории относительности. Интерферометр измерил отклонение радиоволн в поле тяготения Солнца с точностью до сотой доли процента. Это на два порядка точнее, чем позволяют оптические наблюдения. Глобальные радиоинтерферометры также применяются для слежения за движением космических аппаратов, изучающих другие планеты. Первый раз такой эксперимент был проведен в 1985-м, когда советские аппараты «Вега-1» и «-2» сбросили в атмосферу Венеры аэростаты. Наблюдения подтвердили быструю циркуляцию атмосферы планеты со скоростью около 70 м/с, то есть один оборот вокруг планеты за 6 суток. Это удивительный факт, который еще ожидает своего объяснения.
    В 2004 году аналогичные наблюдения с участием сети из 18 радиотелескопов на разных континентах сопровождали посадку аппарата «Гюйгенс» на спутник Сатурна Титан. С расстояния в 1,2 млрд. км велось слежение за тем, как движется аппарат в атмосфере Титана с точностью до десятка километров! Не слишком широко известно о том, что во время посадки «Гюйгенса» была потеряна практически половина научной информации. Зонд ретранслировал данные через станцию «Кассини», которая доставила его к Сатурну. Для надежности предусматривалось два дублирующихся канала передачи данных. Однако незадолго до посадки было принято решение передавать по ним разную информацию. Но в самый ответственный момент из-за пока еще не выясненного сбоя один из приемников на «Кассини» не включился, и половина снимков пропала. А вместе с ними пропали и данные о скорости ветра в атмосфере Титана, которые передавались как раз по отключившемуся каналу. К счастью, в NASA успели подстраховаться — спуск «Гюйгенса» наблюдал с Земли глобальный радиоинтерферометр. Это, по-видимому, позволит спасти пропавшие данные о динамике атмосферы Титана. Результаты этого эксперимента еще обрабатываются в Европейском объединенном радиоинтерферометрическом институте, и, кстати, занимаются этим наши соотечественники Леонид Гурвиц и Сергей Погребенко.

Будущее радиоинтерферометрии

    По крайней мере в ближайшие полвека генеральной линией развития радиоастрономии будет создание все более крупных систем апертурного синтеза — все проектируемые крупные инструменты являются интерферометрами. Так, на плато Чахнантор в Чили совместными усилиями ряда стран Европы и Америки началось строительство системы антенн миллиметрового диапазона ALMA (Atacama Large Millimeter Array — Большая миллиметровая система Атакама). Всего здесь будет 64 антенны диаметром 12 метров с рабочим диапазоном длин волн от 0,35 до 10 мм. Наибольшее расстояние между антеннами ALMA составит 14 км. Благодаря очень сухому климату и большой высоте над уровнем моря (5100 м) система сможет вести наблюдения на волнах короче миллиметра. В других местах и на меньшей высоте это невозможно из-за поглощения такого излучения парами воды в воздухе. Строительство ALMA будет закончено к 2011 году.

Очень большая решетка (VLA)
Большой радиотелескоп РАТАН-600
КрАО - РТ-22 (РадиоТелескоп)
Радиоастрон

    Европейская система апертурного синтеза LOFAR будет работать на гораздо более длинных волнах — от 1,2 до 10 м. Она войдет в строй в течение трех ближайших лет. Это очень интересный проект: чтобы снизить стоимость, в нем используются простейшие неподвижные антенны — пирамиды из металлических стержней высотой около 1,5 м с усилителем сигнала. Зато таких антенн в системе будет 25 тысяч. Их объединят в группы, которые разместят по всей территории Голландии вдоль лучей «изогнутой пятиконечной звезды» диаметром около 350 км. Каждая антенна будет принимать сигналы со всего видимого неба, но их совместная компьютерная обработка позволит выделять те, что пришли с интересующих ученых направлений. При этом чисто вычислительным путем формируется диаграмма направленности интерферометра, ширина которой на самой короткой волне составит 1 секунду дуги. Работа системы потребует огромного объема вычислений, но для сегодняшних компьютеров это вполне посильная задача. Для ее решения в прошлом году в Голландии был установлен самый мощный в Европе суперкомпьютер IBM Blue Gene/L с 12 288 процессорами. Более того, при соответствующей обработки сигналов (требующей еще больших компьютерных мощностей) LOFAR сможет одновременно наблюдать на несколькими и даже на многими объектами!
    Но самый амбициозный проект близкого будущего — SKA (Square Kilometer Array — Система «Квадратный километр»). Суммарная площадь его антенн составит около 1 км2, а стоимость инструмента оценивается в миллиард долларов. Проект SKA находится пока на раннем этапе разработки. Основной обсуждаемый вариант конструкции — тысячи антенн диаметром несколько метров, работающих в диапазоне от 3 мм до 5 м. Причем половину из них панируется установить на участке диаметром 5 км, а остальные разнести на значительные расстояния. Китайские ученые предлагали альтернативную схему — 8 неподвижных зеркал диаметром 500 м каждое, подобных телескопу в Аресибо. Для их размещения были даже предложены подходящие высохшие озера. Однако в сентябре Китай выбыл из числа стран — претендентов на размещение гигантского телескопа. Теперь основная борьба развернется между Австралией и Южной Африкой.
    Возможности увеличения базы наземных интерферометров практически исчерпаны. Будущее — это запуск антенн интерферометра в космос, где нет ограничений, связанных с размерами нашей планеты. Такой эксперимент уже проводился. В феврале 1997 года был запущен японский спутник HALCA, который проработал до ноября 2003 года и завершил первый этап в развитии международного проекта VSOP (VLBI Space Observatory Programme — Программа космической обсерватории РСДБ). Спутник нес антенну в виде зонтика диаметром 8 м и работал на эллиптической околоземной орбите, которая обеспечивала базу, равную трем диаметрам Земли. Были получены изображения многих внегалактических радиоисточников с разрешением в тысячные доли секунды дуги. Следующий этап эксперимента по космической интерферометрии, VSOP-2, планируется начать в 2011—2012 годах. Еще один инструмент такого типа создается в рамках проекта «Радиоастрон» Астрокосмическим центром Физического института им. П.Н. Лебедева РАН совместно с учеными других стран. Спутник «Радиоастрон» будет иметь параболическое зеркало диаметром 10 м. Во время запуска оно будет в сложенном состоянии, а после выхода на орбиту развернется. «Радиоастрон» будет снабжен приемниками для нескольких длин волн — от 1,2 до 92 см. В качестве наземных антенн космического интерферометра будут использоваться радиотелескопы в Пущино (Россия), Канберре (Австралия) и Грин-Бэнк (США). Орбита спутника будет очень вытянутой, с апогеем 350 тыс. км. С такой базой интерферометра на самой короткой волне удастся получить изображения радиоисточников и измерять их координаты с точностью до 8 миллионных долей секунды дуги. Это даст возможность заглянуть в ближайшие окрестности ядер радиогалактик и черных дыр, в глубины областей образования молодых звезд в Галактике.


Использование РСДБ для Земли

Источник: galspace.spb.ru

Астрономия для любителей Виды телескопов Радиотелескоп

Радиотелескоп Радиотелескоп Радиотелескоп Радиотелескоп Радиотелескоп Радиотелескоп

Радиотелескоп является разновидностью телескопа и применяется для исследования электромагнитного излучения объектов. Он позволяет изучать электромагнитное излучение астрономических объектов в диапазоне несущих частот от десятков МГц до десятков ГГц. С помощью радиотелескопа ученые могут принять собственное радиоизлучения объекта и, основываясь на полученных данных, исследовать его характеристики, такие как: координаты источников, пространственная структура, интенсивность излучения, а также спектр и поляризация.

Впервые радиокосмическое излучение было обнаружено в 1931 году Карлом Янским, американским радиоинженером. Изучая атмосферные радиопомехи, Янский обнаружил постоянный радиошум. На тот момент ученый точно не мог объяснить его происхождение и отождествил его источник с Млечным путем, а именно с его центральной частью, где находится центр галактики. Только в начале 1940-х работы Янского были продолжены и поспособствовали в дальнейшем развитию радиоастрономии.

Радиотелескоп состоит из антенной системы, радиометра и регистрирующей аппаратуры. Радиометр – это приемное устройство, с помощью которого измеряют мощность излучения малой интенсивности в диапазоне радиоволн (длины волн от 0,1 мм до 1000 м). Другими словами радиотелескоп занимает наиболее низкочастотное положение по сравнению с другими приборами, с помощью которых исследуется электромагнитное излучение (например, инфракрасный телескоп, рентгеновский телескоп и т. д.).

Антенна представляет собой устройство для сбора радиоизлучения небесных объектов. Соновными характеристиками любой антенны являются: чувствительность (то есть минимально возможный сигнал для обнаружения), а также угловое разрешение (то есть способность разделить излучения от нескольких радиоисточников, которые расположены близко друг к другу).

Очень важно, чтобы радиотелескоп обладал высокой чувствительностью и хорошей разрешающей способностью, так как именно это дает возможность наблюдать меньшие пространственные детали исследуемых объектов. Минимальная плотность потока DР, которая регистрируется, определяется соотношением:
DP=P/(S sqrt(Dft) )
где Р — мощность собственных шумов радиотелескопа, S — эффективная площадь антенны, Df — полоса частот, которые принимаются, t — время накопления сигнала.

Антенны, используемые в радиотелескопах, можно разделить на несколько основных типов (классификация производится в зависимости от диапазона длин волн и назначения):
Антенны полной апертуры: параболические антенны (используются для наблюдения на коротких волнах; установлены на поворотных устройствах), радиотелескоп со сферическими зеркалами (диапазон волн до 3-см, неподвижная антенна; перемещение в пространстве луча антенны осуществляется облучением разных частей зеркала), радиотелескоп Крауса (длина волн 10 см; неподвижное вертикально расположенное сферическое зеркало, на которое направлено излучение источника с помощью плоского зеркала, установленного под определенным углом), перископические антенны (небольшие размеры по вертикали и большие в горизонтальном направлении);
Антенны с незаполненной апертурой (два типа в зависимости от способа воспроизведения изображения: последовательный синтез, апертурный синтез – см. ниже). Простейший инструмент данного типа – простой радиоинтерферометр (связанные между собой системы из двух радиотелескопов для одновременного наблюдения за радиоисточником: обладает большей разрешающей способностью, пример: Интерферометр с апертурным синтезом в Кембридже, Англия, длина волны 21 см). Другие типы антенн: крест (крест Миллса с последовательным синтезом в Молонго, Австралия, длина волны 73,5 см), кольцо (инструмент типа последовательного синтеза в Калгуре, Австралия, длина волны 375 см), составной интерферометр (интерферометр с апертурным синтезом во Флерсе, Австралия, длина волны 21).

Самыми точными в работе являются полноповоротные параболические антенны. В случае их применения чувствительность телескопа усиливается за счет того, что такую антенну можно направить в любую точку неба, накапливая сигнал от радиоисточника. Подобный телескоп выделяет сигналы космических источников на фоне разнообразных шумов. Зеркало отражает радиоволны, которые фокусируются и улавливаются облучателем. Облучатель представляет из себя полуволновое диполе, принимающее излучение заданной длины волны. Основная проблема использования радиотелескопов с параболическими зеркалами состоит в том, что при повороте зеркало деформируется под действием сил тяжести. Именно из-за этого в случае увеличения диаметра свыше примерно 150 м увеличиваются отклонения при измерениях. Тем не менее, существуют очень крупные радиотелескопы, которые успешно работают много лет.

Иногда, для более успешных наблюдений, используют несколько радиотелескопов, установленных на определенном расстоянии друг от друга. Такая система называется радиоинтерферометром (см. выше). Принцип его действия состоит в измерении и записи колебаний электромагнитного поля, которые порождаются отдельными лучами на поверхности зеркала или другой точке, через которую проходит тот же луч. После этого записи складываются с учетом фазового сдвига.

Если решетку антенн сделать не сплошной, а разнесенной на достаточно большое расстояние, то получится зеркало большого диаметра. Такая система работает по принципу «синтеза апертуры». В этом случае разрешение определяется расстоянием между антеннами, а не их диаметром. Таким образом, данная система позволяет не строить огромные антенны, а обойтись, как минимум, тремя, расположенными с определенными промежутками. Одной из самых известных систем подобного рода является VLA (Very Large Array). Этот массив расположен в США, штате Нью-Мексико. «Очень большая решетка» была создана в 1981 году. Система состоит из 27 полноповоротных параболических антенн, которые расположены вдоль двух линий, образующих букву “V”. Диаметр каждой антенны достигает 25 метров. Каждая антенна может занимать одну из 72 позиций, передвигаясь по рельсовым путям. VLA по чувствительности соответствует антенне диаметром 136 километров и по угловому разрешению превосходит лучшие оптические системы. Неслучайно именно VLA использовалась при поиске воды на Меркурии, радио-корон вокруг звезд и других явлений.

По своей конструкции радиотелескопы чаще всего открыты. Хотя в некоторых случаях для того, чтобы защитить зеркало от погодных явлений (температурных изменений и ветровых нагрузок), телескоп помещают внутрь купола: сплошного (Хайстекская обсерватория, 37-м радиотелескоп) или с раздвижным окном (11-м радиотелескоп на Китт-Пик, США).

В настоящее время перспективы использования радиотелескопов заключаются в том, что они позволяют наладить связь между антеннами, находящимися в разных странах и даже на разных континентах. Подобные системы называются радиоинтерферометрами со сверхдлинной базой (РСДБ). Сеть из 18 телескопов была использована в 2004 году для наблюдения за посадкой аппарата «Гюйгенс» на Титан, спутник Сатурна. Ведется проектирование системы ALMA, состоящей из 64 антенн. Перспектива на будущее – запуск антенн интерферометра в космос.

Галетич Юлия, 21 Октября 2009

Источник: www.astrotime.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.