С помощью телескопа хаббл астрономам удалось


Космический телескоп Хаббл всего на 500 километров ближе к космосу, чем мы на Земле, но с его точки зрения за пределами атмосферы и прочих помех можно увидеть мир на миллиарды световых лет дальше. За свои 25 лет службы он в корне изменил наше понимание астрофизики. Его камеры обнаружили черные дыры, галактические столкновения, жестокую смерть звезд. Хаббл помог нам определить возраст Вселенной и подтвердил, что она полна планет. Его назвали самым важным научным инструментом в истории человечества.

Hubble Deep Field

Хабблом управляют из Научного института космического телескопа в кампусе Университета Джона Хопкинса в Балтиморе. Вот десять научных открытий, которые считаются важнейшими в истории работы Хаббла.

Удар кометы (1994)


Этот снимок гигантской планеты Юпитер, сделанный телескопом Хаббл, раскрывает места падения двух фрагментов кометы Шумейкера — Леви 9. Двадцать один крупный кусок кометы дождем посыпался на Юпитер в июле 1994 года. Места падения, расположенные в южном полушарии планеты, — это темные места в левом верхнем углу фотографии.

Комета Шумейкера — Леви 9 была особенной. С одной стороны, она вращалась не вокруг Солнца, подобно другим кометам, обнаруженным астрономами. Она вращалась вокруг Юпитера. И вскоре после ее открытия в 1993 году ученые поняли, что она вот-вот упадет на планету. Падение произошло на стороне Юпитера, обращенной в сторону от Земли, но быстрое вращение планеты позволило зафиксировать место падения камерами Хаббла. Комета развалилась на части, многочисленные фрагменты упали на газовый гигант и оставили темные отметины, некоторые из которых в диаметре не меньше Земли. Эти отметины продержались еще несколько месяцев, прежде чем бурлящая атмосфера Юпитера не загладила их.

Фабрика звезд (1995)

При ближайшем рассмотрении цветной мозаики туманности Ориона (М42) в 2006 году космический телескоп Хаббл выявил многочисленные сокровища в регионе активного звездообразования.

Примерно в 1500 световых лет от Земли, рядом с центром созвездия Орион, расположено небесное родильное отделение, где облака газа собираются в новые звезды.
круг этих звезд располагаются диски материи, которые однажды могут стать планетарными системами. Исследование туманности Ориона Хабблом помогло подтвердить, что планеты довольно распространены по Вселенной, а эта активность позволила пролить свет на некоторые вопросы о рождении нашей собственной Солнечной системы. Ученые оценивают, что некоторые из звезд в туманности Ориона возрастом всего в несколько миллионов лет. «Всего», спросите вы? По сравнению со звездой возрастом в 4,5 миллиарда лет, от которой мы все зависимы на Земле, те звезды еще даже не головастики.

Галактическая эволюция (1996)

Несколько сотен никогда не виденных галактик видимы в этом «глубочайшем» взгляде на Вселенную под названием Hubble Deep Field (HDF), брошенном космическим телескопом Хаббл.

Эти пятна — не звезды, это целые галактики. В течение 10 дней Хаббл вглядывался в крошечную полоску неба — эквивалентную ширине копейки с расстояния в двести метров. Через эту «замочную скважину» он увидел невероятный массив более 1500 галактик на разных этапах эволюции, простирающийся до самых пределов видимой Вселенной. Некоторые из них довольно молодые, некоторые берут начало с начала времен, а многие настолько тусклые, что их никогда не видели даже самые мощные наземные телескопы. И еще более интересно то, что Хаббл мог уставиться куда угодно в небо и обнаружить похожее разнообразие галактик.

Гамма-лучевая вспышка (1998)


Космический телескоп Хаббл заснял невероятно тусклую галактику в 12 миллиардах световых лет от нас.

Миллиарды лет назад, по непостижимым расстояниям в космосе катастрофический взрыв разослал высокоэнергетическую радиацию — гамма-лучи. В конце 1997 года эта радиация достигла Земли. Гамма-лучевые всплески обычно длятся секунду-две, поэтому невозможно целенаправленно засечь их с помощью телескопа, но они оставляют слабое послесвечение в видимом, рентгеновском, радиоволновом и инфракрасном спектре. Хаббл проследовал за ним сквозь пространство и время к источнику — невероятно тусклой галактике в 12 миллиардах световых лет от нас. Гамма-лучевые вспышки чрезвычайно редкие, но очень мощные. Случись такая вспышка в Млечном Пути, если она будет направлена на Землю, последует массовое вымирание.

Возраст Вселенной (1999)

Этот снимок, сделанный космическим телескопом Хаббл, используется для идентификации ключевых маркеров звездного расстояния, известных как цефеиды, переменные звезды. Великолепная спираль NGC 4921 неформально называлась анемичной из-за низкой скорости звездообразования и низкой яркости поверхности.

Астрономы знали, что Вселенная старая и большая. Но не знали, насколько большая и насколько старая. Хаббл помог сузить ответы. Сканируя галактики, подобные NGC 4921, телескоп обнаружил сотни «переменных цефеид», пульсирующих звезд, характеристики которых сделали их надежным инструментом измерения расстояний. Точное определение того, как далеко галактики от нас и с какой скоростью движутся, позволяет определить размер, возраст и судьбу Вселенной. До Хаббла Вселенной было 10-20 миллиардов лет. После Хаббла стало 13,8 миллиарда. Точность — вежливость королей.

Черная дыра (2000)


Вылетая потоком из центра галактики M87, подобно космическому свету маяка, джет черной дыры выпускает электроны и другие субатомные частицы почти со скоростью света. На этом снимке телескопа Хаббл синий джет контрастирует с желтым свечением миллиарда невидимых звезд и желтизной глобулярных кластеров, составляющих эту галактику.

У большинства крупных галактик в центре находится сверхмассивная черная дыра, которую и запечатлел на шикарном снимке Хаббл. Эллиптическая галактика M87 лежит в 50 миллионах световых лет от Земли в созвездии Девы. Даже Хаббл увидел M87 как желтое пятно, за исключением одной выдающейся детали: джета частиц, который выбрасывается из ядра галактики на околосветовой скорости черной дырой массой в 2 миллиарда солнц. Джет вытягивается на 5000 световых лет. В 1940-х годах ученые уже знали, что с созвездием Девы что-то не так: оно было одним из мощнейших источников радиочастотных волн в небе. Хаббл показал детали.

Чужая атмосфера (2001)

Так выглядит планета, газовый гигант, вращающаяся вокруг желтой звезды, похожей на Солнце, HD 209458 в 150 световых годах от Земли, глазами художника.


Всего несколько десятилетий назад ученые не были уверены, существуют ли планеты за пределами Солнечной системы. На сегодняшний день подтверждено существование порядка 2000 экзопланет, причем новые находятся постоянно. Вклад Хаббла в этот поиск включает первое прямое обнаружение атмосферы у экзопланеты. Она была обнаружена у похожей на Юпитер планеты, вращающейся вокруг HD 209458, желтой звезды в 150 световых годах от нас. Когда планета прошла перед своей звездой, Хаббл смог проанализировать свет звезды, прошедший через атмосферу, как через фильтр. Телескоп обнаружил натрий, водород, углерод и кислород.

Умирающая звезда (2003)

Похожая на покрытый рябью бассейн, освещенный подводными фонарями, туманность Яйцо предлагает астрономам особый взгляд на то, как обычно невидимая пыль укрывает оболочкой стареющую звезду.

Мы все — звездная пыль. Тяжелые элементы, составляющие наш мир — углерод, кислород, кремний, железо — были произведены внутри звезд, когда те сжигали свое топливо, и рассеялись вместе со смертью светил. Снимок Хаббла туманности Яйцо в 3000 световых годах от Земли показал звезду на поздних этапах ее жизни, когда она вот-вот должна стать белым карликом. Туманность — это оболочка пыли, по большей части углерод, укрывающая стареющую звезду и растянутая на сотни миллиардов километров в космосе. У оболочки есть слои, как у луковицы, которые приводят к тому, что свет звезды рябит. Сама звезда скрыта толстым слоем пыли.

Темная энергия (2003)


Сверхновая в 8 миллиардах световых лет от Земли — красное свечение в центре этого снимка Хаббла.

Хаббл заснял две взрывающиеся звезды в галактиках за миллиарды световых лет от Земли — и значит за миллиарды лет в прошлом, — и эти снимки помогли нам лучше понять расширение Вселенной. Сверхновая типа Ia светится с определенным уровнем яркости, что делает их полезными для определения межгалактических расстояний. Изучая их свет, астрономы могут понять, как далеки они и как быстро движутся. Это привело к интересным выводам: хотя скорость расширения Вселенной растет, в определенный момент в прошлом это расширение замедлилось. Что вызвало замедление? Загадочная сила — темная энергия.

Источник: Hi-News.ru

С помощью космического телескопа “Хаббл” астрономам удалось провести беспрецедентно глубокий обзор маленьких, тусклых объектов в туманности Ориона. В результате этой работы было раскрыто большое количество коричневых карликов среди новорождённых звёзд. Подробно изучив все доступные звёзды, специалистам удалось найти не только коричневые карлики, но также три гигантских планеты. Более того, был найден пример двойной планетарной системы, в которой планеты вращаются вокруг друг друга в отсутствие звезды.


Коричневые карлики являются довольно странным классом астрономических объектов, масса которых настолько низкая, что их ядра никогда не станут достаточно горячими, чтобы запустить реакции ядерного синтеза, который и является главной характеристикой звёзд. Вместо этого, коричневые карлики холодные, по звёздным меркам, и с возрастом всё сильнее остывают. Несмотря на их малую массу, эти звёздные объекты дают важное понимание о том, как формируются звёзды и планеты. К тому же, они могут быть одними из самых распространённых объектов в Млечном Пути.

Туманность Ориона расположена на расстоянии 1350 световых лет от Солнечной системы. Она является относительно близкой к нам природной лабораторией для изучения процессов звездообразования широкого спектра, от гигантских звёзд, до крошечных красных карликов и неуловимых коричневых. Этот обзор удалось провести исключительно благодаря огромному разрешению телескопа “Хаббл” и высокой чувствительностью в инфракрасном диапазоне.

В связи с тем, что коричневые карлики холоднее, чем любые другие звёзды, астрономы использовали мощности “Хаббла”, чтобы идентифицировать их по присутствию воды в их атмосферах.

“Они настолько холодные, что в них присутствует водяной пар. А вода является характеристикой дозвёздных объектов, это удивительная и очень ясная черта. Поскольку массы у звёзд становятся всё меньше, самые такие объекты уходят в красный спектр и становятся более тусклыми. Поэтому их рассмотреть можно только в инфракрасном спектре, и именно здесь наиболее яркая черта – вода”, – Массимо Робберто, руководитель группы исследователей из Института исследования космоса с помощью космического телескопа.


Однако водяной пар в атмосфере коричневых карликов нелегко заметить с поверхности Земли из-за эффектов поглощения излучения водяного пара в нашей собственной атмосфере. К счастью, “Хаббл” находится существенно выше основных слоёв атмосферы и имеет камеру ближнего инфракрасного диапазона, которая может легко определить воду на далёких мирах.

Команда “Хаббла” идентифицировала 1200 кандидатов в коричневые карлики. Было замечено, что эти звёзды строго делятся на два типа: с водой и без воды. С водой были наиболее яркие звёзды, которые впоследствии оказались слабыми красными карликами. Более тусклые звёзды с водой оказались свободно перемещающимися коричневыми карликами и даже планетами в туманности Ориона. Все они являются новым открытием. Также было обнаружено множество объектов без наличия воды, которые оказались фоновыми звёздами Млечного Пути. Их свет был окрашен в красный цвет из-за наличия на пути к телескопу межзвёздной пыли, поэтому они не относятся к исследованию.


Исследователи также занималась поиском двойных систем, в дополнении к 1200 исследованным объектам. Из-за того, что сами карлики являются очень маленькими звёздами, а отличить друг от друга компоненты двойной системы является вообще неподъёмной задачей с использованием стандартных методов наблюдения. Но при помощи уникального, высоко контрастного метода отображения информации астрономы смогли решить слабые изображения большого количества двойных систем.

Этот первый анализ не позволил астрономам с помощью “Хаббла” определить, вращаются ли эти объекты вокруг друг друга или их близость обусловлена просто случайным совпадением. Как следствие, они не были классифицированы как кандидаты на данный момент. Однако присутствие воды в их атмосферах указывает на то, что они не могут быть просто случайными фоновыми звёздами. Таким образом, они могут быть либо коричневыми карликами, либо компаньонами экзопланет.

Всего исследователи определили 17 кандидатов в коричневые карлики, которые являются компаньонами красных карликов, одну пару коричневых карликов и один коричневый карлик с компаньоном-планетой. Исследование также идентифицировало три компаньона с массой, близкой к планетарной: один связан с красным карликом, один с коричневым, а третий с другой планетой.

“Мы экспериментировали с методом высококонтрастной пост обработки изображения, на которую астрономы полагаются в течение многих лет.
ычно мы используем его, чтобы найти очень тусклые планеты в непосредственной близости от соседних звёзд. А в этот раз мы решили объединить наши алгоритмы с ультра способностями “Хаббла” исследовать сотни молодых звёзд на каждом кадре туманности Ориона. Оказалось, что, даже если мы не достигаем максимальной чувствительности при наблюдении единичной звезды, суммарный статистический объём информации позволяет сделать снимки молодых экзопланет и компаньонов коричневых карликов в Орионе”.

А объединив два уникальных метода, то есть анализ фильтра воды и высококонтрастную обработку изображения, обзор обеспечил сбор беспрецедентной информации о недавно сформировавшихся объектов малой массы и их компаньонах. Теперь исследователи хотят повторно обработать весь архив “Хаббла” и поискать интересные объекты там.

Ожидается, что поиск звёзд малой массы и их компаньонов станет намного более эффективным после запуска инфракрасного телескопа “Джеймс Уэбб” в 2019 году.

По информации Института исследования космоса с помощью космического телескопа.

Источник: www.theuniversetimes.ru

Американским астрономам удалось подтвердить существование совершенно нового типа планет: так называемого "водного мира", который окружает плотная, наполненная паром атмосфера, сообщает BBC.

К такому открытию пришли ученые из Гарвард-Смитсонианского центра астрофизики в Кембридже (США), изучив данные, полученные орбитальной обсерваторией "Хаббл".

При помощи телескопа астрономам удалось получить спектрограммы прохождения объект GJ 1214b по диску звезды в созвездии Змееносца, удаленном от нас на расстоянии в 40 световых идрвтююк лет от Солнца. Экзопланета в диаметре крупнее примерно в 2,7 раза и массивнее примерно в семь раз. Объект обращается вокруг карликовой звезды на расстоянии около 2 млн км, температура на поверхности достигает 230 градусов по Цельсию.

В силу того, что у GJ1214b небольшая плотность — примерно треть земной, большинство астрономов предполагает, что такие характеристики GJ 1214b можно объяснить тем, что она представляет собой водный мир — планету с небольшим твердым ядром и гигантским океаном вокруг него, отмечает РИА "Новости".

Снимки Хаббла показали, что атмосфера GJ 1214b представляет собой густой водяной пар с добавлением небольших количеств гелия и водорода. Учитывая крайне высокую температуру на поверхности планеты, вода в ее океанах должна находиться в экзотическом состоянии.

"Высокая температура и давление могут стать причиной появления таких экзотичных материалов, как "горячий лед" и "супержидкая вода", которые мы не можем встретить в нашей повседневной жизни на Земле", — пояснил руководитель группы астрономов Захори Берта.

На сегодняшний день ученые успели открыть еще несколько "подозрительных" планет, похожих по своим характеристикам на GJ 1214b. Вполне возможно, что такие небесные тела довольно распространены во Вселенной.

Источник: www.topnews.ru

История

Идея разместить телескоп на орбите возникла почти сто лет назад. Научное обоснование важности постройки такого телескопа в виде статьи опубликовал астрофизик Лайман Спитцер в 1946-м году. В 65-м его сделали главой комитета академии наук, которая определила задачи такого проекта.

В шестидесятых удалось провести несколько успешных запусков и доставить на орбиту более простые устройства, и в 68-м НАСА дало зеленый свет предтече Хаббла — аппарату LST, Большому Космическому Телескопу, с более крупным диаметром зеркала — 3 метра против хаббловских 2,4 — и амбициозной задаче запустить его уже в 72-м году, с помощью находящегося тогда в разработке космического шаттла. Но расчетная проектная смета вышла слишком дорогой, с деньгами возникали трудности, а в 74-м финансирование и вовсе отменили. Активное лоббирование проекта астрономами, привлечение Европейского Космического Агентства и упрощение характеристик приблизительно до хаббловских позволили в 78-м получить финансирование от Конгресса в размере смешных по итоговым затратам 36-и миллионов долларов, что на сегодняшний день равно примерно 137-и миллионам.

Тогда же будущий телескоп назвали в честь Эдвина Хаббла, астронома и космолога, подтвердившего существование других галактик, создавшего теорию расширения Вселенной и давшего свое имя не только телескопу, но еще научному закону и величине.

Телескоп разрабатывали несколько компаний, отвечающих за разные элементы, из которых самые сложные: оптическая система, которой занималась Перкин-Элмер, и космический аппарат, который создавала Локхид. Бюджет вырос уже до 400 млн долларов.

Локхид затянула создание аппарата на три месяца и превысила свой бюджет на 30%. Если посмотреть на истории строительства похожих по сложности аппаратов, то это нормальная ситуация. У Перкин-Элмер же все было значительно хуже. Компания полировала зеркало по инновационной технологии до конца 81-го года, сильно превысив бюджет и испортив отношения с НАСА. Интересно, что болванку зеркала им сделала компания Корнинг, которая сегодня выпускает стекла Горилла Гласс, активно используемые в телефонах. Кстати, Кодак получил контракт на изготовление запасного зеркала с использованием традиционных методов полировки, если с полировкой основного зеркала возникнут проблемы. Задержки по созданию остальных компонентов тормозили процесс настолько, что стала известной цитата из характеристики НАСА по поводу графиков работ, которые были «неопределенными и изменяющимися ежедневно».

Запуск стал возможен лишь к 86-у году, но из-за катастрофы Челленжера, запуски шаттлов приостановили на время доработок.

Хаббл по частям положили на хранение в специальные продуваемые азотом камеры, что обходилось в шесть миллионов долларов в месяц.

В итоге, 24 апреля 1990-го года, шаттл Дискавери стартовал с телескопом на орбиту. К этому моменту на Хаббл потратили 2,5 миллиарда долларов. Общие затраты на сегодня подбираются к десяти миллиардам.

Со времени запуска произошло несколько драматичных событий с участием Хаббла, но главное произошло в самом начале.

Когда после вывода на орбиту, телескоп начал свою работу, оказалось, что его резкость на порядок ниже расчетной. Вместо десятой доли угловой секунды получалась целая секунда. После нескольких проверок, оказалось, что зеркало телескопа слишком плоское по краям: на целых два микрометра не совпадает с расчетным. Аберрация вследствие этого в буквальном смысле микроскопического дефекта делала большинство планируемых исследований невозможными.

Была собрана комиссия, члены которой нашли причину: невероятно точно рассчитанное зеркало неправильно отшлифовали. Более того, еще до запуска такие же отклонения показывала используемая в тестах пара нуль-корректоров — устройств, которые здесь отвечали за нужную кривизну поверхности. Но тогда этим показаниям не стали доверять, положившись на показания главного нуль-корректора, который показывал правильные результаты и по которому производили шлифовку. И одна из линз которого, как оказалось, была неправильно установлена.

Человеческий фактор.

Установить новое зеркало прямо на орбите было технически невозможно, а спускать телескоп и затем снова выводить — слишком дорого. Решение нашлось изящное.

Да, зеркало было сделано неправильно. Но оно было сделано неправильно с очень высокой точностью. Искажение было известно, и его оставалось лишь компенсировать, для чего разработали специальную систему корректировки COSTAR. Установить ее решили в рамках первой экспедиции по обслуживанию телескопа. Такая экспедиция — это сложная десятидневная операция с выходами астронавтов в открытый космос. Более футуристической работы и представить нельзя, а ведь это всего лишь техобслуживание. Всего экспедиций за время работы телескопа было четыре, с двумя вылетами в рамках третьей.

2 декабря 1993-го года шаттл Индевор, для которого это был пятый полет, доставил астронавтов к телескопу. Те установили Костар и заменили камеру.

Костар скорректировала сферическую аберрацию зеркала, сыграв роль самых дорогостоящих очков в истории. Система оптической коррекции выполняла свою задачу до 2009-го года, когда нужда в ней отпала в связи с использованием во всех новых приборах собственной корректирующей оптики. Она уступила драгоценное место в телескопе спектрографу и заняла почетное место в Национальном музее воздухоплавания и астронавтики, после демонтажа в рамках четвертой экспедиции по обслуживанию Хаббла в 2009-м году.

Управление

Управляется и контролируется телескоп в реальном времени 24/7 из центра управления в городе Гринбелт в штате Мэриленд. Задачи центра делятся на два вида: технические (обслуживание, управление и мониторинг состояния) и научные (выбор объектов, подготовка задач и непосредственно сбор данных). Еженедельно Хаббл получает с Земли более 100 000 разных команд: это корректирующие орбиту инструкции, и задания на съемку космических объектов.

В ЦУПе сутки разбиты на три смены за каждой из которых закреплена отдельная команда из трех-пяти человек. Во время экспедиций к самому телескопу штат работников увеличивается до нескольких десятков.

Кстати, существует отдельный сайт, разработанный Крисом Питом, где можно отследить положение небесной обсерватории. Там же есть данные и по другим искусственным орбитальным объектам:
www.heavens-above.com

Хаббл — телескоп занятой, но даже его плотный график позволяет помочь совершенно любому, даже непрофессиональному, астроному. Ежегодно в Институт Исследований Космоса с Помощью Космического Телескопа поступает по тысяче заявок на бронирование времени от астрономов из разных стран. Около 20% заявок получают одобрение экспертной комиссии и, по данным НАСА, благодаря международным запросам проводится плюс-минус 20 тысяч наблюдений ежегодно. Все эти заявки стыкуются, программируются и отправляются Хабблу из все того же центра в Мэриленде.

Оптика

Основная оптика Хаббла сделана по системе Ричи-Кретьена. Она состоит из круглого, гиперболически изогнутого, зеркала диаметром 2,4 м с отверстием в центре. Это зеркало отражает на вторичное зеркало тоже гиперболической формы, которое отражает в центральное отверстие первичного пригодный к оцифровке пучок. Для отсеивания лишних частей спектра и выделения нужных диапазонов используются всевозможные фильтры.

В таких телескопах используют именно систему зеркал, а не линз, как в фотокамерах. Тому много причин: перепады температур, допуски полировки, общие размеры и отсутствие потерь пучка внутри самой линзы.

Основная оптика на Хаббле не менялась с самого начала. А набор разнообразных инструментов, ее использующих, полностью сменили за несколько обслуживающих экспедиций. Хабблу обновляли инструментарий, и за время его существования там работало тринадцать разных инструментов. Сегодня он несет шесть, один из которых в гибернации.

За фотографии в оптическом диапазоне отвечали Широкоугольные и планетарные камеры первого и второго поколения, и Широкоугольная камера третьего сейчас.

Потенциал первой WFPC так и не был раскрыт из-за проблем с зеркалом. А экспедиция 93-го года, установив Костар, заодно и заменила ее на вторую версию.

У камеры WFPC2 было четыре квадратных матрицы, изображения с которых формировали большой квадрат. Почти. Одна матрица — как раз-таки «планетарная» — получала изображение с бо́льшим увеличением, и при восстановлении масштаба эта часть изображения захватывает меньше шестнадцатой части общего квадрата вместо четверти, но в более высоком разрешении. Остальные три матрицы отвечали за «широкоугольность». Именно поэтому полные снимки камеры выглядят как квадрат, у которого отъели 3 блока с одного угла, а не из-за проблем с загрузкой файлов или других неполадок.

WFPC2 заменили на WFC3 в 2009-м. Разницу между ними хорошо иллюстрируют переснятые Столпы Творения, о которых позже.

Кроме оптического и ближнего инфракрасного диапазона широкоугольной камерой, Хаббл видит:

  • с помощью спектрографа STIS в ближнем и дальнем ультрафиолете, а также от видимого до ближнего ифракрасного;
  • там же с помощью одного из каналов ACS, другие каналы которой перекрывают огромный диапазон частот от инфракрасной до ультрафиолетовой области;
  • слабые точечные источники в ультрафиолетовом диапазоне спектрографом COS.

Снимки Хаббла — это не совсем фотографии в привычном понимании. Очень много информации недоступно в оптическом диапазоне. Многие космические объекты активно излучают в других диапазонах. Хаббл оборудован множеством устройств с разнообразными фильтрами, что позволяют уловить данные, которые позже астрономы обрабатывают и могут свести в наглядное изображение. Богатство цветов обеспечивают разные диапазоны излучения звезд и ионизированных ими частиц, а также их отраженный свет.

Фотографий очень много, расскажу лишь о нескольких, самых захватывающих. Все фотографии имеют свой ID, по которому легко находятся на сайте Хаббла spacetelescope.org или прямо в Гугле. Многие снимки лежат на сайте в высоком разрешении, здесь же я оставляю screensize-версии.

Столпы творения

ID: opo9544a

Свой самый знаменитый кадр Хаббл сделал первого апреля 95-го года, не отвлекаясь от умной работы в день дурака. Это Столпы Творения, названные так потому, что из этих скоплений газа формируются звезды, и потому, что напоминают формой. На снимке — небольшой кусочек центральной части туманности Орел. Туманность эта интересная тем, что крупные звезды в ее центре частично ее же развеяли, да еще и как раз со стороны Земли. Такая удача позволяет посмотреть в самый центр туманности и, например, сделать знаменитый выразительный снимок.

Другие телескопы тоже снимали этот регион в разных диапазонах, но в оптическом Столпы выходят выразительнее всего: ионизированный теми самыми звездами, что развеяли часть туманности, газ светится синим, зеленым и красным цветами, создавая красивые переливы.

В 2014-м году Столпы пересняли обновленным оборудованием Хаббла: первую версию снимала камера WFPC2, а вторую — WFC3.

ID: heic1501a

Роза, сделанная из галактик

ID: heic1107a

Объект Арп 273 — красивый пример коммуникации между галактиками, оказавшимися близко друг к другу. Ассиметричная форма верхней — это следствие так называемых приливных взаимодействий с нижней. Вместе они образуют грандиозный цветок, подаренный человечеству в 2011-м году.

Магическая галактика Сомбреро

ID: opo0328a

Мессье 104 — величественная галактика, которую как будто придумали и нарисовали в Голливуде. Но нет, прекрасная сто-четвертая находится на южной окраине созвездия Девы. И она настолько яркая, что видна даже в домашние телескопы. Хабблу эта красавица позировала в 2004-м году.

Новый вид туманности Конской головы в инфракрасном спектре — изображение на 23-ю годовщину Хаббла

ID: heic1307a

В 2013-м году Хаббл переснял Барнард 33 в инфракрасном спектре. И мрачная туманность Конская Голова в созвездии Ориона, почти непрозрачная и черная в видимом диапазоне, предстала в новом свете. То есть, диапазоне.

До этого Хаббл уже фотографировал ее в 2001-м:

ID: heic0105a

Тогда она победила в интернет-голосовании на юбилейный объект для одинадцати лет на орбите. Интересно, что и до фотографий Хаббла, Конская Голова была одним из самых снимаемых объектов.

Хаббл запечатлел звездообразовательный регион S106

ID: heic1118a

S106 — звездообразовательная область в созвездии Лебедя. Красивая структура обусловлена выбросами молодой звезды, что окутана пылью в форме пончика в центре. Эта пылевая завеса имеет бреши сверху и снизу, через которые вещество звезды вырывается активнее, образуя форму, напоминающую известную оптическую иллюзию. Снимок сделан в конце 2011-го года.

Кассиопея А: красочные последствия смерти звезды

ID: heic0609a

Вы, вероятно слышали о взрывах Сверхновых звезд. А этот снимок наглядно показывает один из сценариев дальнейшей судьбы таких объектов.

На фото 2006-го года — последствия взрыва звезды Кассиопеи А, что случилось прямо в нашей галактике. Прекрасно видна волна разлетающегося из эпицентра вещества, со сложной и детальной структурой.

Изображение Хаббла Arp 142

ID: heic1311a

И снова снимок, демонстрирующий последствия взаимодействия двух галактик, оказавшихся близко одна к другой во время своего Вселенского пути.

NGC 2936 и 2937 столкнулись и повлияли друг на друга. Это уже само по себе интересное событие, но в этом случае добавился еще один аспект: нынешняя форма галактик напоминает пингвина с яйцом, что работает как большой плюс для популярности этих галактик.

В милой картинке 2013-го года можно увидеть следы случившегося столкновения: например, глаз пингвина сформирован, по большей части, телами из галактики-яйца.

Зная возраст обеих галактик, можно наконец-то ответить, что же было раньше: яйцо или пингвин.

Бабочка, появляющаяся из остатков звезды в планетарной туманности NGC 6302

ID: heic0910h

Иногда раскаленные до 20 тысяч градусов потоки газа, летящие со скоростью почти в миллион км/ч выглядят как крылышки хрупкой бабочки, нужно лишь найти правильный ракурс. Хабблу не пришлось искать, туманность NGC 6302 — ее еще называют туманностью Бабочка или Жук — сама повернулась к нам подходящей стороной.

Создает эти крылья умирающая звезда нашей галактики в созвездии Скопиона. Форму крыльев потоки газа получают снова из-за кольца пыли вокруг звезды. Эта же пыль закрывает саму звезду от нас. Возможно, кольцо было сформировано потерей вещества звездой вдоль экватора на относ ительно низкой скорости, а крылья — более быстрой потерей от полюсов.

Фотография сделана в 2009-м году.

Deep Field

Есть несколько снимков Хаббла, в названии которых имеется Deep Field. Это кадры с огромным многодневным временем экспозиции, демонстрирующие маленький кусочек звездного неба. Чтобы их снять, пришлось очень тщательно выбирать подходящий для такого экспонирования участок. Его не должны были перекрывать Земля и Луна, поблизости не должно было быть ярких объектов и так далее. В итоге Дип Филд стали очень полезными для астрономов кадрами, по которым можно изучать процессы формирования вселенной.

Самый последний такой кадр — Hubble Extreme Deep Field 2012-го года — достаточно скучный на обывательский взгляд — это беспрецедентная съемка с выдержкой в два миллиона секунд (~23 дня), показавшая 5,5 тысяч галактик, самые тусклые из которых имеют яркость в десять миллиардов меньше чувствительности человеческого зрения.

ID: heic1214a

И эта невероятная картинка свободно лежит на сайте Хаббла, показывая всем желающим крохотную часть 1 / 30 000 000 нашего неба, на которой видны тысячи галактик.

Масскульт

Ценность работы телескопа Хаббл столь велика, что он перестал быть сугубо научным достижением, давно став культурным явлением, часто появляясь в кино и других видах искусства в разных ипостасях.

Конечно же, Голливуд не мог пройти мимо истории с зеркалом, и в фильме «Голый Пистолет 2 с половиной» 91-го года его изображение можно заметить в сцене вечерней депрессии лейтенанта Фрэнка Дребина среди фотографий главных катастроф века.

Уже более уважительный референс можно встретить в масштабном фантастическом дурдоме «Армагеддон» 98-го года, где именно Хаббл делает первые снимки огромного метеорита, летящего к Земле.

Одно из первых заметных появлений полученных телескопом снимков в массовой культуре — четвертый сезон сериала Стар Трек Вояджер в 97-м году.

Хаббл много снимается в кино и на телевидении, и перечислять все фильмы с его участием слишком долго. Одним из самых красивых применений фотографий телескопа, помимо документальных, можно назвать Контакт 97-го года с Джоди Фостер. Также завязка недавней Гравитации происходит во время ремонтной миссии на Хаббле.

Из неожиданных применений наследия Хаббла: меметичные космические леггинсы. Ну и в качестве принтов для одежды в целом.

Хаббл (1990 – 203_)

Хаббл должен сойти с орбиты после 2030-го года. Этот факт кажется грустным, но на самом деле телескоп на много лет превысил длительность своей изначальной миссии. Телескоп несколько раз модернизировали, меняли оборудование на все более совершенное, но основной оптики эти доработки не касались. И в ближайшие годы человечество получит более продвинутую замену старому бойцу, когда запустят телескоп Джеймс Уэбб. Но и после этого Хаббл продолжит работать, пока не выйдет из строя. В телескоп вложены невероятные объемы труда ученых, инженеров, астронавтов, людей других профессий и денег американских и европейских налогоплательщиков.

В ответ человечество имеет беспрецедентную базу научных данных и объектов искусства, помогающих понять устройство вселенной и создающих моду на науку.

Сложно понять ценность Хаббла не астроному, но для нас это прекрасный символ достижений человечества. Не беспроблемный, со сложной историей, телескоп стал успешным проектом, который еще, будем надеяться, больше десяти лет будет трудиться на благо науки.

Ролик

В формате статьи историю Хаббла я подготовил для Гиктаймс, но изначально мы делали ролик. В нем закадровый текст с историческими, техническими и просто красивыми иллюстрациями.

Источник: habr.com


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.