Наземные и космические телескопы принцип их работы


Телескоп – оптический прибор для наблюдения за отдаленными объектами, чаще всего применяемый в астрологии для изучения ночного небосвода. Также может использоваться для увеличения и фотографирования космических объектов.

История появления

Согласно историческим данным, первый телескоп был изготовлен ученым Галилео Галилеем в 1609 году. В основании своего прибора он использовал те же принципы, которые применялись при изготовлении мореплавательных подзорных труб. При этом ученый использовал более мощные линзы, предварительно высчитав их фокусировку для обеспечения усиливающего эффекта. Как следствие окончательная версия его прибора могла увеличивать изображение в 20 раз. Именно Галилео Галилей придумал современное название своему прибору, кроме этого первым начал использовать оптическое оборудование для изучения космоса. Многие космические открытия были сделаны именно с помощью того первого телескопа. Сейчас данный прибор хранится в музее во Флоренции.


Muzeinyi eksponat teleskopa

Как устроен телескоп

Прибор в классическом исполнении представляет собой трубку, установленную на опорно-поворотном устройстве, так называемой монтировке телескопа. Монтировка удерживает трубку и позволяет проводить ее точное наведение на интересующий объект.

Оптической составляющей трубки прибора являются окуляр и объектив. Они обеспечивают визуальное увеличение изображения отдаленного объекта. Уровень увеличения напрямую зависит от фокусного расстояния между объективом и окуляром.

Механизм регулировки телескопа позволяет менять фокусное расстояние. Как следствие объект можно визуально приблизить с разной кратностью увеличения. Сначала он отыскивается на небосводе при минимальных настройках, а после наведения размер изображения повышается для лучшей детализации.

Уровень увеличения телескопа зависит от линз, установленных в качестве его объектива и окуляра. Естественно чем выше кратность, тем больше стоимость прибора. Более сложные телескопы классической конструкции состоят из набора линз. Они устанавливаются в трубку, каждая из которых усиливает кратность устройства.

Ustroistvo teleskopa


Виды телескопов по принципу действия и строению

Классическая схема устройства телескопа является простейшей. По сути, она не отличается от строения бинокля, зрительной трубы или микроскопа, но имеет большие линзы и другую фокусировку. Кроме нее было реализовано ряд прочих конструкций, используемых и сейчас.

Наиболее известными считаются следующие разновидности телескопов:
  • Диоптрические.
  • Катоптрические.
  • Комбинированные.
  • Радиотелескопы.
  • Инфракрасные.

Все они работают по разным принципам, имеют разную себестоимость производства и отличаются по кратности увеличения. Инфракрасные и радиотелескопы сугубо профессиональные научно-исследовательские устройства, остальные виды могут быть достаточно компактными для установки вне обсерватории, а в частном доме.

Диоптрические

Диоптрический телескоп – это классический оптический прибор с линзами. Принцип его работы заключается в том, что идущий от небесных тел свет собирается линзой объектива. Объектив или группа из линз всегда имеют выпуклую форму, поэтому проходящий сквозь них свет фокусируется в точку. Для того, чтобы человеческий глаз мог рассмотреть изображение, оно фокусируется на окуляр. Главное условие для работы прибора – это совпадение между фокусом объектива и окуляром.


Teleskopy dioptricheskie

Катоптрические

Телескопы данной конструкции также называются зеркальными. Их активной частью выступает вогнутое зеркало. На нем собирается свет от звезд или прочих космических  объектов, и отражается на окуляр. Главное достоинство устройств данного типа – это полная передача спектра света. У диоптрических приборов свет пройдя через линзу частично искажается, поэтому фактическое изображение не совсем соответствует реальности. Приборы зеркального типа показывают все детали увеличенного объекта, его цвет, яркость, глубину темных участков.

Teleskop katoptricheskii

Недостаток зеркальных телескопов в ограниченном обзоре. Они захватывают мало изображения, не позволяя рассмотреть всю картину целиком, как это делают оптические устройства. При этом катоптрические приборы дешевы в изготовлении, поэтому выпускаются в большем количестве, чем все остальные типы телескопов вместе взятые. Именно их обычно используют любители.

Комбинированные устройства

В данную группу приборов входят катадиоптрические телескопы. В их основании используются линзы и вогнутое зеркало. Устройства данного типа дают достаточно качественное изображение, при этом обладают большим углом обзора, чем обычные зеркальные телескопы.

Такие устройства разделяются еще на 2 основных подвида:
  • Шмидта-Кассегрена.
  • Максутова-Кассегрена.

Все они названы в честь своих изобретателей. Телескоп Шмидта-Кассегрена имеет в центре кривизны зеркала диафрагму. Такое решение позволяет добиться увеличения поля зрения. При этом исключается сферическое нарушение и отклонение.

Приборы, построенные по принципу Максутова-Кассегрена, имеют в районе фокальной плоскости оптическую линзу. Последняя обладает выпуклостью с одной стороны и является плоской на обороте. Это позволяет компенсировать кривизну поля и избежать сферического отклонения.

Радиотелескопы

Приборы этого класса стоят на много порядков выше, чем все предыдущие. Они никак не подходят для любительского наблюдения за космосом в связи со своими габаритами и дороговизной. Эти устройства разработаны исключительно для точных научных исследований. В их конструкции полностью отсутствуют оптические элементы для фиксации света космических объектов. Эту функцию выполняют огромные антенны, фиксирующие космические сигналы в одной частоте. Диаметр такой антенны может составлять 25 м. Полученные из них данные передаются на компьютерное оборудование, которое превращает сигнал в зрительную картинку.


Radioteleskopy

Обычно антенны радиотелескопов объединены в сеть. При этом они могут располагаться в разных частях мира. Примером реализации подобных проектов является сеть VBA, работающая с 1993 года. Конкретно данная система может воспроизводить изображение любых объектов, яркостная температура которых превышает десять в шестой степени кельвинов. Антенны сети имеют огромное отдаление от базы, самая дальняя от них располагается за 8600 км.

Инфракрасные

Приборы данного типа воспринимают инфракрасное излучение от объектов. По сути, они реагируют на тепло. Благодаря большой чувствительности, устройства фиксируют ИК излучение, которое человеческая кожа даже близко не воспринимает.

Инфракрасное излучение отражается в объективе телескопа и проецируется в одну точку. Затем чувствительная часть устройства измеряет тепло, переводит его в зрительные данные, и полученный результат фотографируется для дальнейшего изучения.

Радиотелескоп и инфракрасный телескоп позволяют изучать яркие звезды, в том числе и поверхность Солнца без применения дополнительных защитных систем.  Дело в том, что зеркальные, оптические и комбинированные приборы воспринимают именно свет, который в точке фокусировки приводит к сильному разогреву, вызывающему ожог глаз. Если смотреть на Солнце в телескоп с 50-ти кратным увеличением даже мгновение, то можно ослепнуть полностью или на несколько недель. Если глаз будет оставаться в зоне фокусировки света 20 сек, то он прогорит на половину своего диаметра.


Инфракрасные телескопы не могут использоваться в пределах Земной атмосферы. Им мешает присутствующее излучение от планеты, создающее помехи и влияющее на чувствительность. Поэтому инфракрасные телескопы могут применяться только в открытом космосе. Самым известным представителем таких устройств является космический аппарат Хаббл, запущенный в результате совместного проекта американского НАСА и Европейского космического агентства в 1990 году. Однако данный прибор помимо инфракрасных камер оснащен и рефлекторами, для съемки изображения по системе Ричи-Кретьена.

Teleskop infrakrasnyi

Выбор любительского телескопа

При подборе телескопа для любительского наблюдения за небосводом можно остановиться на линзовом, зеркальном или комбинированном приборе. При этом если планируется наблюдать не только за космосом, но и наземными объектами, то нужно будет одновременно приобрести дополнительные аксессуары.


Так, зеркальный и комбинированный телескоп показывает отзеркаленное изображение с лева на право. Это исправляется установкой, вместо комплектного диагонального зеркала, диагональной призмы. Во многих комплектациях телескопы изначально уже имеют дополнительные детали, компенсирующие искажения. При покупке прибора нужно обратить на это внимание, если планируется наблюдать за наземными объектами. При изучении космических тел перевернутое или отраженное изображение слева направо не столь важно.

Главными тремя параметрами выбора телескопа являются:
  • Диаметр основного оптического элемента (апертура).
  • Длина фокуса.
  • Светосила.

Светосила телескопа является соотношением между фокусным расстоянием и диаметром объектива. Хорошая светосила позволяет делать снимки из окуляра. Если же она составляет 1:10, то многие даже достаточно яркие поверхности на космическом теле будут выглядеть просто как темные пятна. Для любителей оптимальными считаются приборы со светосилой на уровне 1:5 и 1:7. При покупке телескопа всегда лучше отдать предпочтение большому объективу, чем мелкому.

Похожие темы:
  • Прибор ночного видения. Виды. Применение. Работа. Как выбрать
  • Тепловизор. Виды. Работа. Применение. Как выбрать. Устройство

Источник: tehpribory.ru


    Стремление проникнуть как можно дальше в глубь Вселенной и увидеть как можно больше новых объектов, послужило стимулом для создания более мощных наблюдательных приборов. С появлением телескопов возникли и первые серьезные проблемы. Дело в том, что реальная оптическая система способна «строить» изображение точки только в виде размытого кpyжка или пятна неправильной формы, иногда окрашенного по краям, происходит это из-за ошибок оптической системы — аберраций. Для однолинзовых телескопов наиболее характерна хроматическая аберрация, которая связана с тем, что показатель преломления стекла находится в зависимости от длины волны. А потому астрономы стали искать способы ее устранения. Оказалось, что хроматическую аберрацию можно уменьшить, используя объективы с очень большим фокусным расстоянием. Так на свет появились довольно громоздкие и крайне неудобные в эксплуатации телескопы. Шло время, и на смену им пришли «воздушные». В них объектив и окуляр крепились почти независимо друг от друга на собственных штативах. Такие телескопы использовались вплоть до середины XVIII века, хотя при наблюдениях на открытом воздухе, особенно при ветре, подобная конструкция вела себя не лучшим образом.


Джемини
Вверху: производство зеркала для одного «Джемини». В центре видна полирующая машина, которая очищает с помощью абразивного порошка поверхность зеркала. Подушкообразные выступы покраям башни над зеркалом помогают предохранить его от пылевого загрязнения.
Внизу: финальная стадия полировки зеркала VLT
VLT
НАЗЕМНЫЕ ТЕЛЕСКОПЫ

    После того, как Иоганн Кеплер применил в окуляре не отрицательную — двояковогнутую — линзу, а положительную — двояковыпуклую, стало возможным использовать окуляры с крестом нитей и микрометром. Теперь телескопы стали применять не только для обзора неба, но и в качестве измерительных приборов. И все же недостатки однолинзовых телескопов-рефракторов заставляли ученых искать новые пути. Исаак Ньютон одним из первых изготовил зеркало, получив «зеркальный» сплав из меди, олова и мьшьяка. Новый телескоп с зеркалом диаметром 30 мм, помещенном в трубу длиной 1б0 мм, давал очень четкое изображение. Это был первый рефлектор. И хотя у него не наблюдалось хроматической аберрации, но и он не был лишен недостатков.


авный же заключался в том, что всех других типов аберраций было больше, чем в рефракторе.
    Оригинальную конструкцию двухзеркальной системы, состоящей из первичного и вторичного параболического зеркала, предложил французский скульптор и художник Кассегрен. Эта конфигурация очень удобна и широко применяется в настоящее время, но в те далекие времена идея не была реализована из-за невозможности получить зеркала нужной формы. В России большего успеха в изготовлении металлических зеркал достиг Я.В. Брюс, а М.В. Ломоносов разработал новую конструкцию телескопа с наклоненным главным зеркалом без вторичного, что существенно уменьшало потери света. Такую же схему, независимо от него, использовал п У. Гершель. В своем доме, превращенном в мастерскую, он вместе с братьями получал особый сплав из меди и олова, а затем изготавливал зеркала и сам их шлифовал. Вершиной его трудов стал гигантский по тому времени телескоп с диаметром главного зеркала в 122 см. К середине XVIII века компактные, удобные в обращении высококачественные рефлекторы с металлическими зеркалами практически вытеснили громоздкие рефракторы. Однако и они были далеки от совершенства. Во-первых, металлические зеркала имели низкий коэффициент отражения, а их поверхность со временем тускнела. Во-вторых, их изготовление было трудоемким и дорогостоящим. В-третьих, большие металлические зеркала деформировались под собственным весом. И тут очень помогли успехи в деле стекловарения. В 1758 году были получены два сорта стекла: легкий — крон и более тяжелый — флинт, а следовательно, появилась возможность создания двухлинзовых объективов. Англичанин Дж. Доллонд, изготовил объектив из положительной кроновой и отрицательной флинтовой линз и получил патент на изобретение объектива-ахромата, то есть свободного от хроматической аберрации. Такие объективы, названные доллондовыми трубами, быстро получили распространение.
    Немецкий оптик Й. Фраунгофер ввел в широкую практику научный метод изготовления линзовых объективов и контроль за их качеством. Он конструировал и изготавливал первоклассные ахроматические объективы. Венцом его оптического искусства стал 25-сантиметровый рефрактор, купленный у него Россией и установленный в Тартуской обсерватории. К середине ХIХ века фраунгоферовские рефракторы стали основными инструментами наблюдательной астрономии. Казалось, что у них безоблачное будущее. Но по мере расширения спектрального диапазона наблюдений вновь стал проявляться главный недостаток линзовых объективов — хроматизм. Большие проблемы вызвало и дальнейшее увеличение диаметра объектива рефрактора. Было невозможно получить однородные большие блоки стекла для линз, а толстые линзовые объективы поглощали слишком много света. Самый большой рефрактор с диаметром объектива 1,02 м был построен н 1897 году, но на этом их дальнейшее развитие остановилось.
    И тут создатели телескопов снова вспомнили о рефлекторах. В середине XIX века получил известность химический метод серебрения стеклянных поверхностей. Это позволило изготавливать зеркала из стекла. Серебряная пленка — фильм наносилась на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Такие зеркала со свежим серебряным фильтром отражали уже не 60% упавшего света, как бронзовые, а от 90 до 95%, а значит, были более светосильными при том же размере зеркала. Вскоре Л. Фуко разработал метод определения формы и качества поверхности зеркал. Благодаря его исследованиям появились рефлекторы с параболическими зеркалами.

Телескоп VLT
YEPUN, ANTU, KUEYEN, MELIPAL четыре больших телескопа VLT (впереди YEPUN)
НАЗЕМНЫЕ ТЕЛЕСКОПЫ

    Новым толчком в дальнейшем развитии телескопостроения стало использование алюминированных зеркал. Они, в отличие от серебренных, медленнее старились и лучше отражали ультрафиолетовые лучи. В конце XIX века начало первому поколению новых рефлекторов положил состоятельный человек, любитель астрономии Кросслей, который приобрел вогнутое стеклянное параболическое зеркало диаметром 91 см и изготовил телескоп. Следующий телескоп такого же типа с диаметром зеркала 1,5 м был установлен на обсерватории Маунт Вилсон. В 1918 году здесь же был построен 2,5-метровый рефрактор, а в 1947-м в Паломарской обсерватории был введен в строй телескоп с 5-метровым зеркалом. И все же проблемы, возникшие при создании этого телескопа, заставили специалистов в дальнейшем продвигаться в сторону увеличения диаметров более осторожными шагами. Особенно с учетом того, что работа на крупных телескопах показала, что 3-метровый диаметр с применением высококачественной оптики в пункте со спокойной атмосферой может оказаться гораздо эффективнее 5-метрового. А потому в 50 — 80-е годы в основном строились 3-4-метровые телескопы. Единственный 6-метровый был построен в СССР и установлен в Специальной астрономической обсерватории на Кавказе.
    Параллельно с развитием оптической части совершенствуются и механические конструкции, управление телескопом доверяется компьютерам. Сейчас уже все готово к созданию больших телескопов, но из-за отсутствия достаточных средств обсерватории, институты и даже страны объединяются для совместного строительства. Весь имеющийся арсенал телескопов ученые используют для решения важных астрономических вопросов, таких как происхождение планет, звезд, Солнечной системы, квазаров и активных галактик. Судя по всему, будущие разработки в телескопостроении обещают быть поистине грандиозными. Уже сейчас предлагаются проекты 50- и 100-метровых телескопов, оснащенных самой современной приемно-регистрирующей аппаратурой, способной обеспечить качество наблюдений, о котором сейчас можно только мечтать.


Зачем их строят

Источник: galspace.spb.ru

Идею космических обсерваторий выдвигали Константин Циолковский в статье «Свободное пространство» (1883), Герман Оберт в работе «Ракета в межпланетное пространство» (1923) и Макс Валье в книге «Полёт в мировое пространство» (1924). После этого астрономические наблюдения с околоземной орбиты стали часто описывать в научно-популярной литературе и фантастике: достаточно вспомнить роман Александра Беляева «Звезда КЭЦ» (1936).

Впрочем, первые попытки провести наблюдения на больших высотах предпринимались задолго до начала космических полётов. Например, известно, что во время полного солнечного затмения 19 июня 1936 года московский астроном Пётр Куликовский поднялся на субстратостате, чтобы сфотографировать корону Солнца. Для американской астрономии практическим шагом к орбитальным телескопам стала программа «Стратоскоп» (Stratoscope), развитием которой руководил знаменитый астрофизик Мартин Шварцшильд.

Первый телескоп с диаметром главного зеркала 30,5 см, созданный в рамках программы, поднялся в воздух 22 августа 1957 года и достиг высоты 25,3 км. Там блок приборов начал автоматическую съёмку нашего светила в высоком разрешении, а киноплёнку затем проявили на земле. Результат эксперимента впечатлил учёных, и программа получила развитие: изучение Солнца и других объектов стратоскопами продолжалось до 1971 года, после чего они уступили место более совершенным инструментам.

Практическая космонавтика успешно развивалась, и инженеры сделали следующий шаг: начали проектировать орбитальные телескопы. Американские специалисты разработали серию спутников под названием ОАО (Orbital Astronomical Observatory), которые могли наводиться на любое небесное тело и с высочайшей точностью удерживать его в «поле зрения» приборов. Спутник ОАО-1, выведенный в космос 8 апреля 1966 года, не смог раскрыть солнечные батареи и начать программу наблюдений.

Зато ОАО-2 (Stargazer), стартовавший в декабре 1968 года, успешно проработал больше четырёх лет. Последний аппарат этой серии, ОАО-3, названный «Коперником» (Copernicus), был запущен в августе 1972 года, а эксплуатировали его девять лет.

В составе орбитальной станции Skylab (Sky Laboratory) работала большая многоспектральная обсерватория ATM (Apollo Telescope Mount). С её помощью астронавты опять же изучали Солнце. Их наблюдения заставили астрономов пересмотреть отношение к нашему светилу: раньше считалось, что это более или менее спокойное небесное тело с однородной гелиосферой, а на самом деле структура его газовой оболочки оказалась сложной и изменчивой. Кроме того, ATM использовалась для слежения за кометой Когоутека — результаты этих наблюдений помогли подтвердить теорию о том, как именно за пределами Солнечной системы формируются кометы.

Советские учёные обрели возможность вести астрономические наблюдения в космосе с началом эксплуатации станций «Салют». На «Салюте-1» был установлен ультрафиолетовый телескоп «Орион», разработанный Бюраканской астрофизической обсерваторией. Космонавты использовали его, чтобы получить спектрограммы Веги и Агены (беты Центавра) — благодаря этому удалось уточнить теоретическую модель фотосферы высокотемпературных звёзд.

Телескоп «Орион-2» отправился в космос на борту корабля «Союз-13» в декабре 1973 года. Экипажу удалось снять около 10 тысяч спектрограмм тусклых или далёких звёзд — с блеском более десятой звёздной величины. На обработку полученной информации потребовалось целое десятилетие: каталог, составленный по данным «Ориона-2», увидел свет только в 1984 году.

На «Салюте-4» использовался солнечный телескоп ОСТ, автоматическая система наведения которого оказалась бракованной. Космонавты перешли на ручное управление — почти как в старых фантастических романах. Кроме того, Алексей Губарев и Георгий Гречко впервые в истории провели операцию по орбитальному ремонту телескопа — 2 февраля 1975 года они напылили на его зеркало алюминий, что значительно улучшило качество изображения. Следующему экипажу «Салюта-4» 18 июня повезло наблюдать за вспышкой на Солнце и за появлением гигантского протуберанца. «Контрольную» съёмку в видимой части спектра вели сотрудники Крымской астрофизической обсерватории.

На «Салюте-6» и «Салюте-7» тоже устанавливали телескопы: субмиллиметровый БСТ-1М с полутораметровым зеркалом, радиотелескоп КРТ-10, гамма-телескоп «Елена» и рентгеновский телескоп РТ-4М. В то же время советские учёные научились конструировать независимые от пилотируемых кораблей и станций обсерватории, управляемые с наземных пунктов. В 1980-х годах они запустили спутники «Астрон», «Гранат» и «Гамма» для исследований в рентгеновском и гамма-диапазонах, а к орбитальному комплексу «Мир» пристыковали астрофизический модуль «Квант» с обсерваторией «Рентген». К сожалению, с распадом СССР многие перспективные отечественные проекты были заморожены.

Развитие орбитальной астрономии затруднялось из-за несовершенства систем, с помощью которых управляли телескопами, наводили их на объекты и передавали данные на Землю. Зато с появлением современных цифровых технологий появилась возможность создавать космические обсерватории с большим сроком «жизни» и высокой разрешающей способностью.

Самую большую известность среди таких обсерваторий получил американский телескоп «Хаббл» (Hubble Space Telescope), который был доставлен на орбиту 24 апреля 1990 года в грузовом отсеке шаттла «Дискавери». Имея главное зеркало диаметром 2,4 метра, «Хаббл» оставался самым большим оптическим инструментом в космосе, пока в 2009 году Европейское космическое агентство не запустило туда же инфракрасный телескоп «Гершель» (Herschel Space Observatory) с диаметром зеркала 3,5 метра.

История «Хаббла» не обошлась без проблем. Начав работу в космосе, он выдал изображение хуже, чем такой же по размерам наземный телескоп. Причиной искажения стала ошибка, допущенная при изготовлении главного зеркала. Проект мог полностью провалиться, если бы специалисты, наученные горьким опытом поломок на предыдущих обсерваториях, не предусмотрели возможность ремонта силами астронавтов. Фирма Kodak быстро изготовила второе зеркало, однако заменить его в космосе было невозможно, и тогда инженеры предложили изготовить космические «очки» — систему оптической коррекции COSTAR из двух особых зеркал. Чтобы установить её на «Хаббл», 2 декабря 1993 года на орбиту отправился шаттл «Индевор». Астронавты совершили пять сложнейших выходов в открытый космос и вернули дорогостоящий телескоп в строй.

Позднее астронавты летали к «Хабблу» ещё четыре раза и значительно продлили срок его эксплуатации. Последнее техобслуживание проходило с 11 по 24 мая 2009 года, в рамках миссии шаттла «Атлантис».
Сегодня телескоп, которому почти тридцать лет, начинает ломаться. В октябре прошлого года пресс-служба NASA сообщила, что отказал один из гироскопов системы ориентации, из-за чего «Хаббл» на три недели перевели в «безопасный режим» (отключается исследовательское оборудование, работает только служебное).

8 января выключилась широкоугольная камера Wide Field Camera 3; на поиск неисправности и её устранение ушло девять дней. 28 февраля из-за ошибки в программном коде несколько дней не работала многоспектральная камера ACS (Advanced Camera for Surveys). Пока что наземная команда обслуживания справляется с накапливающимися проблемами, но вряд ли телескоп продержится долго.

Сейчас планируется, что «Хаббл» будет продолжать работу до 30 июня 2021 года, что и так намного больше его запаса прочности. Потом телескоп попытаются управляемо свести с орбиты и затопить в океане. Впрочем, в настоящее время администрация президента Дональда Трампа рассматривает другой вариант: корпорация Sierra Nevada предлагает отправить к «Хабблу» корабль-ремонтник.

С другой стороны, своей очереди давно ждёт большой инфракрасный телескоп «Уэбб» (James Webb Space Telescope) с составным зеркалом диаметром 6,5 метров: его как раз планируют запустить 30 марта 2021 года. В числе прочих задач он будет искать свет самых древних звёзд и галактик, изучать их эволюцию и формирование скоплений вещества в юной Вселенной. Кроме того, «Уэбб» поможет искать относительно холодные планеты у соседних звёзд — но, самое главное, снимет спектры их атмосфер. Тогда мы сможем увереннее говорить о царящих там природных условиях, а может быть, даже зафиксируем признаки жизни — биосигнатуры.

Сегодня раздел астрономии, занимающийся изучением экзопланет, переживает бурный расцвет. Если раньше массивные твёрдые тела в звёздных системах находили по косвенному признаку — гравитационному влиянию на собственное светило, — то теперь популярнее всего стал транзитный метод, то есть наблюдение за микрозатмениями звезды. Разумеется, он требует высочайшей точности измерений, и лучший результат получается именно у космических телескопов, поскольку изменение блеска далёких светил сложно различить за колебаниями беспокойной земной атмосферы.

Стандарт в этой области исследований задал американский телескоп «Кеплер» (Kepler Telescope), запущенный 7 марта 2009 года. Он мог наблюдать одновременно до 100 тысяч звёзд, собирая статистические данные по экзопланетам. За три года работы «Кеплеру» удалось обнаружить 4700 кандидатов в экзопланеты; свыше 2600 из них подтвердились. Многие открытые миры оказались сопоставимы по размерам с Землёй. Также удалось доказать существование систем сразу с несколькими экзопланетами, в том числе у двойных звёзд.

Нашлись даже землеподобные миры в «зонах обитаемости», то есть на таком расстоянии от звезды, которое удобно для возникновения жизни. Например, планета Kepler-438b, расположенная от нас на расстоянии 470 световых лет, считается сегодня самой подходящей для возникновения и развития иной жизни. К сожалению, работа с «Кеплером» сопровождалась техническими сбоями и была прекращена в октябре прошлого года.

В апреле 2018 года компания SpaceX запустила в космос телескоп TESS (Transiting Exoplanet Survey Satellite): в отличие от «Кеплера», нацеленного на дальний космос, он будет искать экзопланеты в радиусе до 200 световых лет от нас. Астрономы предполагают, что TESS откроет как минимум 20 тысяч новых миров, среди которых будет не меньше тысячи землеподобных.

Готовятся к запуску и другие космические инструменты для изучения экзопланет. В 2019 году на орбиту отправится телескоп «Хеопс» (CHEOPS), в 2026 году — телескоп «Платон» (PLATO), в 2035 году — мощная обсерватория ATLAST (Advanced Technology Large-Aperture Space Telescope). Работая вместе с наземными инструментами, они смогут определить характеристики ближайших экзопланет — и даже составить карты их поверхности!

Галактическая астрономия тоже не стоит на месте. В апреле 2018 года европейцы опубликовали предварительные результаты наблюдений телескопа «Гея» (Gaia), запущенного пять лет назад. На их основе удалось построить детализированную трёхмерную карту Млечного Пути, в которой содержатся сведения о точном расположении, характеристиках и передвижении 1,7 млрд звёзд. Кроме того, «Гея» собрала информацию о 14 тысячах астероидов Солнечной системы. Телескоп будет передавать данные на Землю, обогащая наши знания о ближнем и дальнем космосе, до конца 2020 года.

На фоне столь эффектных достижений российской орбитальной астрономии пока нечем похвастаться. Сейчас на орбите находится только телескоп «Радиоастрон» (Спектр-Р), запущенный 18 июля 2011 года: он занимался изучением чёрных дыр, нейтронных звёзд и других объектов, излучающих в электромагнитном спектре. Хотя гарантийный срок телескопа истёк в 2016 году, до недавнего времени он работал исправно и потерял управляемость только 10 января 2019 года, а данные передаёт до сих пор. Попытки восстановить двустороннюю связь учёные собираются повторять до середины мая.

Планировалось, что в ближайшие годы к нему присоединятся обсерватории «Спектр-РГ», «Спектр-УФ» и «Спектр-М» («Миллиметрон») с криогенным телескопом диаметром 10 метров, который улавливает излучение в миллиметровом и инфракрасном диапазонах. Работая вместе, три аппарата могли бы составить самую подробную в истории карту внегалактической Вселенной.

Однако в последнее время появляются сообщения, что финансирование двух последних проектов собираются сильно урезать. Хочется надеяться, что это «ложная тревога», потому что в таком случае наша наука останется без современных инструментов по изучению дальнего космоса. А изучать его необходимо, ведь орбитальные обсерватории XXI века помогают учёным не только по-новому вглядываться в бездны пространства, но и делать более уверенные прогнозы о будущей эволюции космоса, от которых в конечном итоге зависит вопрос выживания всего человечества.

Источник: www.MirF.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.