Простейший телескоп имеет


Телескоп — увеличивает угол зрения, под которым видны небесные тела (разрешающая способность), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила). Поэтому в телескоп можно рассмотреть невидимые невооруженным глазом поверхности ближайших к Земле небесных тел и увидеть множество слабых звезд. Все зависит от диаметра его объектива.
 
Оптические телескопы  (крупнейшие)

Простейший телескоп имеет Рефрактор (refracto–преломляю) — используется преломление света в линзе (преломляющий). “Зрительная труба” сделана в Голландии [Х. Липперсгей]. По приблизительному описанию ее изготовил в 1609г Галилео Галилей и впервые направил в ноябре 1609г на небо, а в январе 1610г открыл 4 спутника Юпитера.
    Самый большой в мире рефрактор изготовлен Альваном Кларк (оптиком из США) 102см (40 дюймов) и установлен в 1897г в Йерской обсерватории (близь Чикаго). Им же был изготовлен 30 дюймовый и установлен в 1885г в Пулковской обсерватории (разрушен в годы ВОВ).

Простейший телескоп имеет
Рефлектор (reflecto–отражаю)- используется вогнутое зеркало, фокусирующее лучи. В 1667г первый зеркальный телескоп изобрел И. Ньютон (1643-1727, Англия) диаметр зеркала 2,5см при 41х увеличении. В те времена зеркала делались из сплавов металла, быстро тускнели.
    Самый Большой в мире телескоп им. У. Кека установлен в 1996 году диаметр зеркало 10м (первый из двух, но зеркало не монолитное, а состоит из 36 зеркал шестиугольной формы) в обсерватории Маун-Кеа (Калифорния, США).
    В 1995г введен первый из четырех телескопов (диаметр зеркала 8м) (обсерватория ESO, Чили). До этого самый крупный был в СССР, диаметр зеркала 6м, установлен в Ставропольском крае (гора Пастухова, h=2070м) в Специальной астрофизической обсерватории АН СССР (монолитное зеркало 42т , 600т телескоп, можно видеть звезды 24м).
Простейший телескоп имеет Зеркально – линзовый. Б.В. ШМИДТ (1879-1935, Эстония) построил в 1930г (камера Шмидта) с диаметром объектива 44 см.
льшой светосилы, свободный от комы и большим полем зрения, поставив перед сферическим зеркалом корректирующую стеклянную пластину.
  В 1941 году Д.Д. Максутов (СССР) сделал менисковый, выгоден короткой трубой. Применяется любителями – астрономами.
  В 1995г для оптического интерферометра введен в строй первый телескоп с 8м зеркалом (из 4 -х) с базой 100м (пустыне АТАКАМА, Чили; ESO).
  В 1996г первый телескоп диаметром 10м (из двух с базой 85м) им. У. Кека введен в обсерватории Маун – Кеа (Калифорния, Гавайские острова, США)

Небесные тела дают излучение: свет, инфракрасное, ультрафиолетовое, радиоволны, рентгеновское, гамма – излучения. Так как атмосферы мешает прониканию лучей к земле c λ< λ света (ультрафиолетовые, рентгеновские, γ — излучения), то последнее время на орбиту Земли выводятся телескопы и целые орбитальные обсерватории : (т.е развиваются внеатмосферные наблюдения).

Особое значение в наш космический век придается орбитальным обсерваториям. Наиболее известная из них – космический телескоп им. Хаббла – запущен в апреле 1990 года и имеет диаметр 2,4 м. После установки в 1993 году корректирующего блока телескоп регистрирует объекты вплоть до 30-й звездной величины, а его угловое увеличение – лучше 0,1″ (под таким углом видна горошина с расстояния в несколько десятков километров).

Источник: www.sites.google.com

Разберём по винтикам


Телескоп — слово известное практически каждому. Существует устоявшийся визуальный образ этого понятия — то, как мы себе представляем телескоп — это такая труба на подставке, внутри стекляшки какие-то… на этом конкретика у многих исчерпывается.

«Телескопы — кто они такие?» (Разберём по винтикам.) Ликбез по астрономии и оптике. Автор Андрей Климковский

Потому что уже на вопрос — «В чем назначение телескопа» — ответ, как правило, слышен сбивчивый и нескорый. Одни считают, что телескоп что-то там приближает; другие думают, что он что-то увеличивает — эти ближе к истине, но незначительно.

Телескоп — не космический корабль, и к Луне с его помощью мы ближе не станем. Это — не насос, и Луну мы с его помощью до больших размеров не надуем.

Так для чего же их делают, эти блестящие трубы на подставках?

Открою тайну. Как бы это ни казалось удивительным, но главное назначение телескопа — собрать от небесного объекта как можно больше света. Именно потому главным достоинством любого телескопа является диаметр его объектива — в понимании среднестатистического землянина — той линзы, что обращена к небу — именно ее принято считать объективом.


а самом же деле в нашу эпоху объективом телескопа чаще является зеркало, и прячется оно глубоко в трубе, но такая оптическая схема среди неастрономической публики непопулярна.) А вот когда свет от небесного объекта собран, и изображение объекта построено, его можно внимательно рассмотреть — тут мы сталкиваемся со вторым назначением телескопа: Увеличить угол зрения, под которым может быть видимо небесное тело.

Ах, эти научные формулировки! Кто бы нам теперь объяснил, что значит это словосочетание: «угол зрения», и зачем нам его увеличивать?

Процитирую строчку из песни Виктора Цоя: «За окном идет стройка, работает кран».

Подойдем к окну и посмотрим на кран — его длинная стрела раскинулась на полнеба, и чтобы осмотреть ее всю от кабины крановщика, до того места, где она заканчивается, и свисает вниз трос с крюком, придется повернуть голову. Повернуть — ключевое слово. Оказывается стрела башенного крана имеет некоторую угловую протяженность, измеряемую в градусах и равную той величине, на которую нам придется повернуть голову вокруг воображаемой оси вставленной в нашу шею — допустим на 45 градусов.

А если стройка идет в соседнем дворе? В этом случае кран стоит относительно далеко и чтобы перевести взгляд с одного конца его стрелы на другой, нам потребуется повернуть голову на меньший угол, допустим на 5 градусов, или сместить глазной зрачок посмотрев чуть в бок, но на ту же величину — на 5 градусов.


image

Та величина, накоторую нам приходится изменять направление своего взгляда, чтобы рассмотреть объект полностью — это и есть угловой размер данного объекта. В бытовом понимании. Астрономия же, как наука, оперирует геометрическими понятиями. Но смысл остается тот же. Он в том, что все видимые объекты, будь то далекие планеты или какие-то земные предметы — деревья или строения — все представляются нам большими или маленькими в первую очередь исходя из тех угловых размеров которые они для нас имеют. Реальные же размеры для наблюдателя вторичны и могут оказаться неожиданными. Например стоящий неподалеку дом может заслонить собой 60 градусов небесной сферы, но высотой он всего метров 25. Наше дневное светило — Солнце — имеет угловой поперечник всего полградуса, но диаметр его более миллиона километров.

Сейчас мы первый раз коснулись примера углового размера небесного объекта. Углы, как известно, измеряются в угловых величинах — градусах или радианах, но радианы для любителя — неудобная величина. Градусы — привычнее. Но все равно, не многие из Вас приведут пример одного градуса в качестве видимого размера какого-то видимого объекта. К тому же, уж так получилось, что и удобного небесного объекта на нашем небе размером в 1 градус нет. Зато есть два объекта которые с хорошей точностью можно считать эталонами углового размера в полградуса — это Солнце или Луна.


Оказывается, эти два небесных тела, столь разных по своей природе (Солнце — звезда, гигантский газовый шар диаметром более миллиона километров и с температурой поверхности 6000°K; Луна — спутник Земли, маленькая холодная планетка диаметром 3600 км), для земного наблюдателя на небе имеют одинаковый угловой размер 1/2 градуса.

И, как можно догадаться, 1/2 градуса — величина не очень большая, то телескоп как раз призван изменить это в большую сторону, оказавшись между объектом и наблюдателем.

Вот теперь мы вплотную приблизились к тому, что иногда называют «увеличением», но в отношении чего правильнее употреблять понятие «кратность». Я видел множество разочарованных людей, которые — вместо ожидаемых десятков тысяч и миллионов — узнавали, что хорошие телескопы позволяют применять 100-кратное увеличение. А увеличения более 500 крат в наблюдательной астрономии применяются крайне редко. Все мы любим большие цифры, особенно если это цифры нашей зарплаты. Но, к счастью, параметры телескопов не подвержены инфляции и, как во времена изобретателя телескопа — итальянца Галилео Галилея, — 30-кратное увеличение было вполне актуально для ряда астрономических наблюдений, так и 400 лет спустя, оно ничуть не потеряло своей актуальности.

image


Первый в истории телескоп был изобретен итальянским ученым и священником Галилео Галилеем в 1609 году. Не следует думать, что сам принцип оптической системы, увеличивающей угловой размер наблюдаемого объекта, был придуман Галилеем. Подзорные трубы в те годы с успехом и уже часто применялись в мореходстве и при ведении военных действий. Но Галилео был первым, кому хватило отваги в эпоху инквизиции направить трубу в небо. При этом он же сделал важный вывод — точность и качество изготовления линз в подзорных трубах никак не годятся для астрономических наблюдений. Он разработал собственный — более точный и качественный — метод шлифовки, полировки и доводки до требуемой формы оптических деталей, а саму схему «подзорной трубы» оптимизировал для астрономических наблюдений.

image

Его упорство было вознаграждено поистине революционными открытиями. Многое, что ранее считалось непреложной истиной, обрело другой вид и смысл. На божественном лике Солнца обнаружились темные пятна, на гладкой и плоской Луне «выросли» горы, планеты демонстрировали шарообразность, а Венера «показывала» фазы подобные лунным. Юпитер обзавелся спутниками и стал альтернативным центром мира, а «Высочайшую из планет» — Сатурн — Галилео Галилей «тройною наблюдал». Млечный Путь из пролившегося некогда молока превратился в россыпи звезд, а самих звезд на небосклоне, благодаря прозрачным линзам первого в мире телескопа, оказалось в десятки раз больше.


Надо ли говорить, как отнеслась к открытиям Галилея церковь?! — ученого судили и под угрозой пыток заставили отречься от всего увиденного. Галилей отрекся. Но дальнейшая судьба телескопа уже не зависела от этих событий. Изобретение обрело значительную популярность и стало использоваться многими прогрессивно настроенными учеными. А вместе с этим и совершенствовалась его оптическая схема, появлялись все новые конструкции.

image

То сочетание линз, которое использовал в своем телескопе Галилей, вскоре вышло из употребления, и хотя похожая оптическая схема по сей день используется в театральных биноклях, для наблюдений небесных тел уже через несколько лет после премьеры Галилея была изобретена другая, более удобная конструкция.

image

Ее разработал Иоганн Кеплер — математик, физик, астроном, но по большей части — теоретик, а потому собственную конструкцию телескопа ни разу не использовал. Впервые изготовил ее и опробовал на астрономическом поприще его коллега и современник — К. Шейнер.

Система Кеплера обладала рядом существенных преимуществ: Большее поле зрения, более качественное изображение и, ввиду более легкого изготовления короткофокусных собирающих линз (а в качестве окуляра у Галилея использовалась отрицательная — рассеивающая линза), позволяла добиваться большей кратности увеличения. Однако использовать ту же схему для подзорных труб уже не удавалось — схема Кеплера давала перевернутые изображения. Для астрономических наблюдений это не стало недостатком, а вот для наблюдения земных удаленных объектов было неприемлемо.


Телескопическая астрономия стала стремительно развиваться. Открылись новые горизонты, оказалась доступна новая точность измерений и, конечно же, хотелось большего. Астрономы XVII века пытались заглянуть все дальше в космос, старались более детально рассмотреть небесные тела и применяли для этого все большие увеличения своих примитивных инструментов.

Очень скоро стало понятно, что перешагнув определенную кратность, качество изображения, его детальность, количество звезд в поле зрения перестают увеличиваться, и даже начинают снижаться. Можно с уверенностью сказать, что в эпоху Галилея и Кеплера 50-кратное увеличение было предельным и дальнейшее увеличение кратности на пользу не шло.

Если обратиться к иллюстрации приведенной выше, можно отметить закономерность, что чем больше фокусное расстояние объектива [F] (расстояние, на котором линза строит изображение объекта — вспомните, как получают огонь в солнечный день с помощью увеличительного стекла — именно на этом расстоянии солнечные лучи собираются в «точку»), и чем меньше фокусное расстояние окуляра [f], тем больше кратность [ F/f ].
жет показаться, что сделав очень длиннофокусный объектив и взяв короткофокусный окуляр, можно достичь невероятно большой кратности увеличения. Однако, очень скоро становится заметно, что чем больше кратность, тем слабее яркость изображения. Случалось так, что объект исследований прекрасно виден глазом, но при большом увеличении перестает быть видимым в телескоп. Второе неожиданное открытие астрономов заключалось в том, что определенного размера линза объектива, какое бы не было огромным используемое увеличение, не в состоянии показать детальность мельче определенного порога. Это уже свойство самого света — его волновой природы.

Оказывается, что есть так называемый «дифракционный предел», суть которого в том, что любые отверстия, пропускающие световой поток, ограничивают детальность картинки, которую этот поток несет с собой. Более того, все точечные объекты, а звезды в ту далекую пору можно было считать именно точечными объектами, вследствие «дифракционного предела» при больших увеличениях видны не точками, а кружками, окруженными несколькими убывающими по яркости кольцами. И, собственно, любое изображение в телескопе как-будто складывалось из совокупности таких круглых пятен.

image

Чтобы повысить разрешение телескопа, шагнуть за «дифракционный предел», нужен телескоп с большим диаметром объектива. Тогда дифракционные диски становятся меньше.

Ах, если б это было все! Линзы стали делать больше, но тут обнаружилось, что стекло, из которого делали линзы для телескопов имеет свойство очень по-разному преломлять лучи разной длины волны (а говоря по-народному — разных цветов). Оказалось, синие лучи фокусируются ближе к линзе, красные — дальше от нее. А поскольку в свете небесных объектов присутствуют лучи самых разных цветов (длин волн), то точно навести резкость при больших увеличениях никак нельзя. Будь то звезда или планета, ее изображение так и оставалось нерезким, отливая всеми цветами радуги несфокусированных лучей.

image

Та самая красота — разложение белого света на все его составляющие, которое мы привыкли именовать радугой, — на продолжительное время стала главной головной болью астрономов. Уже и инквизиция отошла на второй план, а вот справиться с «хроматической аберрацией» не удавалось около столетия. Во все времена существовал список невозможного. В XVII веке нем были такие пункты:

  • Человек никогда не заглянет на обратную сторону Луны
  • Человек никогда не достигнет звезд
  • Человек никогда не найдет средство против хроматической аберрации.
  • К этой беде добавилась «сферическая аберрация» — принципиальная неспособность линз со сферическими поверхностями строить качественные изображения. Но это беда была меньшей.

Какие только опыты не проводили астрономы и оптики XVII-XVIII веков, искали особый сорт стекла, использовали дополнительные линзы и фильтры. Между делом было обнаружено, что действия хроматической и сферической аберраций заметно ослаблялось при увеличении фокусного расстояния объектива телескопа. Телескопы стали делать все длиннее.

image

Надо заметить, что здесь астрономы проявили себя масштабно, так, что даже эпоху эту в телескопостроении назвали эпохой телескопов-динозавров. При диаметре линзы объектива всего в 8 сантиметров, длина инструмента иногда превышала 100 метров — можете себе это представить?! Конечно же изготовить трубу для такого телескопа было невозможно — она согнулась бы или сломалась под собственным весом. Телескопы делали «воздушными» — такие решетчатые конструкции крепились на высоких мачтах и управлялись целой бригадой специально обученных рабочих, всюду тянулись тросы и канаты, фермы телескопа приводились в движение с помощью рычагов и блоков, причем в полной темноте — пользоваться факелами во время наблюдений было нельзя — от грандиозности замысла и сейчас захватывает дух!..

Жаль лишь, что особого результата и качества эти инструменты так и не показали. Впрочем, в эпоху телескопов-динозавров астрономы так же сделали немало открытий. Христиан Гюйгенс наконец смог понять, что же имел в виду Галилей говоря о «тройственности высочайшей планеты», и открыл кольцо Сатурна (выступающие в стороны ушки которого Галилей принял за две другие близкорасположенные планеты — его телескоп не позволил тогда это детально рассмотреть), а Кассини открыл в кольце Сатурна щель отделяющую внешнее кольцо от внутреннего. Это деление кольца Сатурна позже назвали именем его открывателя.

При этом астрономы демонстрировали невероятное мастерство фиксации своих наблюдений. Фотографии тогда не было, но рисунки наблюдателей представляли из себя произведение искусства и научный документ одновременно.

image

Но бесконечно так продолжаться не могло. Телескопы длиной в 90 метров показывали хуже 50-метровых и это был тупик. Выход нашел величайший из физиков всех времен и народов — сэр Исаак Ньютон. Именно Ньютону принадлежит изобретение зеркального телескопа.

image

Линза собирает параллельный пучок лучей в точку и строит изображение. Но то же самое может и вогнутое зеркало. Правда зеркало собирает пучок перед собой, и, пытаясь рассмотреть построенное изображение, наблюдатель рискует перекрыть собой весь световой поток, льющийся с небес. Так ведь можно использовать еще одно зеркало, которое отведет пучок лучей от главной оптической оси.

image

Пришлось мириться еще с рядом неудобств и недостатков — зеркала тогда делали из особого сплава меди и олова. Отражали они света немного (40-50%, а если учесть, что зеркал было два, то до глаза наблюдателя доходила в лучшем случае 1/5 часть светового потока), к тому же такие зеркала быстро тускнели и требовали частой переполировки. Вспомогательное зеркало также заслоняло собой часть главного и это приводило к еще большим потерям. Зато, можете себе представить, никакой хроматической аберрации! А если придать зеркалу не сферическую, а параболическую форму, то можно разом избавиться и от сферической аберрации. Да, конечно, изображение планет и туманностей при том же диаметре объектива намного тусклее, но зато какое оно резкое, какое четкое! И ведь ничто не мешает сделать зеркало в несколько раз больше.

image

Первый телескоп системы Ньютона был карликовых размеров. Его изготовил сам Ньютон как пример и иллюстрацию своей находки. Зато, как размахнулись изготовители настоящих телескопов такой конструкции — один другого больше!

image

Чаще всего изготовителем телескопа и наблюдателем был один и тот же человек. В те годы не существовало промышленного изготовления оптики — все делалось вручную. Уильям Гершель, музыкант по образованию, но увлекшийся в 30-летнем возрасте астрономией, сделал более десятка телескопов отменного качества. В их числе крупнейший телескоп XVIII века (длина трубы 12 метров, диаметр медно-оловянного зеркала 122 см), который до середины следующего столетия оставался непревзойденным. Трудно себе представить муки ученого вынужденного буквально сутками без перерыва продолжать полировку зеркала, ведь если процесс остановить до завершения, начнется окисление верхнего слоя, зеркало не будет отражать, и все придется начать с начала.

image

Но оно того стоило — инструменты и наблюдения Гершеля положили начало галактической астрономии, астрофизике. Ему удалось открыть новую планету — Уран, а также множество комет и несколько спутников планет. Правда, попутно Гершель создал собственную версию зеркального телескопа — без вспомогательного зеркала:

image

И дальше новые системы зеркальных телескопов полезли как грибы после дождя. Какие-то обретали многовековую популярность, как система Кассегрена:

image

Другие оставались в справочниках, но из реальности вскоре исчезали, как система Грегори:

image

И когда победа зеркальных систем уже казалась окончательной и бесповоротной, оптики разгадали тайну веков — изобрели «ахромат» — линзовый объектив лишенный хроматической аберрации.

В середине XVIII века эта счастливая идея посетила Леонарда Эйлера, и через несколько лет ее воплотил, что называется, «в стекле» оптик Джон Доллонд.

В стекле все дело и было. Оказывается, что разные сорта стекла имеют разный коэффициент преломления (способность искривлять естественное направление световых лучей) — это было известно давно. Но у разных сортов также была различна та разность в преломлении лучей разных длин волн, которая и приводила к размытию изображения. Оказывается у тяжелых стекол сорта «флинт» разброс в преломлении разноцветных лучей гораздо больше, чем общее отличие коэффициента преломления в сравнении с легкими стеклами сорта «Крон». Стало возможным создать такое сочетание двух линз, в котором положительная линза из «Крона» создает сходящийся пучок лучей «окрашенных» хроматической аберрацией, но идущая следом же рассеивающая линза из «флинта» немного уменьшая сходимость пучка лучей, практически полностью устраняет разницу в сходимости лучей разных цветов — то есть убирает хроматизм.

image

И «изголодавшиеся» по линзам, астрономы вновь переметнулись к телескопам из прозрачного стекла.

Вот, как бывает в истории любого дела — нет единой верной дороги, Жизнь состоит из метаний, компромиссов и крайностей.

Но по размерам линзовые телескопы все же не смогли превзойти зеркальных своих собратьев. Была недолгая эпоха расцвета линзовых инструментов. Кончилась она двумя линзовыми исполинами — Ликским и Йеркским рефракторами (рефрактор — линзовый телескоп, в то время как зеркальный зовется рефлектором). Джеймс Лик и Чарльз Йеркс — два бизнесмена, два олигарха своего времени, с тем отличием от современных обладателей несметных богатств, что решили тот излишек средств, который им самим явно не потратить, вложить в науку. А поскольку, и тогда, и сейчас, в западном мире самым передовым и престижным направлением было исследование Вселенной, то не сговариваясь Лик и Йеркс решили профинансировать строительство самого крупного в мире рефрактора. Оба обратились за этим к известнейшему оптику XIX века — Альвану Кларку. Но Лик это сделал чуть раньше, и получил телескоп чуть меньше (93 см диаметр объектива). Йеркс изъявил желание, чтобы его телескоп был больше, и получил, что просил (102 см диаметр объектива), но оказалось, что больше — не значит лучше. 93 сантиметра Ликского рефрактора оказались тем самым разумным пределом, после которого каждый новый сантиметр в диаметре объектива уже играет против качества. Поэтому Йеркский рефрактор оказался чуть менее «зорким» телескопом, зато крупнейшим по сей день, и при этом — довольно неплохим для своих исполинских размеров.

image

На этом история гигантских линзовых телескопов заканчивается. Лик и Йеркс ныне покоятся в фундаменте собственных обсерваторий — именно там они завещали захоронить урны с собственным прахом. Их огромные телескопы тоже покоятся — сейчас они уже не актуальны для современной науки и являются не более чем музейными экспонатами.

Зеркальные же телескопы продолжили свое развитие и будущее несомненно за ними. Хотя для современной науки оказались в свое время очень полезны зеркально линзовые гибриды. Оказывается, если не стоит цель сделать полноценный линзовый объектив, и нет желания заниматься зеркальными системами со сложными поверхностями, то можно сделать недорогой в производстве и очень качественный по изображению зеркально-линзовый телескоп.

image

Разработал такую неожиданную схему наш соотечественник Дмитрий Дмитриевич Максутов.

Беда всех «крупнокалиберных» линзовых телескопов — масса линз объектива. Линзы крупных рефракторов весят сотни килограмм — их приходится делать толстыми, или они будут прогибаться под собственным весом. Их делали толстыми, и они все равно прогибались, и плюс к этому — при таких объемах линзы уже не удавалось сварить для нее однородное оптическое стекло.

Но если использовать не линзу, а тонкий и легкий мениск (тоже линза, но выпукло-вогнутая — с приблизительно одинаковыми радиусами кривизны обеих поверхностей), то отпадает сразу несколько проблем — пусть себе гнется — прогиб одной поверхности в точности компенсируется выгибом другой. Ввиду небольшой оптической силы мениск не страдает хроматизмом. Для чего же он тогда нужен? — чтобы исправить сферическую аберрацию главного зеркала — ведь изготовление сферической поверхности проще и дешевле, а сфера — при многих ее недостатках — позволяет получить большее полезное поле зрение телескопа.

image

Разумеется, давно никто уже не делает зеркала из олова с медью — их также делают из стекла и покрывают алюминием в вакуумных камерах. Такие зеркала отражают до 98% процентов света попадающего на них из Вселенной. Но оказывается, главная преграда для этого звездного света все также заслоняет от нас многие вселенские тайны. Это наша атмосфера. Этот природный фильтр защищает нас и все живое на планете от жесткого солнечного излучения, но и соответственно поглощает львиную долю интересующих современных астрономов космических лучей.

image

Башни с телескопами начали поднимать на самые заоблачные вершины, туда, где чище воздух, нет городской засветки и тоньше слой атмосферы — ближе к звездам.

Но самым феноменальным шагом к звездам стал запуск заатмосферного телескопа имени Эдвина Хаббла. Находясь на орбите Земли, этот телескоп в автоматическом режиме ведет наблюдения круглые сутки. Ведь там — за пределами воздушного океана — звезды видны всегда. Фотоснимки из компьютера телескопа им. Хаббла отправляются на Землю в цифровом формате по радиоканалу.

image

При том, что этот космический телескоп заметно уступает в размерах многим земным, изображения полученные им из космоса, где нет поглощения света и турбуленции атмосферных потоков, настолько качественны и детальны, что дальнейшее развитие наземных наблюдательных приборов становится все менее перспективным.

image

Хотя, разумеется, ограниченным количеством крайне дорогих заатмосферных телескопов вся современная астрономия сыта не будет, и новых башен в горах появится еще не мало.

image

В завершении рассказа хочу вспомнить, что наряду с вполне привычными оптическими телескопами уже много десятилетий создаются и используются для изучения нашего огромного мира телескопы несколько иного рода. До сего момента речь шла о исследовании Вселенной опираясь на свет приходящий из космических далей. Но из глубин Вселенной к нам приходит не только свет. Приходят радиоволны, рентгеновское и гамма-излучение. Пространство пронизано ультрафиолетовыми и инфракрасными — тепловыми — волнами. Оказывается, для каждого из этих видов излучения существуют специальные телескопы — они фиксируют это излучение и показывают нам то, как бы для нас выглядела Вселенная, если бы мы могли тоже воспринимать своими органами чувств все эти непривычные нам потоки невидимых для глаз лучей.

image

В качестве музыкального сопровождения к этой статье буквально просится мой относительно недавний, но наверное самый астрофизический альбом: «Stargazer» — «Старгейзер».

Вот ссылка, где его скачать:

  • альбом «Stargazer» • Композитор Андрей Климковский

Источник: habr.com

Как сделать простейший телескоп?

Михаил_Никитин: Для того, чтобы построить простой телескоп-рефрактор, нужны всего две собирающие линзы — длиннофокусная(с малой оптической силой) — для объектива и короткофокусная (сильная лупа) для окуляра.

Их следует искать на радиорынках.

Первая линза, если навести ее без всего остального на какой-нибудь сильно удаленный предмет, создаст его перевернутое изображение за собой, на расстоянии, равном своему фокусному расстоянию. Это изображение можно увидеть, перемещая за линзой матовое стекло и следя за резкостью «картинки», или, без всякого стекла, просто встав за линзой на расстоянии, больше фокусного, и смотря в направлении линзы. Обратите внимание, что в последнем случае глаз придется аккомодировать не «на бесконечность», как при рассмотрении линии горизонта, а как для рассмотрения некоего материального объекта, находящегося от глаза на том же расстоянии, что и плоскость изображения. Вы увидите увеличенное перевернутое изображение удаленного предмета, при этом коэффициент увеличения будет равен фокусному расстоянию линзы в см, деленному на число 25 — расстояние наилучшего зрения. Если фокусное расстояние линзы будет меньше 25 см, то изображение получится уменьшенным. Простейший телескоп, в принципе, готов!

Simple Scope.JPG

Теперь будем его усовершенствовать. Сначала с оптической стороны. Для того, чтобы получить большое увеличение при небольшом фокусном расстоянии объектива применяют окуляр, или лупу. Полученное первой линзой — объективом изображение рассматривают не невооруженным глазом с расстояния наилучшего зрения, а через окуляр с меньшего расстояния, равного фокусному расстоянию окуляра. В этом случае увеличение равно отношению фокусных расстояний объектива и окуляра.

Теперь с механической стороны. Для того, чтобы все это хозяйство не держать в руках, берем две трубки, одна из которых вдвигается в другую, или делаем их из бумаги и ПВА, черним изнутри активированным углем или начинкой от батарейки с ПВА, и крепим на конце одной трубки объектив, на конце другой окуляр. После этого вдвигаем одну трубку в другую, так чтобы видеть четкое изображение удаленных предметов. Труба готова!!!

Существенные моменты: объектив — очковое стекло или конденсорная линза или ахроматическая склейка, фокусное расстояние 40 — 100 см. Диаметр 20 — 30 мм, если склейка, то можно больше. Если диаметр будет больше приведенных значений, то изображение получится размазанным. Для ограничения диаметра делаем диафрагму — вырезаем картонный круг диаметром, равным внешнему диаметру объектива, в нем по центру вырезаем круглое отверстие диаметром 20 — 30 мм. Ставим диафрагму вплотную к объективу перед или за ним, ни в коем случае не далеко внутри трубы. Объектив несимметричного сечения (плоско-выпуклый или вогнуто-выпуклый) всегда ставится своей более выпуклой стороной наружу — к предмету, иначе изображение будет более размазанным.

Увеличение такого телескопа 20 — 50 крат.

Объектив и окуляр должны быть установлены перпендикулярно общей оси трубок с центром на оси.

Объектив обязательно стеклянный, окуляр если пластмассовый, то обязательно не штампованный, а шлифованный и полированный (блики при отражении света на обеих его поверхностях должны быть четкими, без неоднородностей).

Что видно: в 28 мм 40 крат за городом видны звезды до 9-й величины, кольцо Сатурна и просвет между ним и диском, спутники и две темных полосы на Юпитере (они кажутся скорее оранжевыми), фаза Марса, когда он был 6 секунд диаметром, кратеры на Луне, пятна на Солнце (только при проекции окуляром, глазом не смотреть!!!).

Вывод такой — по различимости деталей это изделие, если собрано хорошо, превзойдет и 8-кратный бинокль.

Эрнест: на всякий случай, замечу любителям потрошить офтальмологию — очковая линза +1 дптр имеет фокусное расттояние 1 метр и она вполне достаточна для такого простейшего телескопа. Не стоит следовать расхожим рекомендациям и изготавливать объектив из пары одинаковых линз +0.5 дптр (вогнутостями друг к другу). Это схема «Перископ», которая имеет какие-то преимущества только на полях в 30-50 градусов, что не актуально для телескопов с их полями в пол-градуса. Интереснее изыскания по использованию пары положительной линзы из крона и отрицательной их флинта (сумма диоптрий должна быть 1 дптр). Флинтовые линзы имеет меньший коэффициент Аббе (иногда приводится на упаковках линз).

Источник: http://www.astronomy.ru/forum/index.php/topic,25510.0.html

Источник: astronomy.ru

Какой телескоп выбрать начинающему, и что необходимо учесть

Естественно, необходимо выбрать тот телескоп, который подойдет именно под ваши задачи, пусть он и не будет самым продвинутым. Определиться начинающему «астроному» поможет понимание основных характеристик телескопа.

Апертура

Она определяет диаметр объектива. Этот параметр очень важен для каждого телескопа: от апертуры зависит сбор светового потока линзой или зеркалом. Чем выше значение, тем больше света проходит через объектив и тем лучше качество изображения. С хорошей апертурой легче улавливаются слабые свечения наиболее отдаленных небесных тел.

При выборе телескопа апертуру подбирают с учетом того, как именно новичок планирует использовать устройство: 

      — Для большей четкости близлежащих звезд, планет и спутников подойдет апертура до 150 мм. Ведете наблюдение в городских условиях — лучше остановиться на 70–90 мм.

      — Если собираетесь более глубоко погрузиться в астрономию, рассматривая отдаленные тела, нужен диаметр объектива от 200 мм.

      — Людям, которые серьезно увлекаются астрономией и собираются использовать телескоп за пределами города, подойдут более дорогие полупрофессиональные линзы с апертурой до 400 мм.

Фокусное расстояние

Параметр определяет расстояние между двумя точками: объективом (зеркалом) и местом схождения лучей. Величина параметра влияет на то, как далеко можно будет «заглянуть» в небо. Оптимальное фокусное расстояние для начинающих — 700 мм. 

Оптическая схема

Так называется способ отображения космических объектов телескопом. Иными словами, оптическая схема — это своего рода глаза астронома. Есть две основные категории: рефлекторы и рефракторы. Последние имеют линзовую оптику и отличаются простотой эксплуатации, четкостью и невысокой ценой.

Рефлекторная оптическая схема — это зеркальная оптика. Ей требуется более «трепетное» отношение, а также она стоит дороже.

Кратность приближения

Эта характеристика индивидуальна для каждого прибора и может изменяться. Формула расчетов элементарная: фокусное расстояние / фокус окуляра. При смене последнего меняется также кратность приближения. 

Тип монтировки

Так называется подставка для телескопа, от которой зависит, насколько удобно будет пользоваться им. Чаще всего встречаются такие виды монтировок: 

      1. Азимутальная. Самая простая конструкция, можно смещать прибор во все стороны. Чаще всего ей комплектуются недорогие телескопы. Для моделей телескопов, которые снимают фото или видео, азимутальная монтировка не подходит. С ней не удастся уловить четкое изображение.

      2. Экваториальная. Имеет более внушительные размеры и вес. С ее помощью можно находить интересующие вас небесные тела по заданным координатам. Хороший вариант для рефлекторных телескопов, чтобы работать с удаленными объектами. Лучший выбор для фото- или видеосъемки космоса.

      3. Система Добсона. Это нечто среднее между двумя другими монтировками. Такими подставками комплектуются преимущественно мощные и дорогие оптические устройства.

Какой телескоп купить для начинающих: основные рекомендации

Выбор телескопа — сложная задача, особенно для новичков, пока еще не разбирающихся в этой технике. Специалисты советуют учитывать несколько базовых критериев (о некоторых из них мы уже рассказали), мы собрали эти рекомендации в удобную таблицу:

Распространенные ошибки при выборе телескопа

      1. Чем больше кратность, тем лучше. Самая главная ошибка. На самом деле всё не так: многое зависит от апертуры и условий использования телескопа. Если вы из категории новичков, не гонитесь за высокой кратностью. Чтобы наблюдать за удаленными объектами, нужна определенная подготовка и навыки. Если хотите изучать Луну и планеты Солнечной системы, вам с головой хватит кратности 100х.

      2. Покупка рефлекторного телескопа или большого рефрактора, чтобы использовать его в городских условиях. Зеркальные телескопы, или рефлекторы, слишком чувствительны к атмосферным колебаниям и влиянию окружающих источников света (фонари, подсветка зданий — памятников архитектуры, свет от промышленных предприятий). Соответственно, в черте города их тяжело использовать (и это просто непрактично). Линзовые модели (рефракторы) с большой апертурой оснащены длинной трубой, поэтому использовать их придется на незастекленном или очень просторном балконе, иначе будет неудобно.

      3. Покупка первого телескопа с экваториальной подставкой. Такая монтировка требует определенных навыков обращения с телескопом. Она сложна в освоении, поэтому новичок может не разобраться. Лучше начать с азимутальной монтировки или хотя бы системы Добсона.

      4. Использование дорогих окуляров. Если вы новичок и приобрели недорогой телескоп, покупать для него профессиональные окуляры нецелесообразно. Такое решение негативно отразится на качестве изображения.

Топ брендов лучших телескопов для начинающих

Оптическое оборудование для наблюдения за небесными телами предлагают разные компании. В список лучших и наиболее известных входят: 

      — Sky-Watcher. Канадский бренд, существует более 40 лет. Компания выпускает полтора десятка линеек телескопов под разные бюджеты.

      — Veber. Техника российской фирмы, существующей с 90-х, занимает лидирующие строчки в рейтингах телескопов для начинающих благодаря инновационным технологиям и большому выбору моделей.

      — Bresser. Немецкая компания, предоставляющая телескопы разных категорий.

      — Levenhuk. На счету этого бренда масса новейших линеек телескопов, в том числе для новичков.

      — Celestron. Американский бренд, существующий более 50 лет. Продукция компании прославилась инновационными техническими решениями и занимает верхние места в рейтингах.

Рейтинг недорогих телескопов для начинающих 

Veber УМКА 76/300 

Один из наиболее бюджетных (до 5 тысяч) телескопов для начинающих астрономов. Имеет классическую компоновку, рефлектор Ньютона и монтировку системы Добсона. При компактных габаритах (длина трубки — 30 см, диаметр — 7,6 см) телескоп кажется детским. На самом деле 15-кратного увеличения достаточно, чтобы фокусироваться на многих не самых отдаленных объектах даже при дневном свете.

Sky-Watcher BK 707AZ2

Компактный ахроматический рефракторный телескоп. Рекомендован начинающим астрономам. С ним можно наблюдать за многими планетами Солнечной системы. Благодаря небольшому размеру телескоп без труда перемещаем с места на место. Sky-Watcher BK 707AZ2 сделан из качественных материалов и достаточно удобен. Ахроматический объектив диаметром 7 см обеспечивает качественное и четкое изображение с минимальными хроматическими аберрациями.

Levenhuk Skyline Travel 80 

Еще один небольшой и легкий рефракторный телескоп. Имеет осветленную оптику и подойдет как начинающим астрономам, так и более продвинутым любителям. Мобильность и простота настройки — важные преимущества этого прибора. Пользователи положительно оценивают качественную цветопередачу. Чтобы раскрыть весь потенциал этого телескопа, лучше смотреть в него за пределами города без засветок. Levenhuk Skyline Travel 80 стоит около 20 000 рублей. 

Celestron AstroMaster 90 AZ

Популярный и достаточно мощный телескоп, отличающийся высококачественной сборкой, хорошей оптической составляющей и надежностью. С ним вы получите четкие изображения разных небесных тел, в том числе сильно отдаленных. Телескоп имеет искатели, доработанные для упрощения фокусировки на цели. Предусмотрены также быстросъемные крепления, внешне похожие на «ласточкин хвост».


Компактный и недорогой оптический прибор порадует всех любителей астрономии: вы сможете разглядывать звезды и прочие небесные тела фактически вживую. Главное, только подобрать подходящую модель телескопа. Мы надеемся, что наши рекомендации помогут вам с этим. 

Источник: www.fotosklad.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.