Космический телескоп имени джеймса уэбба


 

Прежде чем приступать к рассмотрению технических особенностей, давайте разберемся, зачем вообще нужны космические телескопы и какие преимущества они имеют перед комплексами, расположенными на Земле. Дело в том, что земная атмосфера, а особенно содержащийся в ней водяной пар, поглощает львиную долю излучения, идущего из космоса. Это, конечно, очень сильно затрудняет изучение далеких миров. 

 

Но, атмосфера нашей планеты с ее искажениями и облачностью, а также шумы и вибрации на поверхности Земли не помеха для космического телескопа. В случае с автоматической обсерваторией «Хаббл» из-за отсутствия влияния атмосферы ее разрешающая способность примерно в 7–10 раз превосходит показатели телескопов, расположенных на Земле. Многие фото далеких туманностей и галактик, которые нельзя различить на ночном небе невооруженным глазом, были получены именно благодаря «Хабблу». За 15 лет работы на орбите телескоп получил более одного млн изображений 22 тыс. небесных объектов, среди которых многочисленные звезды, туманности, галактики и планеты. При помощи «Хаббла» ученые, в частности, доказали, что близ большинства светил нашей Галактики происходит процесс формирования планет. 


 

Но запущенный в 1990 году «Хаббл» не вечен, а его технические возможности ограничены. Действительно, за последние десятилетия наука шагнула далеко вперед, и теперь можно создать гораздо более совершенные устройства, которые способны приоткрыть многие тайны Вселенной. Именно таким аппаратом станет «Джеймс Уэбб». 

 

Космический телескоп имени джеймса уэбба

 

Как мы уже убедились, полноценное изучение космоса без таких аппаратов, как «Хаббл», невозможно. Теперь постараемся понять концепцию «Джеймса Уэбба». Данный аппарат представляет собой орбитальную инфракрасную обсерваторию. Иными словами, ее задачей будет исследование теплового излучения космических объектов. Вспомним, что все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемых телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. 

 

Среди главных задач будущего телескопа – выявление света первых звезд и галактик, которые появились после Большого взрыва. Это чрезвычайно сложно, так как движущийся в течение миллионов и миллиардов лет свет претерпевает существенные изменения.


к, видимое излучение той или иной звезды может быть полностью поглощено пылевым облаком. В случае с экзопланетами все еще труднее, так как эти объекты чрезвычайно малы (по астрономическим меркам, конечно) и «тусклы». У большей части планет средняя температура редко превышает 0°C, а в ряде случаев она может опускаться ниже –100°C. Обнаружить такие объекты очень сложно. Но аппаратура, установленная на телескопе «Джеймс Уэбб», позволит выявлять экзопланеты, температура поверхности которых достигает 300 К (что сравнимо с земным показателем), находящиеся дальше 12 астрономических единиц от своих звезд и удаленные от нас на расстояние до 15 световых лет. 

 

Космический телескоп имени джеймса уэбба

 

Всего можно будет наблюдать планеты, расположенные у нескольких десятков звезд, «соседствующих» с нашим Солнцем. Причем «Джеймс Уэбб» сможет увидеть не только сами планеты, но и их спутники. Иными словами, нас может ожидать революция по части изучения экзопланет. И, возможно, даже не одна. Если же говорить о Солнечной системе, то и здесь могут быть новые важные открытия. Дело в том, что чувствительная аппаратура телескопа сможет обнаружить и изучить объекты системы, имеющие температуру –170° С. 

 

Возможности нового телескопа позволят понять многие процессы, происходящие на заре существования Вселенной – заглянуть в сами ее истоки.


ссмотрим этот вопрос более детально: как известно, звезды, которые находятся на расстоянии 10 световых лет от нас, мы видим именно такими, какими они были 10 лет назад. Следовательно, расположенные на удалении более 13 млрд световых лет объекты мы наблюдаем в том виде, какими они являлись почти сразу после Большого взрыва, который, как считается, произошел 13,7 млрд лет назад. Приборы, установленные на новом телескопе, позволят увидеть на 800 миллионов дальше, чем «Хаббл», установивший рекорд в своей время. Так что можно будет увидеть Вселенную, какой она была всего лишь через 100 миллионов лет после Большого взрыва. Возможно, это перевернет представления ученых об устройстве Вселенной. Остается только дождаться начала работы телескопа, которое намечено на 2019 год. Предполагается, что аппарат будет эксплуатироваться в течение 5–10 лет, так что времени для новых открытий будет предостаточно. 

 

Космический телескоп имени джеймса уэбба

 

Для запуска «Джеймса Уэбба» хотят использовать ракету-носитель «Ариан-5», созданную европейцами. Вообще, несмотря на доминирующую роль космического ведомства США, проект можно назвать международным. Сам телескоп был разработан американскими компаниями Northrop Grumman и Ball Aerospace, а всего участие в программе приняли эксперты из 17 стран мира. Кроме специалистов из США и ЕС значительный вклад также внесли канадцы. 

 


Космический телескоп имени джеймса уэбба

 

После запуска аппарат будет находиться на гало-орбите в точке Лагранжа L2 системы Солнце – Земля. Это означает, что, в отличие от «Хаббла», новый телескоп не будет вращаться вокруг Земли: постоянное «мелькание» нашей планеты могло бы помешать проводить наблюдения. Вместо этого «Джеймс Уэбб» будет обращаться вокруг Солнца. При этом для обеспечения эффективной связи с Землей он будет перемещаться вокруг светила синхронно с нашей планетой. Удаление «Джеймса Уэбба» от Земли достигнет 1,5 млн км: из-за такого большого расстояния его не получится модернизировать или отремонтировать как «Хаббл». Поэтому надежность ставится во главу угла всей концепции «Джеймса Уэбба». 

 

Но что же собой представляет новый телескоп? Перед нами космический аппарат, весящий 6,2 тонны. Чтобы было понятно, вес «Хаббла» составляет 11 тонн – почти в два раза больше. При этом «Хаббл» был намного меньше по своим размерам – его можно сравнить с автобусом (новый телескоп сравним по длине с теннисным кортом, а по высоте – с трехэтажным домом). Самой большой частью телескопа является противосолнечный щит, имеющий длину 20 и ширину 7 метров. Он похож на огромный слоеный пирог. Для изготовления щита была использована особая специальная полимерная пленка, покрытая тонким слоем алюминия с одной стороны и металлическим кремнием с другой. Пустоты между слоями теплового щита заполняет вакуум: это усложняет передачу тепла в «сердце» телескопа. Целью данных шагов является защита от солнечных лучей и охлаждение сверхчувствительных матриц телескопа до –220° C. Без этого телескоп будет «ослеплен» инфракрасным свечением своих деталей и о наблюдении далеких объектов придется забыть. 


 

Больше всего в глаза бросается зеркало нового телескопа. Оно необходимо для фокусировки пучков света — зеркало их выпрямляет и создает четкую картину, при этом цветовые искажения убираются. «Джеймс Уэбб» получит основное зеркало, диаметр которого составляет 6,5 м. Для сравнения, аналогичный показатель у «Хаббла» равен 2,4 м. Диаметр основного зеркала для нового телескопа выбран неспроста – именно столько необходимо для измерения света самых далеких галактик. Нужно сказать, что от размера площади зеркала (в нашем случае он составляет 25 м²), собирающего свет от далеких космических объектов, зависит чувствительность телескопа, а также его разрешающая способность. 

 

Космический телескоп имени джеймса уэбба

Космический телескоп имени джеймса уэбба

 

Учеными было рассмотрено несколько вариантов того, из чего может быть сделано зеркало, но в конечном итоге специалисты остановили свой выбор на бериллии – легком и относительно твердом металле, стоимость которого весьма высока. Одной из причин данного шага стало то, что бериллий сохраняет свою форму в условиях криогенных температур.


мо зеркало по форме напоминает круг – это позволяет максимально компактно фокусировать свет на детекторах. Имей «Джеймс Уэбб», например, овальное зеркало, изображение было бы вытянутым. 
Основное зеркало состоит из 18 сегментов, которые раскроются после вывода аппарата на орбиту. Если бы оно было цельным, то разместить телескоп на ракете «Ариан-5» было бы просто физически невозможно. Каждый из сегментов шестиугольный, что позволяет использовать пространство наилучшим образом. Элементы зеркала имеют золотой цвет. За счет позолоты обеспечивается наилучшее отражение света в инфракрасном диапазоне: золото будет эффективно отражать ИК-излучение с длиной волны от 0,6 до 28,5 микрометра. Толщина золотого слоя составляет 100 нанометров, а общий вес покрытия равен 48,25 грамма. 

 

Космический телескоп имени джеймса уэбба

 

Перед 18-ю сегментами на специальном крепеже установлено вторичное зеркало: оно будет принимать свет главного зеркала и направлять его на научные инструменты, расположенные в задней части аппарата. Вторичное зеркало намного меньше основного и имеет выпуклую форму. 

 

 

 

Для изучения космических объектов на телескопе установлены следующие научные инструменты: 

 

— NIRCam (камера ближнего инфракрасного диапазона) 
— NIRSpec (спектрограф ближнего инфракрасного диапазона) 
— MIRI (прибор среднего инфракрасного диапазона) 
— FGS/NIRISS (датчик точного наведения и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф)

 


Космический телескоп имени джеймса уэбба

Телескоп «Джеймс Уэбб» / ©wikimedia

 

NIRCam

 

Камера ближнего инфракрасного диапазона NIRCam – основной блок формирования изображения. Это своего рода «главные глаза» телескопа. Рабочий диапазон камеры – от 0,6 до 5 микрометров. Снимки, сделанные ею, будут впоследствии изучаться другими инструментами. Именно при помощи NIRCam ученые хотят увидеть свет от самых ранних объектов Вселенной на заре их формирования. Кроме этого, за счет инструмента будут изучены молодые звезды нашей Галактики, создана карта темной материи и многое другое. Важная особенность NIRCam – наличие коронографа, позволяющего увидеть планеты вокруг далеких звезд. Это станет возможным благодаря подавлению света последних. 

 

Космический телескоп имени джеймса уэбба

 

NIRSpec

 

При помощи спектрографа ближнего инфракрасного диапазона можно будет собирать информацию, касающуюся как физических свойств объектов, так и их химического состава. Спектрография занимает очень много времени, однако при помощи технологии микрозатворов можно будет проводить наблюдения за сотней объектов на площади неба 3×3 угловых минуты. Каждая ячейка микрозатворов NIRSpec имеет крышку, которая открывается и закрывается под влиянием магнитного поля. Ячейка имеет индивидуальное управление: в зависимости от того, закрыта она или открыта, информация об исследуемый части неба предоставляется или же, наоборот, блокируется. 


 

Космический телескоп имени джеймса уэбба

 

MIRI

 

Прибор среднего инфракрасного диапазона работает в диапазоне 5–28 микрометров. Данное устройство включает в себя камеру с датчиком, который имеет разрешение 1024×1024 пикселя, а также спектрограф. Три массива мышьяко-кремниевых детекторов делают MIRI самым чувствительным прибором в арсенале телескопа «Джеймс Уэбб». Предполагается, что с помощью прибора среднего инфракрасного диапазона удастся различить рождающиеся звезды, многие ранее неизвестные объекты пояса Койпера, красное смещение очень далеких галактик, а также загадочную гипотетическую планету X (она же девятая планета Солнечной системы). Номинальной рабочей температурой для MIRI являются 7 К. Одна лишь пассивная система охлаждения не способна ее обеспечить: для этого используются два уровня. Сначала с помощью пульсационной трубы телескоп охлаждается до 18 К, а потом температура понижается до 7 К при помощи теплообменника с адиабатическим дросселированием. 

 


Космический телескоп имени джеймса уэбба

FGS/NIRISS

 

FGS/NIRISS состоит из двух приборов – датчика точного наведения и устройства формирования изображения в ближнем инфракрасном диапазоне и бесщелевого спектрографа. Фактически NIRISS дублирует функции NIRCam и NIRSpec. Работающее в диапазоне 0,8–5,0 микрометров устройство будет обнаруживать «первый свет» от далеких объектов, наводя на них оборудование. NIRISS также пригодится для обнаружения и изучения экзопланет. Что же касается датчика точного наведения FGS, то при помощи этого оборудования будет наводиться сам телескоп, чтобы иметь возможность получить более качественные изображения. Камера FGS позволяет формировать изображение из двух смежных участков неба, размер которых составляет 2,4×2,4 угловых минуты каждый. Она также считывает информацию 16 раз в секунду с небольших групп пикселей размером 8×8: этого хватает для выявления соответствующей опорной звезды с вероятностью в 95% в любой точке неба, включая высокие широты.

 

Космический телескоп имени джеймса уэбба

 

 

Новый космический аппарат обещает стать достойным правопреемником «Хаббла» и позволит ответить на вопросы, которые остаются тайной за семью печатями до сегодняшнего дня. Среди возможных открытий «Джеймса Уэбба» – обнаружение миров, похожих на Землю и пригодных для обитания. Данные, полученные телескопом, могут быть полезны для проектов, рассматривающих возможность существования инопланетных цивилизаций.  

Источник: naked-science.ru


Сегодня знаменательное событие: собрана силовая ферма JWST:
[
http://www.nasa.gov/topics/technology/features/webb_spine.html
Обратите внимание: в Америке уже "завтра" :)

Я тут как раз переводил эту штуку для поддержания тонуса, т.что если кому интересно:
Backplane после консультаций с Мультитраном перевел как "монтажная панель", хотя это, м.б. и неоптимальный выбор.

Сооружается «становой хребет» Космического телескопа им. Джеймса Вебба

Ученые и инженеры которые уже несколько лет работают над Космическим телескопом им. Джеймса Вебба очень взволнованы, поскольку сейчас сооружаются некоторые из деталей, которые на самом деле полетят на борту миссии телескопа им. Вебба. Одна из этих деталей, названная монтажной панелью, подобна «хребту» телескопа. Монтажная панель сейчас собирается компанией Alliant Techsystems на ее предприятии в Магна, штат Юта (Magna, Utah).
Телескоп им. Вебба имеет размеры двухэтажного дома, а монтажная панель является ядром его конструкции, поскольку она будет поддерживать первичное зеркало телескопа диаметром 6,5 метров. Монтажная панель будет не только нести большое зеркало, но и должна выдерживать большую нагрузку. Она будет нести 2400 кг оптики и инструментов телескопа во время его запуска в космос к рабочей позиции в 1 584 000 км от Земли.
 «Окончательная способность телескопа им. Вебба открыть первые звёзды и галактики критическим образом зависит от того, будет ли монтажная панель зеркала соответствовать фантастическим требованиям стандартов», — сказал Эрик Смит (Eric Smith), научный специалист программы космического телескопа им. Вебба в штаб-квартире НАСА в Вашингтоне.
Быть «хребтом» для зеркала означает, что от панели требуется сохранять неподвижность, в то время как зеркало будет перемещаться, чтобы заглянуть в глубины космоса. Представьте, что вы держите ручку лупы, чтобы рассмотреть крошечный объект. Если ваша рука сильно дрожит, сфокусироваться на объекте будет сложно. Таким образом, точно так, как вы должны держать ручку лупы своей рукой неподвижно, монтажная панель телескопа им. Вебба должна удерживать зеркала телескопа неподвижно, чтобы дать им сфокусироваться.
Эта структура также предназначена для того, чтобы обеспечить беспрецедентную термическую стабильность при температурах ниже -240°С. Это означает, что она разработана так, чтобы двигаться менее чем на 32 нанометра, что в 10000 раз меньше диаметра человеческого волоса, в исключительном холоде космоса.
Монтажная панель компании Alliant Techsystems (ATK) демонстрирует 1000-кратный прогресс в пространственной стабильности, трехкратный – в размерах и способность функционировать при температурах, намного более низких, чем любой из предшествовавших космических телескопов.
Монтажная панель сделана из усовершенствованного графитного композитного материала с титановыми и инваровыми арматурой и связками. Инвар – это железоникелевый сплав, известный своей уникально низкой подверженностью тепловому расширению. Панель будет закончена и доставлена в Нортроп Грумман для соединения с телескопом им. Вебба в конце 2010 года.
Запуск космического телескопа им. Джеймса Вебба запланирован на 2013 год. Наблюдая в инфракрасном диапазоне, он сможет видеть очень слабые и очень далёкие объекты, исследовать удаленные галактики, формирование звездных систем и ближние планеты и звёзды. Телескоп им. Вебба сможет заглянуть в прошлое, увидеть первый свет после Большого Взрыва. Информация, которую он отправит на Землю, даст ученым ключ к пониманию процесса образования Вселеноой и эволюции нашей собственной Солнечной системы.
ATK — это аэрокосмическая и оборонная компания, работающая по контракту с Нортон Грумман Аэроспейс в области разработки, конструирования, производства и испытания композитных компонентов и подсистем телескопа им. Вебба. ATK является ключевым партнером Нортроп Груммана.
Центр космических полетов им. Годдарда НАСА в Гринбелт, штат Мэриленд, занимается общим управлением разработкой телескопа им. Вебба. Телескоп является совместным проектом НАСА и многих американских партнеров, Европейского космического агентства и Канадского космического агентства. 
 
Adapted from materials provided by NASA.
Email or share this story:   
NASA (2009, February 26). James Webb Space Telescope's Actual 'Spine' Now Being Built. ScienceDaily. Retrieved February 26, 2009, from http://www.sciencedaily.com /releases/2009/02/090217100950.htm

Источник: astronomy.ru

Основное различие между «Хабблом» и «Джеймсом Уэббом» заключается в диапазонах работы: приборы «Хаббла» собирают информацию в инфракрасных лучах, в видимом свете и в ультрафиолете, а «Джеймс Уэбб» будет работать преимущественно в инфракрасном диапазоне. В связи с этим новый телескоп можно считать также преемником крупнейшей в мире инфракрасной обсерватории космического базирования «Спитцер», запущенной НАСА 25 августа 2003 года.

Телескоп будет находиться в космическом пространстве в точке Лагранжа L2, отстоящей от нашей планеты на 1,5 млн км. В ней Земля почти полностью заслоняет солнечный свет, при этом не мешая наблюдениям, поскольку обращена к L2 неосвещенной стороной. Гравитационные силы Земли и Солнца обеспечат относительную неподвижность телескопа относительно этих двух небесных тел. Небольшие изменения местоположения «Джеймса Уэбба», предотвращающие его уход из зоны радиационной безопасности, будут выполняться с помощью коррекционных двигателей. Нахождение в земной тени позволит телескопу работать без искусственного охлаждения.

Первичными задачами «Джеймса Уэбба» являются: обнаружение первых звезд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звезд, планетных систем и происхождения жизни, а также связи Большого взрыва с нашей галактикой Млечный путь. Этим и обусловлен инфракрасный режим работы телескопа – самые отдаленные и древние объекты Вселенной невозможно обнаружить в оптическом диапазоне.

Телескоп располагает различными инструментами для проведения исследования космоса, в число которых входят: прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument, MIRI), камера ближнего инфракрасного диапазона (Near-Infrared Camera, NIRCam), спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph, NIRSpec), датчик точного наведения (на объект наблюдения) с настраиваемыми фильтрами (Fine Guidance Sensor/Tuneable Filter Imager, FGS/TFI).

Изначально предполагалось, что создание «Джеймса Уэбба» обойдется всего 0,5 млрд долларов, то есть втрое дешевле, нежели изготовление «Хаббла». Ныне проектная стоимость телескопа составляет 4-4,5 млрд долларов. Несмотря на то, что в период кризиса было урезано финансирование некоторых космических программ, проект «Джеймс Уэбб», по заявлению директора НАСА Майкла Гриффина, продолжает оставаться одним из основных приоритетов деятельности американского аэрокосмического управления.

Помимо НАСА, в проекте по созданию нового телескопа принимают участие Европейское космическое агентство и Космическое агентство Канады.

По расчетам экспертов, минимальный срок службы «Джеймса Уэбба» составит 5 лет. Ученые НАСА надеются, что телескоп прослужит не менее 10 лет.

Материал подготовлен редакцией rian.ru на основе информации РИА Новости и открытых источников

Источник: ria.ru

112517_051563221017.jpg

Космический телескоп им. Джеймса Уэбба, запуск которого должен состояться в 2020 году, будет исследовать космос, чтобы раскрыть историю вселенной от Большого Взрыва до момента формирования планет. Перед ним стоит четыре исследовательских задачи: изучение первого света во вселенной, исследование появления галактик в ранней вселенной, наблюдение за рождением звезд и протопланетных систем, а также поиск экзопланет (включая поиск внеземной жизни).

Космический телескоп им. Джеймса Уэбба (JWST) будет запущен с помощью ракета-носителя Ариан-5 из Французской Гвианы, после чего потребуется 30 дней, чтобы пролететь более миллиона километров в место его постоянной дислокации: в точку Лагранжа (L2), или гравитационно стабильное положение в пространстве, где он и будет вращаться. Это достаточно популярное место, в котором располагаются несколько других космических телескопов, в том числе телескоп Гершеля и космическая обсерватория Планка.

Безымянный.png

Ожидается, что мощный космический телескоп стоимостью 8,8 млрд. долларов сможет получить удивительные фотографии небесных объектов, как и его предшественник, космический телескоп Хаббл. К счастью для астрономов, «Хаббл» остается в хорошем состоянии, и вполне вероятно, что два телескопа будут работать вместе первые несколько лет. JWST также исследует экзопланеты, которые были обнаружены космическим телескопом Кеплер или при помощи наблюдений в реальном времени с наземных телескопов.

Задачи, стоящие перед телескопом

Научная программа для JWST в основном разделена на четыре области:

  • Первый свет и реионизация: это относится к ранним этапам развития вселенной после того, как Большой взрыв создал ее такой, какой мы ее знаем. На первых этапах после Большого взрыва вселенная была морем частиц (таких как электроны, протоны и нейтроны), и в ней не существовало света до того, пока вселенная не остыла настолько, чтобы эти частицы начали объединяться. Еще одна вещь, которую JWST будет изучать — это то, что произошло после образования первых звезд; этот отрезок истории называется «эпохой реионизации», потому что он относится к тому времени, когда нейтральный водород был повторно ионизирован (снова заряжен электрическим зарядом) излучением от этих первых звезд.
  • Образование галактик: взгляд на галактики — полезный способ увидеть, как материя организована в гигантских масштабах, что, в свою очередь, дает нам подсказки о том, как эволюционировала вселенная. Спиральные и эллиптические галактики, которые мы видим сегодня, на самом деле эволюционировали из разных форм в течение миллиардов лет, и одна из целей JWST состоит в том, чтобы взглянуть на самые ранние галактики, чтобы лучше понять эту эволюцию. Ученые также пытаются выяснить, как мы получили то разнообразие галактик, которое наблюдаем сегодня, и какие существуют способы образования галактик.
  • Рождение звезд и протопланетных систем: «Столпы творения», или туманность Орла — одно из самых известных мест рождения звезд. Звезды появляются в облаках газа, и по мере того, как они растут, радиационное давление, которое они оказывают, сдувает с них часть газа (который может снова использоваться для образования других звезд, если он не слишком широко рассеялся). Однако трудно что-либо видеть внутри газа. Инфракрасные «глаза» JWST смогут увидеть источники тепла, включая звезды, рождающиеся в этих облаках.
  • Планеты и происхождение жизни: в последнее десятилетие было найдено огромное количество экзопланет, обнаруженных в том числе и с помощью космического телескопа Кеплер. Мощные датчики JWST смогут исследовать эти планеты более подробно, включая (в некоторых случаях) визуализацию их атмосферы. Понимание атмосферы и условий образования планет могут помочь ученым лучше предсказывать, пригодны ли те или иные планеты для жизни, или нет.

Инструменты на борту

james-webb-space-telescope-130110b-02.jpg

JWST будет оснащен четырьмя научными инструментами:

  • Камера ближнего инфракрасного излучения (NIRCam): эта инфракрасная камера, предоставленная Университетом Аризоны, обнаружит свет от звезд в соседних галактиках и от удаленных звезд Млечного Пути. Она также будет искать свет от звезд и галактик, которые сформировались в начале жизни вселенной. NIRCam будет оснащаться коронографами, которые могут блокировать свет яркого объекта (например, звезды), что сделает тусклые объекты вблизи этих звезд (например, планет) видимыми.
  • Спектрограф ближнего инфракрасного диапазона (NIRSpec): NIRSpec будет наблюдать до 100 объектов одновременно, ища первые галактики, образовавшиеся после Большого Взрыва. NIRSpec был предоставлен Европейским космическим агентством при содействии Центра космических полетов имени Годдара.
  • Спектрограф среднего инфракрасного диапазона (MIRI): MIRI создаст удивительные космические фотографии дальних небесных объектов, как это сейчас делает Хаббл. Спектрограф позволит ученым собрать больше физических подробностей о дальних объектах во вселенной. MIRI обнаружит отдаленные галактики, слабые кометы, образующиеся звезды и объекты в поясе Койпера. MIRI был спроектирован Европейским консорциумом совместно с Европейским космическим агентством и Лабораторией реактивного движения НАСА.
  • Датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (FGS/NIRISS): этот инструмент, созданный в Канадском космическом агентстве, больше похож на два прибора в одном. Компонент FGS отвечает за то, чтобы JWST смотрел точно в правильном направлении во время своих научных исследований. NIRISS будет искать следы первого света во вселенной, а также исследовать экзопланеты.

Телескоп к тому же будет иметь солнцезащитный козырек и зеркало диаметром 21,3 фута (6,5 метров) — это самое большое зеркало, которое будет отправлено в космос. Эти компоненты не поместятся разложенном виде в ракету, запускающую JWST, поэтому они оба будут разворачиваться, как только телескоп окажется в космосе.

Безымянный.png

История JWST

JWST имеет долгую историю развития. Еще в 2011 году затраты на него превысили предполагаемые в четыре раза, что повлияло на бюджет НАСА для астрономических исследований и, в свою очередь, заставило агентство выйти из некоторых совместных миссий с ЕКА (Европейским космическим агентством).

Когда Хаббл только готовили к космической миссии, уже планировался телескоп-преемник. После запуска Хаббла НАСА приступила к «более быстрой, лучшей и дешевой» эре, которая предполагает использовать миниатюризацию электроники и команды тигров (tiger teams — команды экспертов по определению слабых мест системы — прим. перев.) для сокращения расходов на космические миссии.

Это вызвало переформулировку ранних характеристик нового телескопа во что-то, что назвали Космическим телескопом следующего поколения (NGST). Первая версия NGST предполагала 8-метровое зеркало, а место дислокации телескопа — точка Лагранжа L2. NGST был переименован в Космический телескоп Джеймса Вебба в 2002 году в честь второго руководителя НАСА. По оценкам, стоимость проекта в 2005 году не должна была превышать 4,5 млрд. долларов, но в последующие годы все же произошел перерасход средств.

В 2010 году независимая экспертная группа, ответственная на JWST, предупредила, что стоимость телескопа будет существенно превышать запланированную. Они также отметили, что после подтверждения проекта НАСА в 2008 году рост затрат и задержки с расписанием были «связаны с бюджетированием и управленческими программами, а не с техническими характеристиками». Среди проблем, упомянутых в обзоре, были плохие процедуры оценки и базовый бюджет, который был слишком низким. Группа предположила, чтобы самая ранняя дата запуска — это 2015 год.

Около 2010 года НАСА и Европейское космическое агентство сотрудничали в нескольких крупномасштабных миссиях, включая ExoMars и создание рентгеновского телескопа Athena. Однако к 2011 году ЕКА заявила, что быстрее будет продвигаться вперед в этих миссиях самостоятельно. НАСА сократило также свои другие программы, чтобы обеспечить материально разработку JWST, в том числе вышла из программы ExoMars. Кроме того, опрос Национального научного фонда США в 2010 году, который проводится каждые десять лет и устанавливает приоритетные астрономические программы, оценил совместные миссии с ЕКА ниже, чем другие инициативы.

Безымянный.png

К 2011 году JWST стоил уже 8,7 млрд. долларов, из-за чего проект был на грани закрытия из-за перерасхода средств. И хотя финансирование миссии было продолжено, в НАСА признали, что вынуждены были серьезно ограничить другие миссии. Повышенная бдительность по программе продолжалась в течение нескольких лет, и в 2015 году НАСА заявила, что работа над телескопом идет полным ходом, а запуск ожидается в 2018 году.

Однако в сентябре NASA объявило, что запуск был перенесен с октября 2018 года на весну 2019 года, ссылаясь на вопросы интеграции космических аппаратов. «Изменение сроков запуска не указывает на проблемы с оборудованием или техническими характеристиками», — говорится в заявлении Томаса Зурбухена, ассоциированного администратора Управления научными миссиями НАСА. «Скорее, интеграция различных элементов космического аппарата занимает больше времени, чем ожидалось».

В марте 2018 года НАСА объявило, что дата запуска снова переносится, теперь уже на май 2020 года, из-за необходимости более тщательного тестирования сложных систем телескопа. Задержка запуска не является единственной неутешительной новостью для космического телескопа. Его стоимость, которая уже превышает 8,8 млрд. долларов, может еще увеличиться, как сообщили 27 марта официальные лица НАСА.

«Теперь все технические нюансы решены, но все еще остаются некоторые моменты, выявленные при тестировании узлов телескопа, и они побуждают нас предпринять необходимые шаги, чтобы решить их и завершить эту амбициозную и сложную обсерватории», — сказал исполняющий обязанности администратора НАСА Роберт Лайтфут в своем заявлении.

Джеймс Уэбб

JWST назван в честь второго руководителя НАСА Джеймса Уэбба. Он взял на себя ответственность за космическое агентство с 1961 по 1968 год, и ушел на пенсию всего за несколько месяцев до того, как НАСА совершило первую высадку человека на Луну.

Хотя пребывания Уэбба в качестве администратора НАСА наиболее тесно связано с программой Аполлон, он также считается лидером в области космической науки. Даже во времена великих политических потрясений, Уэбб ставил основной целью НАСА продвижение науки, считая, что запуск большого космического телескопа должен быть одной из ключевых целей космического агентства. NASA запустило более 75 миссий, направленных на изучение космоса, под руководством Уэбба, в том числе миссии по изучению Солнца, звезд и галактик, а также космического пространства сразу за земной атмосферой.

Источник: www.iguides.ru

Существующие на данный момент научные приборы для исследования экзопланет могут полноценно изучать только некоторые газовые гиганты, и оценивать приблизительные массы, размеры и траектории.

Проблема в том что как правило звезда в миллиард раз ярче планеты, по этому рассмотреть планету или уловить ее спектральные характеристики чрезвычайно трудно.

Лучшее достижение на сегодняшний день (сентябрь 2019):

Объединив данные космических телескопов Kepler, Спитцер и Хаббл, исследователи пришли к выводу, что существует значительное количество водяного пара в атмосфере K2-18 b. Это стало возможным из-за редкого низкого контраста между планетой и её звездой-хозяином. Это была первая суперземля (судя по плотности, мининептун, 2.7R Земли) в обитаемой зоне с обнаруженной атмосферой и первое открытие воды на экзопланете в обитаемой зоне. Но она не способна иметь твердую поверхность. С уменьшением размера нужной планеты, многократно возрастает сложность ее изучения.

Для различных звезд находят зоны в которых вода на планетах может существовать в жидком виде, но как известно, это зависит во многом от температуры (+парникового эффекта) и атмосферного давления на поверхности.

Проводятся симуляции в которых на планете может предположительно быть жидкая вода, анализируются условия которые будут при давлении которое нам хотелось бы получить, но во многом это лишь догадки. А может это вообще аналог Венеры? Или всю атмосферу сдуло очередной вспышкой нестабильной родительской звезды и это что-то типа гигантского Меркурия? В последнее время в научной среде популярны дискуссии о том сдует или не сдует).

Но когда же мы получим конкретные данные о том что на такой-то планете есть такая-то атмосфера такого-то размера с таким-то составом который указывает на воду на поверхности или на что либо еще?

Наука не стоит на месте и спешит перейти от догадок к реальным данным, рассмотрим самые перспективные утвержденные миссии для ответа на эти вопросы (после справочной информации).

Справочная информация

Экзопланета — планета, находящаяся вне Солнечной системы.
а.е. — астрономическая единица, — среднее расстояние от Солнца до Земли.
Спектроскопия — изучение спектра. Когда свет от звёзды проходит через атмосферу планеты, получается определенная функция интенсивности пропущенного излучения от его частоты, в которой будут признаки поглощения на каких либо частотах, что позволит сделать вывод о наличии каких либо веществ.
Основной метод поиска экзопланет — транзит (метод транзитов) — метод поиска экзопланет, основанный на обнаружении падения светимости звезды во время прохождения планеты перед её диском. Стоит помнить что большинство планет так удобно не летают и часто остаются незамеченными.
«Ке́плер» — космическая обсерватория НАСА, со сверхчувствительным фотометром, первая специально предназначенная для поиска экзопланет. Запущена в 2009 году. По состоянию на июль 2015 года подтверждена природа более 1000 планет из около 4700 кандидатов, открытых телескопом. Для этого обсерватория смотрела непрерывно в один и тот же небольшой участок неба.
Его задача не составить карту других миров, а скорее разведать, что вообще встречается в космосе и с какой частотой.
Иога́нн Ке́плер — немецкий математик и первооткрыватель законов движения планет солнечной системы.
Джеймс Эдвин Уэбб — 1961 — 1968 руководитель NASA.

Источник: pikabu.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.