Космический телескоп джеймса вебба



Телескоп
Космический телескоп имени Джеймса Уэбба. Авторы и права: NASA.

Космический телескоп Джеймса Уэбба (JWST) ещё не скоро начнет свою миссию, а его сверкающее золотом зеркало уже достигло культового статуса. Это сегментированное зеркало напоминает глаз насекомого, и в будущем, когда “глаз” начнёт свою работу в точке Лагранжа (L2), он предоставит человечеству подробнейшие данные о нашей Вселенной. Зеркало телескопа уже собрано, и оно находится в стерильном помещении в Центре космических полетов имени Годдарда, что даёт нам возможность узнать, как телескоп будет выглядеть, когда он начнёт свою миссию.

Даже если вы ничего не знаете о JWST, его возможностях, или возложенных на него задачах, вы будете впечатлены, просто посмотрев на него. Очевидно, что это высокотехнологический и единственный в своем роде инструмент. На самом деле, его даже можно принять за образец искусства. Я, к сожалению, видел менее привлекательные творения современного искусства, а вы?


Конечно, многим из вас известен тот факт, что JWST превзойдёт своего предшественника – космический телескоп “Хаббл”. И это вполне понятно, учитывая тот факт, что “Хаббл” был запущен в апреле далёкого 1990 года. Но как именно JWST сможет опередить “Хаббл”, и каковы его основные цели?

Главные задачи миссии JWST можно разделить на четыре направления:

  1. Инфракрасные наблюдения, которые можно сравнить с машиной времени. Они позволяют нам взглянуть на первые звёзды и галактики, которые сформировались во Вселенной, более 13 миллиардов лет назад;
  2. Сравнительное исследование ярких спиральных и эллиптических галактик, а также более тусклых ранних галактик;
  3. Зондирование космического пространства, позволяющее нам заглянуть сквозь облака газа и пыли, для изучения процессов формирования звёзд и планет;
  4. Исследование экзопланет и их атмосфер, а также обнаружение там биомаркеров.

То есть это довольно внушительный список, даже в эпоху, когда люди принимают технологический и научный прогресс как само собой разумеющееся. Но наряду с этими запланированными целями, будут, без сомнения, и некоторые сюрпризы. Гадать, что это может быть глупое занятие, но давайте всё же попробуем.


Мы считаем, что процесс абиогенеза на Земле произошёл довольно быстро, но, к сожалению, нам не с чем сравнивать. Найдём ли мы аналогии при изучении далёких экзопланет и их атмосфер, прольём ли свет на условия, необходимые для появления жизни? Это кажется невероятным, но кто знает.

Мы уверены, что Вселенная расширяется, и для этого есть довольно убедительные доказательства. Узнаем ли мы что-то новое об этом процессе? Или мы найдём то, что прольёт свет на тёмную материю или тёмную энергию, и их роль в жизни ранней Вселенной?

Телескоп
JWST. Авторы и права: NASA.

Конечно, не всё должно быть удивительным, чтобы быть захватывающим. Обнаружение доказательств, которые подтвердят современные теории также интригует. И “Джеймс Уэбб” должен предоставить нам эти доказательства.

Нет сомнений, что JWST сможет переплюнуть телескоп “Хаббла”. Но для одного или двух поколений людей, “Хаббл” всегда будет занимать особое место. Он удивлял и заинтересовывал многих из нас своими захватывающими изображениями туманностей, галактик и других объектов, в ходе его знаменитой миссии Deep Field, и, конечно же, своими научными исследованиями. Вероятно, “Хаббл” – это первый телескоп, который получил статус знаменитости.


“Джеймс Уэбб”, наверно, никогда не получит особый статус, который приобрёл “Хаббл”. Это что-то вроде: “Битлз может быть только один” или “единственный в своём роде”. Но JWST будет гораздо более мощным инструментом, и откроет нам многое из того, что было недоступно “Хабблу”.

Если все пойдёт по плану, то JWST станет грандиозным технологическим достижением всего человечества. Его способность смотреть сквозь облака газа и пыли, или оглянуться назад во времени, показав нам первые дни жизни Вселенной, сделает его мощным научным инструментом.

Источник: universetoday.ru

 

Прежде чем приступать к рассмотрению технических особенностей, давайте разберемся, зачем вообще нужны космические телескопы и какие преимущества они имеют перед комплексами, расположенными на Земле. Дело в том, что земная атмосфера, а особенно содержащийся в ней водяной пар, поглощает львиную долю излучения, идущего из космоса. Это, конечно, очень сильно затрудняет изучение далеких миров. 

 

Но, атмосфера нашей планеты с ее искажениями и облачностью, а также шумы и вибрации на поверхности Земли не помеха для космического телескопа.


случае с автоматической обсерваторией «Хаббл» из-за отсутствия влияния атмосферы ее разрешающая способность примерно в 7–10 раз превосходит показатели телескопов, расположенных на Земле. Многие фото далеких туманностей и галактик, которые нельзя различить на ночном небе невооруженным глазом, были получены именно благодаря «Хабблу». За 15 лет работы на орбите телескоп получил более одного млн изображений 22 тыс. небесных объектов, среди которых многочисленные звезды, туманности, галактики и планеты. При помощи «Хаббла» ученые, в частности, доказали, что близ большинства светил нашей Галактики происходит процесс формирования планет. 

 

Но запущенный в 1990 году «Хаббл» не вечен, а его технические возможности ограничены. Действительно, за последние десятилетия наука шагнула далеко вперед, и теперь можно создать гораздо более совершенные устройства, которые способны приоткрыть многие тайны Вселенной. Именно таким аппаратом станет «Джеймс Уэбб». 

 

Космический телескоп джеймса вебба

 

Как мы уже убедились, полноценное изучение космоса без таких аппаратов, как «Хаббл», невозможно. Теперь постараемся понять концепцию «Джеймса Уэбба». Данный аппарат представляет собой орбитальную инфракрасную обсерваторию. Иными словами, ее задачей будет исследование теплового излучения космических объектов. Вспомним, что все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемых телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. 


 

Среди главных задач будущего телескопа – выявление света первых звезд и галактик, которые появились после Большого взрыва. Это чрезвычайно сложно, так как движущийся в течение миллионов и миллиардов лет свет претерпевает существенные изменения. Так, видимое излучение той или иной звезды может быть полностью поглощено пылевым облаком. В случае с экзопланетами все еще труднее, так как эти объекты чрезвычайно малы (по астрономическим меркам, конечно) и «тусклы». У большей части планет средняя температура редко превышает 0°C, а в ряде случаев она может опускаться ниже –100°C. Обнаружить такие объекты очень сложно. Но аппаратура, установленная на телескопе «Джеймс Уэбб», позволит выявлять экзопланеты, температура поверхности которых достигает 300 К (что сравнимо с земным показателем), находящиеся дальше 12 астрономических единиц от своих звезд и удаленные от нас на расстояние до 15 световых лет. 

 

Космический телескоп джеймса вебба


 

Всего можно будет наблюдать планеты, расположенные у нескольких десятков звезд, «соседствующих» с нашим Солнцем. Причем «Джеймс Уэбб» сможет увидеть не только сами планеты, но и их спутники. Иными словами, нас может ожидать революция по части изучения экзопланет. И, возможно, даже не одна. Если же говорить о Солнечной системе, то и здесь могут быть новые важные открытия. Дело в том, что чувствительная аппаратура телескопа сможет обнаружить и изучить объекты системы, имеющие температуру –170° С. 

 

Возможности нового телескопа позволят понять многие процессы, происходящие на заре существования Вселенной – заглянуть в сами ее истоки. Рассмотрим этот вопрос более детально: как известно, звезды, которые находятся на расстоянии 10 световых лет от нас, мы видим именно такими, какими они были 10 лет назад. Следовательно, расположенные на удалении более 13 млрд световых лет объекты мы наблюдаем в том виде, какими они являлись почти сразу после Большого взрыва, который, как считается, произошел 13,7 млрд лет назад. Приборы, установленные на новом телескопе, позволят увидеть на 800 миллионов дальше, чем «Хаббл», установивший рекорд в своей время. Так что можно будет увидеть Вселенную, какой она была всего лишь через 100 миллионов лет после Большого взрыва. Возможно, это перевернет представления ученых об устройстве Вселенной. Остается только дождаться начала работы телескопа, которое намечено на 2019 год. Предполагается, что аппарат будет эксплуатироваться в течение 5–10 лет, так что времени для новых открытий будет предостаточно. 

 


Космический телескоп джеймса вебба

 

Для запуска «Джеймса Уэбба» хотят использовать ракету-носитель «Ариан-5», созданную европейцами. Вообще, несмотря на доминирующую роль космического ведомства США, проект можно назвать международным. Сам телескоп был разработан американскими компаниями Northrop Grumman и Ball Aerospace, а всего участие в программе приняли эксперты из 17 стран мира. Кроме специалистов из США и ЕС значительный вклад также внесли канадцы. 

 

Космический телескоп джеймса вебба

 

После запуска аппарат будет находиться на гало-орбите в точке Лагранжа L2 системы Солнце – Земля. Это означает, что, в отличие от «Хаббла», новый телескоп не будет вращаться вокруг Земли: постоянное «мелькание» нашей планеты могло бы помешать проводить наблюдения. Вместо этого «Джеймс Уэбб» будет обращаться вокруг Солнца. При этом для обеспечения эффективной связи с Землей он будет перемещаться вокруг светила синхронно с нашей планетой. Удаление «Джеймса Уэбба» от Земли достигнет 1,5 млн км: из-за такого большого расстояния его не получится модернизировать или отремонтировать как «Хаббл». Поэтому надежность ставится во главу угла всей концепции «Джеймса Уэбба». 


 

Но что же собой представляет новый телескоп? Перед нами космический аппарат, весящий 6,2 тонны. Чтобы было понятно, вес «Хаббла» составляет 11 тонн – почти в два раза больше. При этом «Хаббл» был намного меньше по своим размерам – его можно сравнить с автобусом (новый телескоп сравним по длине с теннисным кортом, а по высоте – с трехэтажным домом). Самой большой частью телескопа является противосолнечный щит, имеющий длину 20 и ширину 7 метров. Он похож на огромный слоеный пирог. Для изготовления щита была использована особая специальная полимерная пленка, покрытая тонким слоем алюминия с одной стороны и металлическим кремнием с другой. Пустоты между слоями теплового щита заполняет вакуум: это усложняет передачу тепла в «сердце» телескопа. Целью данных шагов является защита от солнечных лучей и охлаждение сверхчувствительных матриц телескопа до –220° C. Без этого телескоп будет «ослеплен» инфракрасным свечением своих деталей и о наблюдении далеких объектов придется забыть. 

 

Больше всего в глаза бросается зеркало нового телескопа. Оно необходимо для фокусировки пучков света — зеркало их выпрямляет и создает четкую картину, при этом цветовые искажения убираются.


жеймс Уэбб» получит основное зеркало, диаметр которого составляет 6,5 м. Для сравнения, аналогичный показатель у «Хаббла» равен 2,4 м. Диаметр основного зеркала для нового телескопа выбран неспроста – именно столько необходимо для измерения света самых далеких галактик. Нужно сказать, что от размера площади зеркала (в нашем случае он составляет 25 м²), собирающего свет от далеких космических объектов, зависит чувствительность телескопа, а также его разрешающая способность. 

 

Космический телескоп джеймса вебба

Космический телескоп джеймса вебба

 

Учеными было рассмотрено несколько вариантов того, из чего может быть сделано зеркало, но в конечном итоге специалисты остановили свой выбор на бериллии – легком и относительно твердом металле, стоимость которого весьма высока. Одной из причин данного шага стало то, что бериллий сохраняет свою форму в условиях криогенных температур. Само зеркало по форме напоминает круг – это позволяет максимально компактно фокусировать свет на детекторах.


ей «Джеймс Уэбб», например, овальное зеркало, изображение было бы вытянутым. 
Основное зеркало состоит из 18 сегментов, которые раскроются после вывода аппарата на орбиту. Если бы оно было цельным, то разместить телескоп на ракете «Ариан-5» было бы просто физически невозможно. Каждый из сегментов шестиугольный, что позволяет использовать пространство наилучшим образом. Элементы зеркала имеют золотой цвет. За счет позолоты обеспечивается наилучшее отражение света в инфракрасном диапазоне: золото будет эффективно отражать ИК-излучение с длиной волны от 0,6 до 28,5 микрометра. Толщина золотого слоя составляет 100 нанометров, а общий вес покрытия равен 48,25 грамма. 

 

Космический телескоп джеймса вебба

 

Перед 18-ю сегментами на специальном крепеже установлено вторичное зеркало: оно будет принимать свет главного зеркала и направлять его на научные инструменты, расположенные в задней части аппарата. Вторичное зеркало намного меньше основного и имеет выпуклую форму. 

 

 

 

Для изучения космических объектов на телескопе установлены следующие научные инструменты: 

 

— NIRCam (камера ближнего инфракрасного диапазона) 
— NIRSpec (спектрограф ближнего инфракрасного диапазона) 
— MIRI (прибор среднего инфракрасного диапазона) 
— FGS/NIRISS (датчик точного наведения и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф)

 

Космический телескоп джеймса вебба

Телескоп «Джеймс Уэбб» / ©wikimedia

 

NIRCam

 

Камера ближнего инфракрасного диапазона NIRCam – основной блок формирования изображения. Это своего рода «главные глаза» телескопа. Рабочий диапазон камеры – от 0,6 до 5 микрометров. Снимки, сделанные ею, будут впоследствии изучаться другими инструментами. Именно при помощи NIRCam ученые хотят увидеть свет от самых ранних объектов Вселенной на заре их формирования. Кроме этого, за счет инструмента будут изучены молодые звезды нашей Галактики, создана карта темной материи и многое другое. Важная особенность NIRCam – наличие коронографа, позволяющего увидеть планеты вокруг далеких звезд. Это станет возможным благодаря подавлению света последних. 

 

Космический телескоп джеймса вебба

 

NIRSpec

 

При помощи спектрографа ближнего инфракрасного диапазона можно будет собирать информацию, касающуюся как физических свойств объектов, так и их химического состава. Спектрография занимает очень много времени, однако при помощи технологии микрозатворов можно будет проводить наблюдения за сотней объектов на площади неба 3×3 угловых минуты. Каждая ячейка микрозатворов NIRSpec имеет крышку, которая открывается и закрывается под влиянием магнитного поля. Ячейка имеет индивидуальное управление: в зависимости от того, закрыта она или открыта, информация об исследуемый части неба предоставляется или же, наоборот, блокируется. 

 

Космический телескоп джеймса вебба

 

MIRI

 

Прибор среднего инфракрасного диапазона работает в диапазоне 5–28 микрометров. Данное устройство включает в себя камеру с датчиком, который имеет разрешение 1024×1024 пикселя, а также спектрограф. Три массива мышьяко-кремниевых детекторов делают MIRI самым чувствительным прибором в арсенале телескопа «Джеймс Уэбб». Предполагается, что с помощью прибора среднего инфракрасного диапазона удастся различить рождающиеся звезды, многие ранее неизвестные объекты пояса Койпера, красное смещение очень далеких галактик, а также загадочную гипотетическую планету X (она же девятая планета Солнечной системы). Номинальной рабочей температурой для MIRI являются 7 К. Одна лишь пассивная система охлаждения не способна ее обеспечить: для этого используются два уровня. Сначала с помощью пульсационной трубы телескоп охлаждается до 18 К, а потом температура понижается до 7 К при помощи теплообменника с адиабатическим дросселированием. 

 

Космический телескоп джеймса вебба

FGS/NIRISS

 

FGS/NIRISS состоит из двух приборов – датчика точного наведения и устройства формирования изображения в ближнем инфракрасном диапазоне и бесщелевого спектрографа. Фактически NIRISS дублирует функции NIRCam и NIRSpec. Работающее в диапазоне 0,8–5,0 микрометров устройство будет обнаруживать «первый свет» от далеких объектов, наводя на них оборудование. NIRISS также пригодится для обнаружения и изучения экзопланет. Что же касается датчика точного наведения FGS, то при помощи этого оборудования будет наводиться сам телескоп, чтобы иметь возможность получить более качественные изображения. Камера FGS позволяет формировать изображение из двух смежных участков неба, размер которых составляет 2,4×2,4 угловых минуты каждый. Она также считывает информацию 16 раз в секунду с небольших групп пикселей размером 8×8: этого хватает для выявления соответствующей опорной звезды с вероятностью в 95% в любой точке неба, включая высокие широты.

 

Космический телескоп джеймса вебба

 

 

Новый космический аппарат обещает стать достойным правопреемником «Хаббла» и позволит ответить на вопросы, которые остаются тайной за семью печатями до сегодняшнего дня. Среди возможных открытий «Джеймса Уэбба» – обнаружение миров, похожих на Землю и пригодных для обитания. Данные, полученные телескопом, могут быть полезны для проектов, рассматривающих возможность существования инопланетных цивилизаций.  

Источник: naked-science.ru

Как работает телескоп Джеймса Уэбба?

Космический телескоп Джеймса Уэбба станет самой большой, мощной и сложной орбитальной обсерваторией, когда-либо запущенной в космос. Обладая в семь раз большей светосборной способностью, чем у Хаббла, а также хорошо развитой способностью к инфракрасной визуализации, ученые надеются увидеть даже самые удаленные от человека миры.

Идея вывести на орбиту специальный космический телескоп для сбора данных в инфракрасном спектре впервые возникла в середине 1990-х годов, и с тех пор космический телескоп Джеймса Уэбба потерпел ряд неудач. Многие из них были вызваны техническими проблемами, обнаруженными в ходе испытаний, когда телескоп первоначально планировалось запустить в 2007 году.

Дело в том, что телескоп нового поколения будет расположен примерно в полутора миллионах километров от Земли в так называемой точке Лагранжа L2 системы Земля — Солнце, которая находится даже в несколько раз дальше, чем Луна. Столь большое расстояние ставит жесткие требования к качествам телескопа Джеймса Уэбба, так как чем дальше находится рукотворный объект от Земли, тем выше риск его потерять в результате даже малейшей ошибки. Иными словами, если аппаратура телескопа по какой-то причине выйдет из строя, починить ее уже не получится.

Для того, чтобы найти еще больше актуальных статей из мира науки и техники, подписывайтесь на наш канал в Яндекс.Дзен.

Для чего нужен телескоп Джеймса Уэбба?

Благодаря своему невероятно продуманному дизайну, инфракрасный телескоп сможет выполнять сразу несколько функций. Так, современная аппаратура этого устройства поможет человеку увидеть даже очень древние структуры, которые были образованы практически сразу после Большого Взрыва. Кроме того, мы сможем получить данные о потенциально обитаемых экзопланетах и, возможно, даже сможем подтвердить на них наличие жизни.

Возможно, вам будет интересно: NASA завершило вакуумные испытания телескопа «Джеймс Уэбб»

Когда будет запущен телескоп Джеймса Уэбба?

Космический телескоп Джеймса Уэбба станет самой большой, мощной и сложной орбитальной обсерваторией, когда-либо запущенной в космос. Даже несмотря на то, что на сегодняшний день телескоп находится в полностью собранном состоянии, у специалистов имеется большой объем работы с проведением различных тестирований этого сверхсложного аппарата.

Так, специалисты намерены развернуть пятислойный тепловой экран телескопа для того, чтобы убедиться в том, что он принимает правильную форму. Сделать это с расстояния в полтора миллиона километра было бы гораздо сложнее и неудобнее, чем на Земле.

В любом случае, тестирования инфракрасного телескопа обещают быть закончены к 2021 году, когда и произойдет долгожданный запуск этого шедевра инженерной мысли.

Источник: Hi-News.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.