Нейтринный телескоп на байкале



В поисках темной материи на Байкале

Фото: BAIKAL-GVD

Объединенная двигателестроительная корпорация Ростеха участвует в проекте создания глубоководного нейтринного телескопа мультимегатонного масштаба на Байкале. Специалистами ОДК разработана технология термообработки экранов оптических модулей телескопа.

О том, как на Байкале пытаются «поймать» неуловимую частицу нейтрино, и чем это поможет пролить свет на природу загадочной темной материи и происхождение Вселенной – в нашем материале.
 

Нейтрино: пробивные хранители тайн

Плавают байкальские омули и нерпы между странными гирляндами шаров, висящими на металлических струнах в толще воды, и не знают, что эти шары собирают важнейшую информацию из глубин Вселенной. Ее приносят с собой нейтрино – мельчайшие незаряженные частицы, образующиеся во время ядерных реакций и перемещающиеся со скоростью света.


Огромный поток нейтрино ежесекундно поступает на Землю. Не причиняя никакого вреда, через наше тело каждое мгновение проходят триллионы этих частиц. Нейтрино крайне неохотно взаимодействуют с чем-либо и способны проникать практически через любые поверхности и материалы. Поэтому они без препятствий покрывают огромные космические расстояния, сохраняя в себе достоверные сведения о различных процессах из самых дальних уголков Вселенной. Именно эти уникальные данные и интересуют ученых.

DSC_5602.png
Фото: BAIKAL-GVD

Нейтрино, существование которых экспериментально было подтверждено в 1956 году, различаются по происхождению. Некоторые из них образуются при работе атомных электростанций, другие – в атмосфере Земли, третьи – при процессах, происходящих на Солнце. Самые любопытные сведения приносят нейтрино сверхвысоких энергий – они хранят тайны рождения сверхновых звезд.

Нейтрино могут рассказать нам многое. С их помощью можно расширить наше понимание самых ранних стадий эволюции Вселенной, темной материи и темной энергии, процессов создания химических элементов, эволюции звезд, внутренней структуры и состава Солнца и Земли, а также лучше понять сами частицы.


Однако, чтобы расшифровать послание космического информатора, сперва его нужно поймать. Со второй половины XX века ученые придумывают способы регистрации нейтрино. Для каждого типа этих частиц разработаны свои улавливающие устройства, в которых применяются различные методы детектирования. Поймать потоки нейтрино высоких энергий, родившихся за пределами Солнечной системы, можно с помощью глубоководного нейтринного телескопа. Один из таких телескопов с 1990-х годов создается международным объединением ученых на озере Байкал.

Обсерватория под толщей вод 

Байкальский подводный нейтринный телескоп – уникальный экспериментальный комплекс, позволяющий ученым-физикам исследовать природные потоки нейтрино. Почему именно Байкал стал базой для размещения телескопа? Во-первых, в самом глубоком озере на планете есть участки глубиной до 1 км, находящиеся недалеко от берега и подходящие для размещения научного оборудования. Во-вторых, воды Байкала обладают необходимой для экспериментов прозрачностью. И в-третьих, около двух месяцев в году озеро покрыто льдом, что значительно облегчает установку и обслуживание телескопа.

Видео строительства телескопа BAIKAL-GVD 

Видео: dlnp.jinr.ru

Метод глубоководного детектирования частиц впервые был предложен М.А. Марковым в 1960 году и заключается в регистрации черенковского излучения, которое возникает при взаимодействии нейтрино с прозрачной природной средой. Это излучение может быть зафиксировано светочувствительными детекторами и в дальнейшем всесторонне изучено.


В 1998 году на Байкале была развернута первая версия телескопа, это был первый в мире глубоководный нейтринный телескоп. Он состоял из 192 фотодетекторов, размещенных на глубине около 1 км, и занимал объем 100 000 кубометров. Здесь проводились измерения частиц нейтрино, рождавшихся в атмосфере Земли. Результаты работы оказали влияние на науку и привели к созданию на Южном полюсе крупнейшего на данный момент нейтринного телескопа IceCube объемом 1 куб. км. Именно на нем впервые были зафиксированы нейтрино высоких энергий, что ознаменовало собой рождение нового направления в науке – нейтринной астрономии.

5895b700c3618825568b458f.jpg
Фото:  IceCube Collaboration

Следующим шагом стала разработка телескопа нового поколения BAIKAL-GVD повышенной мощности. Этот телескоп изначально задумывался как модульная конструкция, что дало возможность запускать его поэтапно, уже на первой стадии получая сведения о нейтрино, а также практически неограниченно наращивать и модифицировать весь комплекс в будущем.

В 2015 году был спущен под воду и активирован первый кластер телескопа, получивший название «Дубна». К настоящему времени в работу запущены пять кластеров, в которых работает 1440 оптических модулей. По окончании постройки к 2021 году байкальский телескоп будет включать в себя восемь кластеров и станет одним из трех крупнейших нейтринных телескопов в мире.


Как устроена «сеть» для ловли нейтрино 

Каждый кластер телескопа BAIKAL-GVD состоит из восьми вертикальных тросов-стрингов, на которых, как на гирляндах, висят оптические модули – по 36 на каждом. Расстояние между модулями – 15 метров. Кластеры работают как самостоятельные установки, но логически и физически связаны с остальными. Модули организованы в секции по 12 штук, каждая секция отправляет сигналы в свой центральный мастер-модуль. Здесь информация обрабатывается и передается в основной модуль на центральном тросе, который уже, в свою очередь, по оптическому кабелю отправляет ее на компьютеры береговой базы. Через эти же цепочки происходит управление всем комплексом.

Снизу тросы удерживаются тяжелыми якорями, а сверху – буями. Вся система при этом относительно подвижна. Кроме того, каждый трос-стринг оснащен акустическими датчиками и передатчиками, которые контролируют положение оптических модулей в каждый момент времени.

DSC_0908.png
Фото: BAIKAL-GVD

Самая важная часть телескопа − оптический модуль − представляет собой две стеклянные полусферы. Форма сферы выбрана для эффективной защиты от давления столба воды на глубине. Внутри сферы находится фотоэлектронный умножитель, погруженный в гелеобразную жидкость. Гель обеспечивает контакт умножителя и полусферы. Также в модуле находятся источник высокого напряжения, различные датчики и устройства контроля.

Как уже было сказано выше, нейтрино могут рождаться и в атмосфере Земли, и внутри Земли. Задача работы телескопа – отделить подходящие частицы, прилетевшие к нам именно из дальнего космоса, так как они наиболее интересны для науки.  

Значимым элементом модуля является экран, защищающий датчики от воздействия магнитного поля Земли. Без этой защиты умножитель просто не смог бы работать. По заказу Объединенного института ядерных исследований такие защитные экраны изготавливаются на московском производственном комплексе «Салют» (входит в Объединенную двигателестроительную корпорацию Ростеха).

DSC_5424.png
Фото: BAIKAL-GVD

Экраны отжигаются в вакуумных печах из пермаллоя − прецизионного сплава железа и никеля с магнитно-мягкими свойствами. Цикл производства такой продукции занимает 12 часов. За это время материал приобретает уникальные свойства, позволяющие использовать его для высокотехнологичных научных исследований космоса. Всего для проекта глубоководного нейтринного телескопа будет изготовлено более 2 тысяч специальных экранов. 


Уже первые результаты, полученные на байкальском комплексе, показали, что телескоп успешно регистрирует нейтрино высоких энергий. Значит, проект удался и должен развиваться, чтобы ученые могли и дальше расширять наши знания о Вселенной. Уникальная байкальская вода, работа физиков разных стран и разработки отечественных предприятий позволили создать один из мощнейших нейтринных телескопов в мире, который способен продвинуть далеко вперед отечественную и мировую науку.

Источник: rostec.ru

«В мире науки» №5, 2008

По материалам беседы с Григорием Домогацким записал спецкорреспондент «В мире науки» Василий Янчилин.


Чтобы узнать, где во Вселенной происходят самые невероятные процессы, исследователи внимательно изучают глубины сибирского озера.


В 1920-х гг. было обнаружено, что при некоторых радиоактивных распадах не выполняется закон сохранения энергии. Спустя десять лет швейцарский физик Вольфганг Паули предположил, что недостающую энергию уносит неизвестная нейтральная частица, обладающая высокой проникающей способностью, впоследствии получившая название нейтрино.


Паули считал, что совершил нечто недостойное физика-теоретика: постулировал существование гипотетического объекта, который никому не удастся обнаружить, поспорив даже со своим другом, астрономом Вальтером Бааде, что нейтрино никогда не будет зарегистрировано экспериментально. Паули повезло, он проиграл спор: в 1956 г. американские физики К. Коуэн и Ф. Райнес «поймали» неуловимую частицу.

Что дает использование нейтринного телескопа? Зачем прилагать неимоверные усилия для поимки неуловимых частиц, если огромное количество информации на Землю доставляют обычные электромагнитные волны?

Все небесные тела не прозрачны для электромагнитного излучения, и если ученые хотят заглянуть в недра Солнца, Земли, галактического ядра (именно там происходят самые интересные процессы), то помочь в этом могут только нейтрино.

Подавляющее большинство таких частиц попадает к нам из Солнца, где они рождаются во время термоядерного превращения водорода в гелий, поэтому все нейтринные телескопы ХХ в. были ориентированы на изучение нашего светила. Начальный этап исследований солнечных нейтрино завершен, и уже делаются первые шаги по изучению потока и спектра частиц, идущих к нам из недр Земли, где они рождаются при распаде урана, тория и других радиоактивных элементов. Характерная энергия подобных процессов — сотни тысяч и миллионы электронвольт на одну частицу.


В 1994 году было зарегистрировано первое в мире подводное нейтрино.



В 1960 г. советский физик-теоретик, академик М. А. Марков предложил использовать для поимки неуловимых частиц естественные водные резервуары. Все вещество нашей планеты есть гигантский детектор для регистрации нейтрино. Прилетая к нам из космоса, некоторые из них взаимодействуют с отдельными атомами Земли, передавая им часть своей энергии, а заодно и ценную информацию о процессах, происходящих в различных уголках Вселенной. Нужно только суметь ее «увидеть», и проще всего это сделать, наблюдая большие объемы океанской воды.

В 1970-е гг. американские, советские и японские физики, астрономы, инженеры и океанографы проводили оценку потенциально пригодных мест на дне океана, изучали способы размещения глубоководной аппаратуры, испытывали различные типы оптических приемников. В результате многолетних исследований было выбрано оптимальное место — район Тихого океана вблизи Гавайских островов, где глубина превышает 5 км. Проект получил название DUMAND (Deep Underwater Muon and Neutrino Detector, глубоководный детектор мюонов и нейтрино).


Начало работ по погружению научной аппаратуры на океанское дно было запланировано на весну 1981 г. Но оказалось, что не так просто опустить на многокилометровую глубину тысячи оптических приемников, сохранить их в рабочем состоянии и при этом принимать и обрабатывать поступающие с них сигналы. К сожалению, по техническим причинам проект так и не был реализован.

Однако в 1990-е гг. ученые все же увидели следы высокоэнергичных неуловимых частиц, оставленных ими под километровой толщей воды. Произошло это событие не посреди Тихого океана, а в Сибири, на юге Иркутской области.

Нейтринная астрофизика начинает прирастать Сибирью

В конце 1970-х гг. советский ученый, академик, доктор физико-математических наук А.Е. Чудаков предложил использовать для детектирования нейтрино озеро Байкал. Этот уникальный природный резервуар пресной воды, как оказалось, оптимально подходит для решения такой задачи. Во-первых, из-за его глубины, которая превышает 1 км; во-вторых, из-за прозрачности чистейшей воды, составляющей примерно 22 м; в-третьих, из-за того, что на большой глубине в течение всего года температура остается постоянной — 3,4°С; и самое главное, зимой озеро покрывается толстым слоем льда, с которого очень удобно опускать под воду научную аппаратуру.

Строительство телескопа началось в 1990 г., а в 1994 г. было зарегистрировано первое в мире подводное нейтрино.
годня в этом международном проекте участвуют научные сотрудники Института ядерных исследований РАН, Иркутского государственного университета, Научного исследовательского института ядерной физики МГУ, Объединенного института ядерных исследований, Санкт-Петербургского государственного морского технического университета, Нижегородского технического университета, Российского научного центра «Курчатовский институт», Акустического института им. А. А. Андреева, Исследовательского центра «Немецкий электронный синхротрон» (DESY). Руководит проектом заведующий лабораторией нейтринной астрофизики высоких энергий Института ядерных исследований РАН, доктор физико-математических наук Григорий Владимирович Домогацкий.

Основу нейтринного телескопа составляют специально созданные для него фотоумножители, помещенные в стеклянные сферы, выдерживающие давление свыше 100 атм. Они попарно крепятся на специально разработанный для данного эксперимента грузонесущий кабель-трос и опускаются через прорубь в воду. Длина троса превышает километр. Снизу он фиксируется при помощи тяжелых якорей, а вверх его тянут буи (гигантские «поплавки»). В результате вся эта «гирлянда» принимает строго вертикальное положение, при этом самые верхние буи находятся на глубине 20 м. Синхронизация работы фотоумножителей осуществляется с помощью лазерного источника света, который через определенные промежутки времени «засвечивает» байкальскую воду внутри детектора. Такое периодическое импульсное освещение играет роль своеобразных «меток» времени при анализе информации, поступающей с фотоумножителей. Кроме того, на дне на расстоянии 600 м от центра детектора закреплены акустические датчики, которые просвечивают весь его объем звуковыми волнами и фиксируют малейшие колебания фотоумножителей.

Сооружение имеет модульный характер; добавляя новые гирлянды к уже имеющимся, можно наращивать рабочий объем детектора. На сегодняшний день работает 11 гирлянд, и эффективная масса детектора составляет примерно 20 Мт. К 2012 г. планируется увеличить ее до 300 Мт, а в 2016 г. телескоп должен достичь своей проектной мощности, близкой к 1 Гт, что соответствует объему в 1 км3. Таким образом, проект прошлого века превращается в реальность.

Ловим нейтрино

Как же происходит регистрация нейтрино? Во-первых, частица может вступить в реакцию с веществом, находящимся внутри объема, окруженного гирляндами (правда, вероятность такого события очень мала). Во-вторых, она может взаимодействовать с ядром какого-нибудь атома, расположенного в радиусе нескольких километров от детектора (в воде или в грунте под установкой), и породить высокоэнергичный мюон, который затем пролетит вблизи гирлянд. При этом эффективный объем детектора возрастает в десятки раз, но появляется проблема: как отличить нейтринные мюоны от атмосферных, возникающих под действием космических лучей?

Когда космические лучи достигают Земли, они взаимодействуют с ядрами атомов, находящимися в верхних слоях атмосферы. При этом рождаются ливни так называемых вторичных космических лучей, в основном нестабильных элементарных частиц. Все они быстро распадаются — за исключением мюонов, которые обладают высокой проникающей способностью, живут 1 мкс и за это время успевают пролететь несколько километров толщи земли, создавая помехи в работе подземных лабораторий.

На первый взгляд это кажется странным, т. к. двигаясь со скоростью света, мюон за одну миллионную долю секунды сможет пролететь не более 300 м. Но дело в том, что при высоких скоростях вступают в силу законы специальной теории относительности. Мюон живет 1 мкс и пролетает 300 м в собственной системе отсчета, а в лабораторной системе отсчета он может прожить несколько микросекунд и пролететь несколько километров. Наблюдение таких нестабильных частиц на километровой глубине есть прямое подтверждение релятивистского замедления времени, однако пролететь десятки километров горных пород мюон не способен. По-этому существует надежный способ отличить нейтринные мюоны от атмосферных.

Фотоумножители, работа которых синхронизируется лазером, регистрируют попадающий на них свет. Затем компьютер расшифровывает полученную информацию и в результате восстанавливает треки частиц, породивших этот свет. Траектории, идущие сверху вниз или даже горизонтально, отбрасываются. Принимаются во внимание только мюоны, пришедшие из-под горизонта. Существует единственное объяснение этим процессам: высокоэнергичное нейтрино, пролетая сквозь Землю, взаимодействует с ядром какого-либо атома, находящегося в пределах нескольких километров от детектора, при этом рождается высокоэнергичный мюон. Именно он долетает до детектора и, двигаясь в воде с релятивистской скоростью, излучает черенковские фотоны. Как показали наблюдения, примерно на 2 млн мюонов, прилетающих сверху, приходится только один, вылетающий из-под горизонта.

Кто из вас из дальнего космоса?

За все время работы Байкальского телескопа было зарегистрировано около 400 событий, порожденных высокоэнергичными нейтрино, но почти все они — атмосферные. В связи с этим нужно было выделить из множества событий те, которые принадлежат нейтрино, прилетевшим из дальнего космоса, т. к. именно они представляют наибольший научный интерес.

Полвека назад регистрация атмосферных нейтрино в глубоких индийских шахтах была выдающимся научным достижением, однако в подводном детекторе они представляют фон, мешающий наблюдениям. Атмосферные нейтрино, в обилии порождаемые космическими лучами в верхних слоях атмосферы, несут информацию только о космических лучах, а ученым интересно узнать об источниках нейтрино, расположенных за пределами Солнечной системы.


Основу нейтринного телескопа составляют фотоумножители, помещенные в стеклянные сферы, выдерживающие давление более 100 атмосфер


Мюон движется почти в том же самом направлении (в пределах одного градуса), что и породившее его высокоэнергичное нейтрино. Определение траектории внутри детектора происходит с ошибкой 1–2°. В результате телескоп определяет место на небесной сфере, из которого вылетело нейтрино, с общей погрешностью около 3°. Атмосферные нейтрино прилетают к нам в среднем равномерно со всех сторон, но где-то во Вселенной должны быть локальные источники космических нейтрино. Это могут быть квазары, активные ядра галактик, расширяющиеся с огромной скоростью оболочки сверхновых звезд. Загадочные гамма-всплески также способны быть подобными источниками.

Одна из главных задач Байкальского телескопа — выделить из фона космические источники нейтрино, определить их местоположение на небе и затем постараться отождествить с оптическими объектами, которые можно изучать с помощью обычных телескопов.

Чтобы решить эту задачу, нужно зарегистрировать достаточно большое число нейтрино и определить точки на небесной сфере, откуда они прилетели. В тех областях, где расположены объекты, активно излучающие нейтрино, будет наблюдаться локальное повышение потока этих частиц по сравнению с фоном.

Пока никто не знает, каковы мощность и плотность таких источников. На этот счет существуют только гипотезы и предположения. Тем и интересен Байкальский телескоп, что он может дать экспериментальный ответ на подобные вопросы.

Диффузный поток нейтрино

Сильные и слабые локальные источники высокоэнергичных космических нейтрино, находящиеся на различных расстояниях от нас, должны порождать так называемый диффузный поток частиц. Неизвестно, чему равняется его плотность и непонятно, как ее теоретически рассчитать. Экспериментальное определение величины диффузного потока — также одна из основных задач Байкальского телескопа.

На первый взгляд может показаться, что сделать это невозможно. Как выделить на сильном фоне атмосферных нейтрино слабый сигнал частиц, равномерно прилетающих к нам со всех точек небесной сферы? И есть ли в действительности такой сигнал?

Откуда-то из удаленных уголков Вселенной нас достигают космические лучи сверхвысоких энергий. Ясно, что они рождаются не в абсолютно пустом пространстве: их источники находятся в какой-то среде. Взаимодействуя с ее атомами, высокоэнергичные космические лучи порождают нейтрино сверхвысоких энергий. Затем частицы разлетаются по всему космическому пространству, двигаясь в том числе и к Земле.

Космические лучи сверхвысоких энергий взаимодействуют с реликтовыми фотонами и не могут долететь до Земли, сохранив свою энергию. На такое способны только нейтрино. Поэтому, если к нам прилетают протоны с энергией 1019 эВ, то нейтрино способны прилететь с еще большей энергией, но с какой конкретно, пока неизвестно.

Чтобы решить эту задачу с помощью подводного детектора, нужно измерять величину полного потока всех падающих на Землю нейтрино в зависимости от их энергии. Если она составляет тысячи и миллионы ГэВ, то в нем будут заметно преобладать атмосферные нейтрино. При больших энергиях их количество начнет резко уменьшаться, т. к. они порождаются космическими лучами, интенсивность которых быстро падает с увеличением энергии, стремясь к нулю при энергиях выше 1019. Соответственно, будет стремиться к нулю и поток атмосферных нейтрино.

Параметры космических лучей известны, поэтому можно рассчитать спектр порождаемых ими атмосферных нейтрино. Сравнивая его со спектром частиц, наблюдаемых с помощью Байкальского телескопа, можно определить их разницу, которая и будет характеризовать величину космического диффузного нейтринного потока. В настоящее время определен спектральный состав нейтрино вплоть до энергий 1014 эВ. Он практически полностью совпадает с атмосферным, и, следовательно, диффузный космический фон в этом диапазоне пренебрежимо мал. При дальнейшем повышении энергии (а это станет возможным, когда объем детектора увеличится в несколько раз) поток атмосферных нейтрино должен стать намного меньше диффузного космического фона. Но при каких энергиях это случится — 1015 эВ или больше — и предстоит выяснить ученым.

В 1931 г. Поль Дирак ввел в физику необычную частицу — магнитный монополь. Английский ученый смог доказать, что существование хотя бы одного магнитного заряда сразу бы объяснило непонятный факт квантования электрического заряда. До сих пор все усилия обнаружить экзотическую частицу заканчивались неудачей. Но если магнитный заряд все-таки существует, то, двигаясь в веществе, он будет излучать электромагнитные волны. И если это редкое событие произойдет вблизи Сибирского детектора, то монополь будет обнаружен

Темная сторона Вселенной

Сегодня большинство астрономов уверено, что основная масса Вселенной приходится на так называемую темную материю. Она никак «не выдает» себя, т. к. не принимает участия ни в каких взаимодействиях, кроме гравитационного. Поэтому предполагается, что это некие неизвестные науке стабильные слабовзаимодействующие частицы, обладающие достаточно большой массой. В противном случае их давно бы обнаружили на современных ускорителях. Если это так, то подобные частицы должны «скапливаться» в сильных гравитационных полях — вблизи и внутри массивных тел. Например, их должно быть много внутри Земли, где они могут свободно двигаться сквозь вещество, практически не взаимодействуя с ним. В этом случае иногда может происходить аннигиляция частицы и античастицы. В результате должны рождаться нейтрино и антинейтрино, обладающие высокой энергией. Задача Байкальского телескопа — зарегистрировать сигнал от таких событий, либо установить верхний предел для плотности темной материи.

Новое окно

Неудача международного проекта DUMAND вызвала пессимизм среди ученых. Казалось, что сооружение гигантских подводных детекторов наталкивается на непреодолимые технические трудности. Заработавший Байкальский телескоп не оставил и следа от подобных опасений. Стало ясно, что нейтрино сверхвысоких энергий, прилетающие к нам из дальнего космоса и несущие с собой «эксклюзивную» информацию, можно регистрировать, используя для этого естественные водные резервуары.

Во второй половине 1990-х гг. по инициативе американских ученых был сооружен нейтринный детектор AMANDA в Антарктиде, вблизи Южного полюса. Его новизна в том, что фотоумножители устанавливаются на большой глубине не в воде, а во льду. Во-первых, как оказалось, прозрачность антарктического льда достигает 100 м, что стало приятной неожиданностью для ученых. Во-вторых, чрезвычайно низкий тепловой шум фотоумножителей при температуре –50°С резко улучшает условия регистрации очень слабых световых сигналов. Первое подледное нейтрино было зарегистрировано в 1996 г. На очереди создание на Южном полюсе детектора Ice Cube с чувствительным объемом, близким к 1 км3.

Таким образом, к настоящему времени уже работают два гигантских детектора по изучению нейтрино сверхвысоких энергий. Кроме того, и европейские страны решили обзавестись собственными глубоководными телескопами. Сооружение детектора ANTARES с рабочим объемом, сравнимым с действующими Байкальским и Антарктическим детекторами, должно завершиться в этом году вблизи берегов Франции. Все это вселяет уверенность, что через 10–20 лет нейтринная астрофизика сверхвысоких энергий станет мощным инструментом для изучения Вселенной.

Космический нейтринный поток — это новый канал, по которому мы можем принимать информацию об устройстве Вселенной. Пока в нем открыто только малое окно шириной в несколько МэВ. Сейчас происходит открытие нового окна в области высоких и сверхвысоких энергий. Что мы через него увидим в ближайшее время — неизвестно, но наверняка оно принесет нам немало сюрпризов.

Дополнительная литература:
1) Домогацкий Г.В., Комар А.А., Чудаков А.Е. Подземные и подводные эксперименты в физике и астрофизике // Природа, 1989, № 3, с. 22–36.
2) Березинский В.С., Зацепин Г.Т. Возможности экспериментов с космическими нейтрино очень высоких энергий: проект ДЮМАНД // УФН, 1977, № 5, с. 3–36.
3) Лернд Дж., Эйхлер Д. Глубоководный нейтринный телескоп (перевод из Scientific American) // УФН, 1982, № 7, с. 449–465.
4) Дэвис Р. Полвека с солнечными нейтрино. (Нобелевская лекция по физике — 2002) // УФН, 2004, № 4, с. 408–417.
5) Кошиба М. Рождение нейтринной астрофизики (Нобелевская лекция по физике — 2002) // УФН, 2004, № 4, с. 418–426.
6) Бакал Дж. Нейтринная астрофизика. М.: Мир, 1993.

Источник: elementy.ru

image
Оптический модуль

Совместными усилиями ученых Института ядерных исследований Российской академии наук (Москва), Объединенного института ядерных исследований (Дубна) и других участников т.н. «Коллаборации Байкал» введён в эксплуатацию первый кластер глубоководного нейтринного телескопа «Дубна» на озере Байкал. Кластер был развернут в первых числах апреля 2015 года

image

Мало кто знает, что Байкал – не только крупнейшее пресноводное озеро в мире, но и лаборатория по отслеживанию нейтрино. На дне озера находится Байкальский нейтринный телескоп, он же НТ1000, также известный как Baikal-GVD (Gigaton Volume Detector). Это комплекс глубоководных приборов, занимающийся детектированием нейтрино.

Идея регистрации элементарных частиц на крупномасштабных черенковских детекторах в естественных прозрачных средах была впервые высказана в начале 1960-х годов советским ученым М.А. Марковым. А в конце 1970-х советский академик А.Е. Чудаков предложил использовать для детектирования нейтрино озеро Байкал. Озеро оптимально подходит для этого по нескольким причинам. Во-первых, из-за его глубины, которая превышает 1 км; во-вторых, из-за прозрачности чистейшей воды, составляющей примерно 22 м; в-третьих, из-за того, что на большой глубине в течение всего года температура остается постоянной — 3,4°С; и самое главное, зимой озеро покрывается толстым слоем льда, с которого очень удобно опускать под воду научную аппаратуру.

image
Монтаж гирлянды оптических модулей

Первая версия телескопа НТ200 была построена в 90-х годах. Первое нейтрино поймали в 1994-м. Вдохновлённые успехом, учёные в 2000-м году приступили к строительству следующей версии телескопа НТ1000.

Кластер «Дубна» уже содержит 192 оптических модуля, погруженных на глубины до 1300 метров и стал одним из трёх наиболее крупных детекторов нейтрино в мире. К 2020 году планируется закончить создание детектора. Он будет состоять из 10 — 12 кластеров с эффективным объёмом 1 км3. Такой же объём льда используется в качестве черенковского радиатора у крупнейшей на данный момент нейтринной обсерватории IceCube.

image
Проверка на работоспособность центрального модуля секции перед погружением гирлянды на глубину 1300 м

Коллаборация «Байкал» включает в себя сегодня: Институт ядерных исследований РАН (Москва), Объединенный институт ядерных исследований (г. Дубна), Иркутский государственный университет, Московский государственный университет им. М.В. Ломоносова, Нижегородский государственный технический университет, Санкт-Петербургский государственный морской технический университет, компанию Evologic ( Германия), Институт ядерной физики (Ржеж) и Институт экспериментальной и прикладной физики (Пражский Университет, Чехия), Братиславский университет (Словакия).

image
Заключительный ритуал. Каждый должен подержаться за последнюю веревочку, связывающую установленный кластер с поверхностью льда и подумать: все ли сделано для бесперебойной работы кластера

«Природный поток нейтрино несет в себе богатейшую, и во многих отношениях уникальную, информацию об окружающем нас мире. Исследование этого потока в различных энергетических диапазонах способно дать ключ к пониманию ранних стадий эволюции Вселенной, процессов формирования химических элементов, механизма эволюции массивных звезд и взрывов Сверхновых, пролить свет на проблему темной (невидимой) материи, на состав и внутреннее строение Солнца сегодня и в достаточно удаленном прошлом, и даже продвинуться в понимании проблемы внутреннего строения одного из наиболее трудных для изучения объектов – планеты Земля.» – так поясняет необходимость создания комплекса академик В.А. Рубаков, руководитель секции ядерной физики Отделения физических наук РАН.

Источник: habr.com

Глубочайшее озеро мира Байкал может похвастаться не только чистейшей водой и уникальной флорой и фауной, но и разнообразными научными изысканиями, которые на его базе проводятся. Прибавлением к уже имеющимся проектам стал глубоководный нейтринный телескоп мультимегатонного масштаба «Дубна», который развернут и введен в эксплуатацию при участии исследователей из Института ядерных исследований Российской академии наук, Объединенного института ядерных исследований, а также других научных учреждений, входящих в коллаборацию «Байкал».

Предполагается, что этот телескоп станет первым кластером будущего нейтринного телескопа кубокилометрового масштаба Baikal-GVD (Gigaton Volume Detector).

Введенный в эксплуатацию детектор предназначен для исследования природного потока нейтрино высоких энергий — легчайших элементарных нейтральных частиц. Исследователи рассчитывают, что нейтрино, пройдя сквозь толщу Земли, будет взаимодействовать в воде озера Байкал и сможет породить каскад заряженных частиц. При этом черенковский свет от заряженных частиц, то есть свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде, распространяется в воде озера и регистрируется оптическими модулями установки.

Кластер «Дубна» содержит в своем составе 192 оптических модуля, погруженных на глубины до 1300 м.

При этом он входит в число трех наиболее крупных детекторов нейтрино в мире, среди которых и детектор IceCube, расположенный в Антарктиде.

Следующим этапом развития проекта станет последовательное увеличение объема телескопа за счет развертывания новых кластеров. А к 2020 году планируется создание установки, состоящей из 10–12 кластеров общим объемом порядка 0,5 куб. м, что позволит сопоставить Baikal-GVD по чувствительному объему с мировым лидером в области детектором IceCube. Регистрация нейтрино на Байкале позволит понять высокоэнергичные процессы, протекающие в далеких астрофизических источниках, установить происхождение космических частиц самых высоких когда-либо зарегистрированных энергий, открыть новые свойства элементарных частиц и узнать много нового об устройстве и эволюции Вселенной в целом.

По словам руководителя секции ядерной физики отделения физических наук РАН академика Валерия Рубакова, в ансамбле известных на сегодня элементарных частиц нейтрино занимает позиции одного из легчайших его участников и прочно закрепило за собой в последние десятилетия статус величайшей «интриганки». Уникальность этой частицы как носителя информации о процессах, протекающих во Вселенной, обусловлена ее сверхслабым взаимодействием с веществом.

«Природный поток нейтрино несет в себе богатейшую и во многих отношениях уникальную информацию об окружающем нас мире.

Исследование этого потока в различных энергетических диапазонах способно дать ключ к пониманию ранних стадий эволюции Вселенной, процессов формирования химических элементов, механизма эволюции массивных звезд и взрывов сверхновых, а также пролить свет на проблему темной материи, на состав и внутреннее строение Солнца сегодня и в достаточно удаленном прошлом и даже продвинуться в понимании проблемы внутреннего строения одного из наиболее трудных для изучения объектов — планеты Земля», — уверен Валерий Рубаков.

С ним солидарен и академик Виктор Матвеев, директор расположенного в Дубне Объединенного института ядерных исследований. По его словам, идея регистрации элементарных частиц на крупномасштабных черенковских детекторах в естественных прозрачных средах была впервые высказана в начале 1960-х годов выдающимся советским ученым Моисеем Марковым. Тогда по предложению академика Александра Чудакова в Советском Союзе началась разработка метода глубоководного детектирования, а озеро Байкал было выбрано в качестве полигона для испытаний и места развертывания будущих крупномасштабных нейтринных телескопов.

Выбор Байкала был обусловлен высокой прозрачностью пресных глубинных вод, глубиной озера, наличием ледового покрова, позволяющего в течение двух зимних месяцев вести с него монтаж глубоководной аппаратуры.

Байкальский нейтринный эксперимент стартовал 1 октября 1980 года, когда сотрудниками Института ядерных исследований Академии наук СССР была создана лаборатория нейтринной астрофизики высоких энергий под руководством Григория Домогацкого. Впоследствии именно она стала ядром Байкальской коллаборации, в состав которой вскоре может войти и Краковский институт ядерной физики.

Первый в мире глубоководный нейтринный телескоп НТ200 был развернут на Байкале в период с 1993 по 1998 год.

Он содержал 192 фотодетектора, сгруппированных в 8 вертикальных гирлянд, которые были размещены на глубине 1100–1200 м и охватывали 100 куб. м пресной воды. При этом уже на основе экспериментальных данных 1994 года были выделены первые в мировой практике глубоководных и подледных экспериментов события от нейтрино. Кроме того, была реализована широкая программа научных исследований и получены одни из наиболее значимых для своего времени результатов в задачах поиска нейтрино от локальных источников, диффузного потока нейтрино, получены ограничения на величину потока магнитных монополей и потока мюонов от распада частиц темной материи в центре Земли и Солнца.

В свое время идея глубоководной регистрации в ледовой модификации, когда вместо естественного водоема фотодетекторы погружаются в прозрачный антарктический лед, привела к созданию на Южном полюсе нейтринного телескопа IceCube объемом 1 куб. м, ведущими участниками которого являются США, Германия и Швеция. Именно на этом телескопе в период с 2010 по 2013 год были впервые зарегистрированы «астрофизические» нейтрино высоких энергий, то есть нейтрино, которые «родились» за пределами Солнечной системы.

Регистрация этих нейтрино, ознаменовавшая рождение нейтринной астрономии, поставила на повестку дня необходимость создания нейтринных телескопов близкой мощности в Северном полушарии, с тем чтобы вести исследование источников нейтрино высоких энергий по всей небесной сфере.

Координатор Байкальского нейтринного проекта член-корреспондент РАН Григорий Домогацкий рассказал, что успешная эксплуатация на протяжении свыше десяти лет нейтринного телескопа НТ200 и результаты анализа полученных на нем данных доказали эффективность метода глубоководной регистрации нейтрино в пресной воде озера Байкал.

«Следующим шагом стала разработка проекта телескопа нового поколения Baikal-GVD с просматриваемым объемом водной массы порядка 1 куб. м. В течение 2006–2010 годов были разработаны, изготовлены и испытаны в натурных условиях образцы всех базовых элементов и систем телескопа Baikal-GVD. Телескоп будет иметь модульную структуру, формируемую из функционально независимых установок — кластеров вертикальных гирлянд оптических модулей», — рассказал исследователь.

По его словам, модульная структура телескопа позволит вести набор экспериментальных данных уже на ранних этапах развертывания установки и обеспечит перспективу практически неограниченного наращивания его объема. Кроме того, она позволит изменять конфигурацию телескопа по мере изменения во времени научных приоритетов.

Заключительный этап комплексных натурных испытаний начался еще в 2011 году.

А его окончание было ознаменовано созданием глубоководной установки «Дубна» — первого кластера нейтринного телескопа Baikal-GVD. Следующим этапом развития проекта Baikal-GVD является последовательное увеличение объема телескопа за счет развертывания новых кластеров. К 2020 году планируется создание установки, состоящей из 10–12 кластеров общим объемом порядка 0,5 куб. км, сопоставимым с чувствительным объемом IceCube для регистрации нейтрино высоких энергий астрофизической природы. Ожидается, что вторая очередь телескопа будет содержать 27 кластеров общим объемом порядка 1,5 куб. км.

Высоко оценил этот проект и глава проекта Global Neutrino Network Кристиан Шпиринг, прежде руководивший коллаборацией IceCube.

«Такой телескоп станет ключевой установкой будущей международной нейтринной обсерватории, в которую будут входить детекторы на Южном полюсе, в Средиземном море и на озере Байкал. Детектор IceCube лишь немного приоткрыл завесу тайны нейтрино высоких энергий во Вселенной. В будущем партнеры по проекту Global Neutrino Network составят полную карту этой новой космической территории. Нас ждут великие научные открытия на озере Байкал!» — уверен исследователь.

Источник: www.gazeta.ru

Нейтринный телескоп Baikal-GVD предназначен для регистрации и исследования потоков нейтрино сверхвысоких энергий от астрофизических источников. С его помощью ученые планируют исследовать процессы, происходившие во Вселенной в далеком прошлом и сопровождающиеся огромным выделением энергии. Одна из загадок современной астрофизики — механизм рождения во Вселенной нейтрино в миллиарды раз энергичнее солнечных нейтрино, и Байкальский нейтринный телескоп, благодаря своим уникальным характеристикам, может пролить свет на эту тайну. По проекту объем готовой установки на озере Байкал должен составить порядка одного кубического километра. С 17 февраля по 10 апреля этого года был осуществлен монтаж двух новых кластеров оптических модулей, таким образом эффективный объем установки в задаче регистрации ливневых событий от нейтрино вырос до ~ 0,35 кубического километра. «Это большой успех команды Института ядерных исследований РАН, Объединенного института ядерных исследований в Дубне и других членов коллаборации Baikal-GVD. Мы планируем продолжить работу и в ближайшие годы завершить развертывание уникального детектора нейтрино. Телескоп уже работает и набирает данные. Одновременно с этим продолжается его наращивание», — говорит директор ИЯИ РАН, член-корр. РАН Леонид Кравчук. Строящийся Байкальский нейтринный телескоп – уникальная научная установка и, наряду с телескопом IceCube и другими, входит в Глобальную нейтринную сеть (GNN) как ее важнейший элемент в Северном полушарии Земли.
Байкальский нейтринный телескоп устанавливается на расстоянии 3,5 км от берега на глубине от 750 до 1300 метров в Южной котловине озера Байкал. Монтаж установки производится со льда, и в этом важное преимущество байкальского проекта по сравнению с другими, где телескопы разворачиваются непосредственно с морских судов. «В этом году экспедиция работала в абсолютно аномальных природных условиях: во время становления льда на озере сильный ветер поломал ледовый покров, и в дальнейшем он превратился в конгломерат плохо смерзшихся льдин и торосов, что существенно осложнило работу. Такого я не припомню за всю 40-летнюю историю наших работ на Байкале. И только благодаря огромному опыту и высокому профессионализму участников экспедиции удалось выполнить все работы в полном объеме и в срок» — цитирует руководителя коллаборации Baikal-GVD, члена-корр. РАН Григория Домогацкого сообщение Института ядерных исследований. Новости мировой науки вы найдете также на странице нашей программы в газете научного сообщества «Поиск».

Источник: echo.msk.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.