Гравитационный телескоп


Анастасия Шартогашева
«Популярная механика» №6, 2019

Используя Солнце как огромную линзу, можно сделать четкий снимок планеты, которая вращается вокруг другой звезды. Для этого потребуется отправить рой космических телескопов далеко за пределы Солнечной системы, но сначала ученым предстоит определиться с «фотомоделью»: ей должна стать экзопланета, на которой с большой вероятностью есть жизнь.

Если устроить конкурс на самую популярную у широкой публики область науки, то астрономия наверняка окажется в тройке победителей — точнее, та ее часть, которая занимается поиском жизни за пределами Земли. Особенно модной эта тема стала с середины 1990-х, когда астрономы нашли методы, позволяющие искать планеты у далеких звезд, оценивать их массу, расстояние до их светил и даже получать информацию о составе их атмосфер.

Лучше один раз увидеть


Сегодня счет открытых экзопланет идет на тысячи; любовь публики к новостям о них, а особенно о потенциально обитаемых планетах, позволила найти средства на строительство специализированных инструментов, таких как космические обсерватории Kepler и Gaia, и выделить на поиск экзопланет месяцы наблюдательного времени наземных телескопов. Мы уже очень много знаем об открытых экзопланетах, умеем оценивать температуру воды на их поверхности и количество кислорода в атмосфере. Но никто из живущих еще ни разу не видел экзопланеты так, как мы видели планеты Солнечной системы, — на фотографиях, где можно разглядеть детали рельефа или, например, облака. Большую часть экзопланет обнаруживают косвенными методами — измеряя скорость звезд, колебания их яркости и отклонения орбит. Напрямую наблюдать можно только очень немногие из планет — те, что находятся относительно близко. Их можно даже фотографировать, но качество таких снимков получается ниже, чем у наделавшей шуму первой фотографии черной дыры. Как правило, планеты выглядят на них как несколько ярких пикселей.

Однако получить четкие фотографии планет у других звезд теоретически возможно, и группа ученых из Лаборатории реактивного движения (JPL) предложила такой проект. Сейчас SGLP (Solar Gravity Lens Project) занимаются JPL и некоммерческая организация Aerospace. Идея заключается в том, чтобы использовать Солнце как гравитационную линзу и через нее получить увеличенные в сто миллиардов раз изображения планет, которые обращаются вокруг чужих звезд.


По предварительным расчетам, даже небольшой телескоп с зеркалом диаметром в метр и скромным по современным меркам коронографом (устройством, позволяющим блокировать свет Солнца), размещенный в фокусе солнечной гравилинзы, даст изображение экзопланеты, удаленной на сто световых лет, — такое, на котором каждый пиксель будет соответствовать километру поверхности экзопланеты. Для того чтобы снять аналогичное изображение без солнечной линзы, потребовался бы телескоп с зеркалом диаметром около 80 км.

Солнце как линза

Существование гравитационных линз предсказал еще Эйнштейн; из его общей теории относительности вытекает свойство массивных объектов искривлять пространство-время, а вместе с ним и траекторию распространения света. Вблизи очень тяжелых тел — галактик и их скоплений, черных дыр и даже отдельных звезд — фотоны летят по кривой, кривизна которой зависит от массы этих тел. Поэтому для наблюдателя, находящегося по другую сторону от наблюдаемого источника света, массивное тело может служить линзой, позволяющей увидеть очень далекие объекты. Сегодня гравитационное линзирование — распространенный астрономический метод; с его помощью получают, например, изображения галактик, расположенных далеко за пределами возможностей наших телескопов.


Согласно одному из концептов, предложенному командой SGLP, созвездия небольших космических аппаратов можно будет запускать на фокальную линию каждый год; те, что прилетят на место раньше, смогут поделиться с новоприбывшими данными и настройками. Кроме того, такая стратегия позволит наблюдать за экзопланетой в течение долгого времени.

Солнце — самый массивный объект в нашей планетной системе и единственный достаточно тяжелый для того, чтобы создаваемая им гравитационная линза позволила получить изображение тела планетных масштабов, удаленного на расстояние до ста световых лет. Но, чтобы воспользоваться способностью звезды искривлять пространство, нужно находиться в фокусе солнечной гравилинзы. В отличие от обычных линз, у гравитационных нет точки фокусировки — вместо этого у них есть фокальная линия; у Солнца она начинается на расстоянии 547,8 а. е. от звезды, то есть в 547,8 раза дальше, чем наша планета, и далеко за пределами Солнечной системы. Даже «Вояджер-1», самый далекий от Земли космический аппарат, одолел пока только 140 а. е. «Вояджер» — один из главных источников вдохновения для SGLP: запущенный сорок один год назад, он до сих пор подчиняется командам с Земли. В 2017-м астрономы ненадолго включили его двигатели, в последний раз работавшие за 37 лет до этого. Опыт «Вояджера» показывает, что современный уровень развития земных технологий позволяет создавать технику, способную работать в космосе десятилетиями, и управлять ей на огромных расстояниях.

Земля 2.0


Участники проекта SGLP предлагают несколько концепций солнечной гравитационной обсерватории: она может выглядеть как один аппарат или рой небольших телескопов, которые выстроятся на участке фокальной линии. Пока второй вариант кажется более перспективным. Специалисты Aerospace предполагают, что миссия может состоять из нескольких аппаратов массой до 10 кг; небольшие размеры, в частности, позволят путешествовать быстрее за счет «солнечного паруса», использующего давление солнечного света на зеркальную поверхность. Возможность ускориться для такой дальней миссии критически важна. На то, чтобы преодолеть необходимое расстояние, уйдут десятки лет, двадцать — при огромной скорости в 20–30 а. е. в год, до сих пор практически недостижимой.

Солнечный гравитационный телескоп сможет по пути собрать ценные данные, но главная цель у него будет одна: сфотографировать одну-единственную экзопланету, расположенную на одной прямой с аппаратом и Солнцем.
итывая это, выбирать мишень для проекта нужно очень тщательно. Планета-кандидат должна быть каменистой, находиться в обитаемой зоне своей звезды, иметь близкую к земной атмосферу. Выбрать такую планету (участники SGLP называют ее Землей 2.0) еще только предстоит — пока известно слишком мало планет земного типа вблизи Солнца и данных о них недостаточно. Ближайшие годы участники проекта со стороны JPL проведут, отслеживая результаты других экзопланетных миссий, уже осуществленных и планируемых. Большие надежды возлагаются на телескоп Джеймса Уэбба, который должен потратить несколько месяцев на изучение атмосфер уже известных экзопланет, и другие проекты космических телескопов, специализированных для поиска планет у других звезд. Как только найдется достойный кандидат на звание Земли 2.0, миссии SGLP будет дан старт.

Вполне возможно, что найти обитаемую экзопланету удастся традиционными методами, без солнечной гравитационной линзы, отмечают специалисты из JPL; тогда SGLP отправится на фокальную линию, чтобы прислать на Землю фотографию нового живого мира. Кроме оптического телескопа миссия будет нести и другие инструменты — спектрометры, которые дадут ученым даже больше информации о Земле 2.0, чем фотография в видимом свете. Но картинка есть и будет главной целью, потому что ее можно показать людям, далеким от астрономии. Участники SGLP говорят об этом в каждой научной статье и на каждой пресс-конференции: только при условии искреннего интереса публики возможно строительство дорогостоящих космических миссий. «Портрет» Земли 2.0 — это лучшее из того, что ученые могут дать нам взамен.

Источник: elementy.ru


1. Введение о принципах работы ГВ детектора

Сначала я кратко напомню, как LIGO детектирует гравитационные волны, и определю некоторые понятия.
Гравитационный телескоп
Детектор LIGO — интерферометр Майкельсона. Гравитационные волны растягивают одно плечо и сжимают другое, относительная фаза света на делителе лучей изменяется, и на выходе появляется интерференционная картинка. Image credit: induced.info

1.1 Принцип работы

Гравитационные волны (ГВ) — малые возмущения метрики пространства-времени. Они возникают при несимметричном движении массивных тел, например, при слиянии двух черных дыр. Эти возмущения приводят к изменению определения расстояния между предмета (“растягивают” и “сжимают” расстояние). 

Гравитационно-волновой детектор создан так, что он позволяет измерить это измерение расстояний с помощью лазеров. В простейшем варианте детектор является интерферометром Майкельсона, где плечи детектора сбалансированы так, что за счет конструктивной интерференции весь свет отражается в сторону источника, а второй выход делителя луча за счет деструктивной интерференции остается темным.


r /> Когда ГВ достигают детектора, они растягивают одно плечо и сжимают другое, что изменяет интерференционную картинку на выходе интерферометра и позволяет зарегистрировать сигнал.
В прошлой статье я объяснял, что ГВ детектор — не линейка, а часы, т.е. измеряет относительную задержку света в двух плечах, вызванную гравитационной волной. Также я показал, что относительное изменение фазы света:

$phi = L/lambda $

Это уравнение объясняет, почему детекторы делаются такими длинными: это позволяет увеличить чувствительность.
Для дальнейшего увеличения чувствительности ученые придумали использовать оптические резонаторы. Они позволяют свету путешествовать в плече несколько раз

$mathcal{N}$$, эффективно увеличивая длину плеча в $

mathcal{N}$inline$ раз.
Также фаза света пропорциональна мощности света внутри детектора, так что резонаторы решают сразу две задачи, так как усиливают мощность света.

1.2 Поляризация гравитационных волн

Гравитационные волны обладают поляризацией: они могут быть либо “+” (относительно детектора — растягивают одно плечо и сжимают другое), либо “х” (растягивают/сжимают оба плеча одновременно).

Гравитационный телескоп
Смещение тестовых масс (шарики) под действием ГВ разных поляризаций в течение одного периода. Credit: [Tiec, Novak, 2017]

Детектор чувствителен только к “+” поляризации. Поэтому важно иметь несколько детекторов с несколько разной ориентацией плеч, чтобы можно было измерять волны любой поляризации: если один детектор ориентирован на “+”, а второй — на “х”, то если один детектор увидел волну, а другой нет — мы уверены, что это поляризация была точно “+”. А если оба увидели волну разной амплитуды, то мы можем рассчитать, какой была начальная поляризация.

Чувствительность к поляризации задает разную диаграмму направленности для двух поляризаций(т.е. какие точки на небе лучше всего видны детектору).
Гравитационный телескоп
Диаграмма направленности детектора к х и + поляризациям, а также усредненная по двум поляризациям. Credit: arXiv:1501.03765

2. Ограничения LIGO

LIGO обладает невероятной чувствительностью: позволяет измерить относительное изменение длины плечей с точностью до 10-18 м.
Чтобы измерять сигналы с такой точностью, необходимо избавиться от всевозможных шумов в различных частях инструмента.
Чувствительность детектора обычно показывают как уровень шумов в детекторе на разных частотах в виде спектральной плотности. Спектральная плотность отражает вклад разных шумов в сигнал на выходе детектора (т.е. некоторые шумы могут быть значительны на месте возникновения, но давать малый вклад в шум на выходе). Обычно спектральную плотность нормируют на амплитуду гравитационных волн (что называется strain,


$h = Delta L/L$

)

Гравитационный телескоп
Основные вклады в чувствительность LIGO на разных частотах, нормированные на амплитуду ГВ strain,

$h = Delta L/L$

Рассмотрим несколько самых важных вкладов в шумы:
1. Сейсмический шум (ограничивает частоты <1Гц): любая сейсмическая активность может смещать зеркала. Чтобы изолировать от этого шума, зеркала подвешены на многоступенчатом подвесе, который в свою очередь закреплен на многоуровневой массивной подставке. Чем ниже резонансная частота подвеса, тем больше подавлены шумы на низких частотах. В принципе, нет ограничений в качестве подавления шума.
2. Ньютоновский гравитационный шум (ограничивает частоты~1Гц): даже если зеркала полностью изолированы от прямого сейсмического воздействия, смещение поверхности земли/пола может влиять на зеркала гравитационно.
устические волны, распространяющиеся по поверхности земли, например, от ветра или волн, немного изменяют расстояние от зеркала до земли, а значит и силу притяжения, что может смещать зеркала. Изолировать полностью от этого нельзя, это фундаментальное ограничение.
3. Тепловой шум подвесов (ограничивает частоты ~1-10Гц): тепловое движение молекул в подвесах зеркал приводит к возбуждению колебаний в подвесе, что смещает зеркала. Подавить сложно, все упирается в качество материалов.
4. Тепловой шум зеркал (ограничивает чувствительность снизу): тепловое движение молекул в покрытиях зеркал, и в самом “теле” зеркал (подложка). Выглядит для луча света как смещение самого зеркала целиком. Ограничено материалами, самый важный технический шум.
5. Квантовый дробовой шум лазера (частоты >50Гц): свет имеет квантовую природу, отдельны фотоны летят с разной случайно задержкой. Эта задержка видна как измерение фазы на выходе интерферометра, и ограничивает все частоты. Чем больше мощность света внутри детектора, тем меньше шум. Фундаментальный предел, но может быть подавлен с помощью сжатого света
6. Квантовый шум радиационного давления (частоты 10-50Гц): тот же дробовой шум приводит к флуктуациям мощности внутри интерферометра и вызывает случайную силу радиационного давления на зеркала. Столь же фундаментален как и дробовой шум. В отличие от дробового шума, растет с увеличением мощности света.
Гравитационный телескоп
Пояснение про квантовые шумы. Одиночные фотоны производят случайную силу радиационного давления (слева). С другой стороны, случайное распределение фотонов во времени приводит к флуктуациям амплитуды на фотодетекторе (справа). Оба шума зависят от длины волны, мощности света и длины плеча. Шум радиационного давления тем меньше, чем больше масса зеркал. Credit: [1].

Гравитационный телескоп
Зависимость чувствительности от мощности света

$P_0$

: дробовой шум (синий) уменьшается, а шум радиационного давления (зеленый) — пропорционально возрастает.

7. Остаточный газ в вакуумной системе (все частоты, но не ограничивает сейчас): сверхвысокий вакуум в системе всегда не идеален, и остаточные молекулы газа могут рассеивать свет. Может быть сколь угодно мал (зависит от качества насосов).
8. Классические лазерные шумы (не ограничивают): мощность и частота лазера могут флуктуировать и по классическим причинам (тепловые шумы, вибрации). Лазерная система включает в себя сверх-стабильные лазеры и многоуровневые системы контроля частоты и мощности лазера.

Все эти шумы можно разделить на две группы: силовые — флуктуации приводят к физическому смещению зеркал (шумы 1-3 и 6), и координатные — флуктуации приводят к изменению фазы света, но не смещают зеркала (шумы 4,5 и 7).
Силовые шумы

$F$

вызывают смещение

$x$

тестовых масс по закону Ньютона

$mddot{x} = F$

, или в частотном диапазоне:

$x(Omega) = F(Omega)/(mOmega^2)$

. То есть, эти шумы можно уменьшить, увеличивая массу зеркал.

Дизайн LIGO принципиально не может решить проблему Ньютоновского шума 2, и без полной перестройки оптических систем проблему теплового шума зеркал 4.

В подбробностях про шумы можно почитать в замечательной статье про LIGO на Хабре.

3. Как новый детектор решит эти проблемы

Гравитационный телескоп
Подземный детектор KAGRA присоединится к наблюдениям уже в следующем году.

Итак, новый детектор будет расположен под землей. Это позволит уменьшить сейсмические шумы 1, и, что самое важное, ньютоновский шум 2:
основной вклад в него вызван поверхностными волнами, которых практически нет под землей.
В зависимости от того, где будет построен детектор (сейчас два главных варианта — в Нидерландах или на Сардинии, и возможно в Венгрии).

Гравитационный телескоп
Сравнение сейсмики в разных возможных локациях с детектором AdvancedVirgo в Италии.

Конечно, будут сделаны наиболее очевидные технические шаги по подавлению сейсмики: новая система подвесов для пассивной изоляции и более тяжелые зеркала в 200кг каждое для подавления всех силовых шумов.
Гравитационный телескоп
Одна из угловых станций телескопа Эйнштейна со множеством вакуумных камер. Credit: gwoptics.org

Проблема теплового шума зеркал сложнее. Очевидным решением было бы охладить зеркала, тем самым уменьшив броуновские шумы.
Однако, охлаждение приведет к изменению оптических свойств зеркал, и увеличит поглощение. Кроме того, с холодными зеркалами невозможно использовать большие мощности света: поглощение в зеркалах нагреет их и сведет охлаждение на нет. 
То есть, нужно охладить детектор и уменьшить мощность света? Так тоже не получится — возрастет дробовой шум (4), и испортит чувствительность на низких частотах.
Ученые пришли к другому решению: использовать два интерферометра в одном месте.
Гравитационный телескоп
«Ксилофонная» конфигурация детектора с двумя интерферометрами вложенными друг в друга. Credit: [1]

Один будет оптимизирован для низких частот, работать с охлажденными до 20К зеркалами, и использовать малую мощность света. Дробовой шум возрастет, однако детектор не будет использоваться на частотах, где дробовой шум имеет значение. Второй детектор будет работать при комнатной температуре на большой мощности: это позволит подавить дробовой шум на высоких частотах, но испортит чувствительность на низких частотах возросшим шумом радиационного давления. Но этот детектор не будет использоваться на низких частотах. В итоге комбинированная чувствительность будет оптимальна на всех частотах.
Гравитационный телескоп
Низкочастотный детектор ET-D-LF с охлажденными зеркалами и малой мощностью (и малым шумом радиационного давления), и высокочастотный ET-D-HF с большой мощностью (и малым дробовым шумом). Credit: [1]

Другая проблема нового поколения детекторов: на момент постройки он будет только один с такой чувствительностью. Во-первых, не будет возможности отличить случайный всплеск от сигнала, если нет возможности проверить совпадения между детекторами. Во-вторых, не будет возможности измерять разные поляризации гравитационных волн. Ученые предлагают построить не один детектор, а три с разной ориентацией (в виде треугольника, как на картинке).
Гравитационный телескопГравитационный телескоп
Концепция треугольной конфигурации детектора (слева); туннели с разными плечами (справа).

Это позволит улучшить диаграмму направленности детектора и регистрировать гораздо больше событий:
Гравитационный телескоп
Сравнение диаграммы направленности одного детектора (слева) и трех детекторов в треугольной конфигурации (справа).

Напомню, каждый из них будет состоять из двух: один для низких, а другой для высоких частот. В итоге шесть детекторов будут расположены треугольником.
Гравитационный телескоп

Все эти ухищрения позволят увеличить чувствительность детекторов как минимум на порядок.
Такая чувствительность позволит увеличить дальность наблюдения практически до границы видимой Вселенной, видеть слияния ЧД первого поколения звезд и наблюдать слияния черных дыр и нейтронных звезд постоянно.
Увеличение чувствительности на низких частотах позволит наблюдать более ранние стадии слияния объектов, и получать больше информации об их параметрах.
Высокие частоты позволят наблюдать за эволюцией черной дыры или нейтронной звезды, образовавшейся в результате слияния. Этот режим наиболее интересен для проверки ОТО и возможных альтернатив. Например, гравитационно-волновое эхо может наблюдаться именно на высоких частотах.

Гравитационный телескоп
Сравнение чувствительности ET и LIGO-Virgo

Но самое важно — это будет не просто детектор, а целая инфраструктура, которая позволит увеличивать чувствительность детектора многие десятилетия.

4. Заключение

О чем я не упомянул

Я не обсудил еще такую важную часть ET как системы подавления квантовых шумов с помощью частотнозависимого сжатого света. Про сжатый свет можно подробнее почитать в отличной статье на хабре. Я планирую рассказать более подробно про квантовые шумы в детекторе в следующей статье.

Кроме того, в ET будет использована так называемая оптическая жесткость — усиление сигнала за счет нелинейного взаимодействия между механическим осциллятором и светом внутри резонтаторов. Подробнее про квантовую оптомеханику — науку о взаимодействии между механическими системами и светом — скоро на хабре;)

Конечно, я затронул только самые основные особенности ET, деталей есть великое множество — добро пожаловать в комменты.

Кроме того, я не упомянул, что в США планируется строительство еще более длинного 40км наземного телескопа Cosmic Explorer, но его дизайн пока менее проработан, нежели ЕТ, так что никаких интересных подробностей не расскажу.

Статус Einstein Telescope

Гравитационный телескоп

В настоящий момент ET еще не получил одобрение Еврокомиссии. Отдельные страны вкладывают деньги в предварительные исследования. Коллаборация постепенно формируется. Можно почитать официальный сайт и даже присоединиться к коллаборации, подписав Letter of Intent.

По плану в ближайшие год-два Европа рассмотрит заявку на создание и утвердит местоположение. Запуск ET в таком случае произойдет в начале 2030х.
Гравитационный телескоп
Один из вариантов — треугольник на границе Германии, Бельгии и Нидерландов, расположенный так, что в каждой стране будет по одной угловой станции. Будет символом объединенной Европы.

Источник: SE7EN.ws

1. Введение о принципах работы ГВ детектора

Сначала я кратко напомню, как LIGO детектирует гравитационные волны, и определю некоторые понятия.

Гравитационный телескоп
Детектор LIGO — интерферометр Майкельсона. Гравитационные волны растягивают одно плечо и сжимают другое, относительная фаза света на делителе лучей изменяется, и на выходе появляется интерференционная картинка. Image credit: induced.info

1.1 Принцип работы

Гравитационные волны (ГВ) — малые возмущения метрики пространства-времени. Они возникают при несимметричном движении массивных тел, например, при слиянии двух черных дыр. Эти возмущения приводят к изменению определения расстояния между предмета (“растягивают” и “сжимают” расстояние). 

Гравитационно-волновой детектор создан так, что он позволяет измерить это изменение расстояний с помощью лазеров. В простейшем варианте детектор является интерферометром Майкельсона, где плечи детектора сбалансированы так, что за счет конструктивной интерференции весь свет отражается в сторону источника, а второй выход делителя луча за счет деструктивной интерференции остается темным.

Когда ГВ достигают детектора, они растягивают одно плечо и сжимают другое, что изменяет интерференционную картинку на выходе интерферометра и позволяет зарегистрировать сигнал.
В прошлой статье я объяснял, что ГВ детектор — не линейка, а часы, т.е. измеряет относительную задержку света в двух плечах, вызванную гравитационной волной. Также я показал, что относительное изменение фазы света:

$phi = L/lambda $

Это уравнение объясняет, почему детекторы делаются такими длинными: это позволяет увеличить чувствительность.

Для дальнейшего увеличения чувствительности ученые придумали использовать оптические резонаторы. Они позволяют свету путешествовать в плече несколько раз

$mathcal{N}$

, эффективно увеличивая длину плеча в

$mathcal{N}$

раз.

Также сигнал на выходе из детектора пропорционален мощности света внутри детектора, так что резонаторы решают сразу две задачи, так как усиливают мощность света.

1.2 Поляризация гравитационных волн

Гравитационные волны обладают поляризацией: они могут быть либо “+” (относительно детектора — растягивают одно плечо и сжимают другое), либо “х” (растягивают/сжимают оба плеча одновременно).

Гравитационный телескоп
Смещение тестовых масс (шарики) под действием ГВ разных поляризаций в течение одного периода. Credit: [Tiec, Novak, 2017]

Детектор чувствителен только к “+” поляризации. Поэтому важно иметь несколько детекторов с несколько разной ориентацией плеч, чтобы можно было измерять волны любой поляризации: если один детектор ориентирован на “+”, а второй — на “х”, то если один детектор увидел волну, а другой нет — мы уверены, что это поляризация была точно “+”. А если оба увидели волну разной амплитуды, то мы можем рассчитать, какой была начальная поляризация.

Чувствительность к поляризации задает разную диаграмму направленности для двух поляризаций(т.е. какие точки на небе лучше всего видны детектору).

Гравитационный телескоп
Диаграмма направленности детектора к х и + поляризациям, а также усредненная по двум поляризациям. Credit: arXiv:1501.03765

2. Ограничения LIGO

LIGO обладает невероятной чувствительностью: позволяет измерить относительное изменение длины плечей с точностью до 10-18 м.

Чтобы измерять сигналы с такой точностью, необходимо избавиться от всевозможных шумов в различных частях инструмента.

Чувствительность детектора обычно показывают как уровень шумов в детекторе на разных частотах в виде спектральной плотности. Спектральная плотность отражает вклад разных шумов в сигнал на выходе детектора (т.е. некоторые шумы могут быть значительны на месте возникновения, но давать малый вклад в шум на выходе). Обычно спектральную плотность нормируют на амплитуду гравитационных волн (что называется strain,

$h = Delta L/L$

)

Гравитационный телескоп
Основные вклады в чувствительность LIGO на разных частотах, нормированные на амплитуду ГВ strain,

$h = Delta L/L$

Рассмотрим несколько самых важных вкладов в шумы:

1. Сейсмический шум (ограничивает частоты <1Гц): любая сейсмическая активность может смещать зеркала. Чтобы изолировать от этого шума, зеркала подвешены на многоступенчатом подвесе, который в свою очередь закреплен на многоуровневой массивной подставке. Чем ниже резонансная частота подвеса, тем больше подавлены шумы на низких частотах. В принципе, нет ограничений в качестве подавления шума.

2. Ньютоновский гравитационный шум (ограничивает частоты~1Гц): даже если зеркала полностью изолированы от прямого сейсмического воздействия, смещение поверхности земли/пола может влиять на зеркала гравитационно. Акустические волны, распространяющиеся по поверхности земли, например, от ветра или волн, немного изменяют расстояние от зеркала до земли, а значит и силу притяжения, что может смещать зеркала. Изолировать полностью от этого нельзя, это фундаментальное ограничение.

3. Тепловой шум подвесов (ограничивает частоты ~1-10Гц): тепловое движение молекул в подвесах зеркал приводит к возбуждению колебаний в подвесе, что смещает зеркала. Подавить сложно, все упирается в качество материалов.

4. Тепловой шум зеркал (ограничивает чувствительность снизу): тепловое движение молекул в покрытиях зеркал, и в самом “теле” зеркал (подложка). Выглядит для луча света как смещение самого зеркала целиком. Ограничено материалами, самый важный технический шум.

5. Квантовый дробовой шум лазера (частоты >50Гц): свет имеет квантовую природу, отдельны фотоны летят с разной случайно задержкой. Эта задержка видна как измерение фазы на выходе интерферометра, и ограничивает все частоты. Чем больше мощность света внутри детектора, тем меньше шум. Фундаментальный предел, но может быть подавлен с помощью сжатого света.

6. Квантовый шум радиационного давления (частоты 10-50Гц): тот же дробовой шум приводит к флуктуациям мощности внутри интерферометра и вызывает случайную силу радиационного давления на зеркала. Столь же фундаментален как и дробовой шум. В отличие от дробового шума, растет с увеличением мощности света.

Гравитационный телескоп
Пояснение про квантовые шумы. Одиночные фотоны производят случайную силу радиационного давления (слева). С другой стороны, случайное распределение фотонов во времени приводит к флуктуациям амплитуды на фотодетекторе (справа). Оба шума зависят от длины волны, мощности света и длины плеча. Шум радиационного давления тем меньше, чем больше масса зеркал. Credit: [1].

Гравитационный телескоп
Зависимость чувствительности от мощности света

$P_0$

: дробовой шум (синий) уменьшается, а шум радиационного давления (зеленый) — пропорционально возрастает.

7. Остаточный газ в вакуумной системе (все частоты, но не ограничивает сейчас): сверхвысокий вакуум в системе всегда не идеален, и остаточные молекулы газа могут рассеивать свет. Может быть сколь угодно мал (зависит от качества насосов).

8. Классические лазерные шумы (не ограничивают): мощность и частота лазера могут флуктуировать и по классическим причинам (тепловые шумы, вибрации). Лазерная система включает в себя сверх-стабильные лазеры и многоуровневые системы контроля частоты и мощности лазера.

Все эти шумы можно разделить на две группы: силовые — флуктуации приводят к физическому смещению зеркал (шумы 1-3 и 6), и координатные — флуктуации приводят к изменению фазы света, но не смещают зеркала (шумы 4,5 и 7).

Силовые шумы

$F$

вызывают смещение

$x$

тестовых масс по закону Ньютона

$mddot{x} = F$

, или в частотном диапазоне:

$x(Omega) = F(Omega)/(mOmega^2)$

. То есть, эти шумы можно уменьшить, увеличивая массу зеркал.

Дизайн LIGO принципиально не может решить проблему Ньютоновского шума 2, и без полной перестройки оптических систем проблему теплового шума зеркал 4.

В подбробностях про шумы можно почитать в замечательной статье про LIGO на Хабре.

3. Как новый детектор решит эти проблемы

Гравитационный телескоп
Подземный детектор KAGRA присоединится к наблюдениям уже в следующем году.

Итак, новый детектор будет расположен под землей. Это позволит уменьшить сейсмические шумы 1, и, что самое важное, ньютоновский шум 2: основной вклад в него вызван поверхностными волнами, которых практически нет под землей.

В зависимости от того, где будет построен детектор (сейчас два главных варианта — в Нидерландах или на Сардинии, и возможно в Венгрии).

Гравитационный телескоп
Сравнение сейсмики в разных возможных локациях с детектором AdvancedVirgo в Италии.

Конечно, будут сделаны наиболее очевидные технические шаги по подавлению сейсмики: новая система подвесов для пассивной изоляции и более тяжелые зеркала в 200кг каждое для подавления всех силовых шумов.

Гравитационный телескоп
Одна из угловых станций телескопа Эйнштейна со множеством вакуумных камер. Credit: gwoptics.org

Проблема теплового шума зеркал сложнее. Очевидным решением было бы охладить зеркала, тем самым уменьшив броуновские шумы.

Однако, охлаждение приведет к изменению оптических свойств зеркал, и увеличит поглощение. Кроме того, с холодными зеркалами невозможно использовать большие мощности света: поглощение в зеркалах нагреет их и сведет охлаждение на нет. 
То есть, нужно охладить детектор и уменьшить мощность света? Так тоже не получится — возрастет дробовой шум (4), и испортит чувствительность на низких частотах.

Ученые пришли к другому решению: использовать два интерферометра в одном месте.

Гравитационный телескоп
«Ксилофонная» конфигурация детектора с двумя интерферометрами вложенными друг в друга. Credit: A. Freise et al, CQG 26 (2009) 085012

Один будет оптимизирован для низких частот, работать с охлажденными до 20К зеркалами, и использовать малую мощность света. Дробовой шум возрастет, однако детектор не будет использоваться на частотах, где дробовой шум имеет значение. Второй детектор будет работать при комнатной температуре на большой мощности: это позволит подавить дробовой шум на высоких частотах, но испортит чувствительность на низких частотах возросшим шумом радиационного давления. Но этот детектор не будет использоваться на низких частотах. В итоге комбинированная чувствительность будет оптимальна на всех частотах.

Гравитационный телескоп
Низкочастотный детектор ET-D-LF с охлажденными зеркалами и малой мощностью (и малым шумом радиационного давления), и высокочастотный ET-D-HF с большой мощностью (и малым дробовым шумом). Credit: [1]

Другая проблема нового поколения детекторов: на момент постройки он будет только один с такой чувствительностью. Во-первых, не будет возможности отличить случайный всплеск от сигнала, если нет возможности проверить совпадения между детекторами. Во-вторых, не будет возможности измерять разные поляризации гравитационных волн. Ученые предлагают построить не один детектор, а три с разной ориентацией (в виде треугольника, как на картинке).

Гравитационный телескопГравитационный телескоп
Концепция треугольной конфигурации детектора (слева); туннели с разными плечами (справа).

Это позволит улучшить диаграмму направленности детектора и регистрировать гораздо больше событий:

Гравитационный телескоп
Сравнение диаграммы направленности одного детектора (слева) и трех детекторов в треугольной конфигурации (справа).

Напомню, каждый из них будет состоять из двух: один для низких, а другой для высоких частот. В итоге шесть детекторов будут расположены треугольником.

Гравитационный телескоп

Все эти ухищрения позволят увеличить чувствительность детекторов как минимум на порядок.
Такая чувствительность позволит увеличить дальность наблюдения практически до границы видимой Вселенной, видеть слияния ЧД первого поколения звезд и наблюдать слияния черных дыр и нейтронных звезд постоянно.

Увеличение чувствительности на низких частотах позволит наблюдать более ранние стадии слияния объектов, и получать больше информации об их параметрах.

Высокие частоты позволят наблюдать за эволюцией черной дыры или нейтронной звезды, образовавшейся в результате слияния. Этот режим наиболее интересен для проверки ОТО и возможных альтернатив. Например, гравитационно-волновое эхо может наблюдаться именно на высоких частотах.

Гравитационный телескоп
Сравнение чувствительности ET и LIGO-Virgo

Но самое важное — это будет не просто детектор, а целая инфраструктура, которая позволит увеличивать чувствительность детектора многие десятилетия.

4. Заключение

О чем я не упомянул

Я не обсудил еще такую важную часть ET как системы подавления квантовых шумов с помощью частотнозависимого сжатого света. Про сжатый свет можно подробнее почитать в отличной статье на Хабре. Я планирую рассказать более подробно про квантовые шумы в детекторе в следующей статье.

Кроме того, в ET будет использована так называемая оптическая жесткость — усиление сигнала за счет нелинейного взаимодействия между механическим осциллятором и светом внутри резонтаторов. Подробнее про квантовую оптомеханику — науку о взаимодействии между механическими системами и светом — скоро на Хабре;)

Конечно, я затронул только самые основные особенности ET, деталей есть великое множество — добро пожаловать в комменты.

Кроме того, я не упомянул, что в США планируется строительство еще более длинного 40км наземного телескопа Cosmic Explorer, но его дизайн пока менее проработан, нежели ЕТ, так что никаких интересных подробностей не расскажу.

Статус Einstein Telescope

Гравитационный телескоп

В настоящий момент ET еще не получил одобрение Еврокомиссии. Отдельные страны вкладывают деньги в предварительные исследования. Коллаборация постепенно формируется. Можно почитать официальный сайт и даже присоединиться к коллаборации, подписав Letter of Intent.

По плану в ближайшие год-два Европа рассмотрит заявку на создание и утвердит местоположение. Запуск ET в таком случае произойдет в начале 2030х.

Гравитационный телескоп
Один из вариантов — треугольник на границе Германии, Бельгии и Нидерландов, расположенный так, что в каждой стране будет по одной угловой станции. Будет символом объединенной Европы.

Источник: habr.com

 

Протонный линейный ускоритель на самую высокую энергию был построен в Лос Аламосской национальной лаборатории в шт. Нью-Мексико (США) в качестве «мезонной фабрики» для получения интенсивных пучков пионов и мюонов. Его медные резонаторы создают ускоряющее поле порядка 2 МэВ/м, благодаря чему он дает в импульсном пучке до 1 мА протонов с энергией 800 МэВ. 

Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы. Самый большой сверхпроводящий протонный линейный ускоритель служит инжектором ускорителя на встречных пучках ГЕРА в лаборатории Немецкого электронного синхротрона (ДЕЗИ) в Гамбурге (Германия). 

Для выполнения условия о минимальной длине пучка заменим диэлектрические трубки на шелковую ткань, а металлические дрейфовые трубки ускорителя на пластины. Тогда для формирования потока с максимальной плотностью и интенсивностью на выходе из структуры (пакета пластин) должен меняться размер пластин и диаметр отверстий от минимального на входе до максимального на выходе. (по условию 2) 

Здесь получаются интересные вещи — диаметр отверстий идеально вписывается в ряд Фиббоначи от 0.1 мм до 55 мм, а расстояние между пластинами пропорционально известному ряду Тициуса-Боде, пропорционально расстоянию от соответсвующих планет до солнца. (Расстояние между пластинами – параметр регулируемый, о настройке будет сказано ниже) 

Таким образом, изолировав боковые поверхности текстолитом 4 мм, мы получили пирамидальную конструкцию ускорителя. 

Теперь нужно продумать схему питания ускорителя. 

Блок-схему питания ускорителя я привожу ниже, устройство может быть собрано из доступных деталей, за исключением «шумового генератора». Он предназначен для того чтобы выполнялись условия 1 и 2, а также потому, что спектр масс частиц и их зарядов нам известен не точно, поэтому спектр ускоряющих волн ВЧ должен быть максимально широким. (схема шумового генератора предложена Корякин-Черняк Л.А.) 

Электрическая схема такого широкополосного генератора шума ЗЧ на двух транзисторах: 

Собственно источником шума в ней служит стабилитрон VD2, на транзисторе VT1 выполнен широкополосный усилитель шумового напряжения, а на транзисторе VT2 — эмиттерный повторитель для согласования генератора с 50-омной нагрузкой.

Источник: exklu.mirtesen.ru

Открытие гравитационных волн

Научный мир навсегда запомнит дату 11 февраля 2016. В этот день участники проекта ЛИГО (LIGO) объявили: после стольких тщетных попыток гравитационные волны найдены. Это реальность. На самом деле их обнаружили немного раньше: в сентябре 2015 года, но вчера открытие было признано официально. В The Guardian считают, что ученые непременно получат Нобелевскую премию по физике.

Причина гравитационных волн — столкновение двух черных дыр, которое произошло аж… в миллиарде световых лет от Земли. Представляете, насколько огромна наша Вселенная! Так как черные дыры — очень массивные тела, они пускают «рябь» по пространству-времени, немного его искажая. Вот и появляются волны, похожие на те, которые распространяются от камня, брошенного в воду.

Полученные колебания преобразовали в звук. Интересно, что сигнал от гравитационных волн приходит примерно на той же частоте, что и наша речь. Так что мы можем своими ушами услышать, как сталкиваются черные дыры. Послушайте, как звучат гравитационные волны.

И знаете что? Совсем недавно Стивен Хокинг заявил, что черные дыры устроены не так, как считалось раньше. Но ведь доказательств того, что они в принципе существуют, не было вовсе. А теперь есть. Черные дыры действительно «живут» во Вселенной.

11 февраля состоялась грандиозная конференция, куда съехались больше тысячи ученых из 15 стран. Российские ученые тоже присутствовали. И, конечно, не обошлось без Кипа Торна. «Это открытие — начало изумительного, великолепного квеста для людей: поиска и исследования искривленной стороны Вселенной — объектов и явлений, созданных из искаженного пространства-времени. Столкновение черных дыр и гравитационные волны — наши первые замечательные образцы», — сказал Кип Торн.

Поиск гравитационных волн был одной из главных проблем физики. Теперь они найдены. И гений Эйнштейна подтвержден вновь.

В октябре мы взяли интервью у Сергея Попова, отечественного астрофизика и известного популяризатора науки. Он как в воду глядел! Осенью Сергей Попов сказал: «Мне кажется, что сейчас мы стоим на пороге новых открытий, что в первую очередь связано с работой детекторов гравитационных волн LIGO и VIRGO (Кип Торн как раз внес большой вклад в создание проекта LIGO)». Удивительно, правда?

Гравитационные волны, детекторы волн и LIGO

В книге «Интерстеллар. Наука за кадром» Кип Торн рассказывает: «Я был одним из основателей проекта ЛИГО в 1983 году (вместе с Райнером Вайсом из Массачусетского технологического института и Рональдом Дривером из Калтеха). Я сформулировал научные позиции ЛИГО и два десятка лет упорно работал, помогая воплотить этот проект в жизнь. Сейчас проект ЛИГО близок к готовности, и уже в этом десятилетии ожидается первая регистрация гравитационных волн». А ведь это — ожидание больших открытий — было совсем недавно. Сегодня это свершилось.

Что ж, а теперь немного физики. Для тех, кто действительно хочется разобраться в том, что такое гравитационные волны. Вот художественное изображение тендекс-линий двух черных дыр, которые вращаются по орбитам друг вокруг друга, против часовой стрелки, и затем сталкиваются. Тендекс-линии порождают приливную гравитацию. Идем дальше. Линии, которые исходят из двух наиболее удаленных друг от друга точек на поверхностях пары черных дыр, растягивают все на своем пути, включая попавшую на рисунок подругу художницы. Линии же, исходящие из области столкновения, все сжимают.

Черные дыры объединяются в одну большую дыру; она деформирована и вращается против часовой стрелки, увлекая за собой тендекс-линии. Неподвижный наблюдатель, находящийся вдали от дыры, почувствует колебания, когда через него будут проходить тендекс-линии: растяжение, затем сжатие, затем растяжение — тендекс-линии стали гравитационной волной. По мере распространения волн деформация черной дыры постепенно уменьшается, и волны также ослабевают.

Когда эти волны достигают Земли, они имеют вид, показанный в верхней части рисунка ниже. Они растягивают в одном направлении и сжимают в другом. Растяжения и сжатия колеблются (от красного вправо-влево, к синему вправо-влево, к красному вправо-влево и т. д.) по мере того, как волны проходят через детектор в нижней части рисунка.

Детектор представляет собой четыре больших зеркала (40 килограммов, 34 сантиметра в диаметре), которые закреплены на концах двух перпендикулярных труб, называемых плечами детектора. Тендекс-линии гравитационных волн растягивают одно плечо, сжимая при этом второе, а затем, наоборот, сжимают первое и растягивают второе. И так снова и снова. При периодическом изменении длины плеч зеркала смещаются друг относительно друга, и эти смещения отслеживаются с помощью лазерных лучей способом, который называется интерферометрией. Отсюда и название ЛИГО: Лазерно-интерферометрическая гравитационноволновая обсерватория.

Сейчас ЛИГО — интернациональный проект, в котором участвует 900 ученых из разных стран, со штабом, расположенным в Калифорнийском технологическом институте.

Искривленная сторона Вселенной

Черные дыры, червоточины, сингулярности, гравитационные аномалии и измерения высшего порядка связаны с искривлениями пространства и времени. Поэтому Кип Торн называет их «искривленной стороной Вселенной». У человечества до сих пор очень мало экспериментальных и наблюдательных данных с искривленной стороны Вселенной. Вот почему мы столько внимания отдаем гравитационным волнам: они состоят из искривленного пространства и предоставляют наиболее доступный для нас способ исследовать искривленную сторону.

Представьте, что вам приходилось видеть океан, только когда он спокоен. Вы бы знать не знали о течениях, водоворотах и штормовых волнах. Это напоминает наши сегодняшние знания об искривлении пространства и времени.

Мы почти ничего не знаем о том, как искривленное пространство и искривленное время ведут себя «в шторм» — когда форма пространства бурно колеблется и когда колеблется скорость течения времени. Это необыкновенно манящий рубеж знаний. Ученый Джон Уилер придумал для этих изменений термин «геометродинамика»

Особый интерес в области геометродинамики представляет столкновение двух черных дыр.

На рисунке выше изображен момент столкновения двух черных дыр. Как раз такое событие позволило ученым зафиксировать гравитационные волны. Эта модель построена для невращающихся черных дыр. Сверху: орбиты и тени дыр, вид из нашей Вселенной. Посередине: искривленное пространство и время, вид из балка (многомерного гиперпространства); стрелками показано, как пространство вовлекается в движение, а изменяющимися цветами — как искривляется время. Снизу: форма испускаемых гравитационных волн.

Гравитационные волны от Большого взрыва

Слово Кипу Торну. «В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был таков: квантовые флуктуации (случайные колебания — прим. ред) гравитационного поля при Большом взрыве были многократно усилены первоначальным расширением Вселенной и так стали изначальными гравитационными волнами. Эти волны, если их удастся обнаружить, могут рассказать нам, что происходило в момент зарождения нашей Вселенной».

Если ученые найдут первоначальные гравитационные волны, мы узнаем, как зародилась Вселенная.

В последующие годы, по мере того как совершенствовались наши представления о Большом взрыве, стало очевидно: эти изначальные волны должны быть сильными на длинах волн, соизмеримых с величиной видимой Вселенной, то есть на длинах в миллиарды световых лет. Представляете, сколько это?.. А на длинах волн, которые охватывают детекторы ЛИГО (сотни и тысячи километров), волны, скорее всего, окажутся слишком слабыми, чтобы их распознать.

Команда Джейми Бока построила аппарат BICEP2 , с помощью которого был обнаружен след изначальных гравитационных волн. Аппарат, находящийся на Северном полюсе, показан здесь во время сумерек, которые бывают там лишь дважды в год.

Он окружен щитами, экранирующими аппарат от излучения окружающего ледяного покрова. В правом верхнем углу показан обнаруженный в реликтовом излучении след — поляризационный узор. Линии электрического поля направлены вдоль коротких светлых штрихов.

След начала Вселенной

В начале девяностых космологи поняли, что эти гравитационные волны длиной в миллиарды световых лет должны были оставить уникальный след в электромагнитных волнах, наполняющих Вселенную, — в так называемом космическом микроволновом фоне, или реликтовом излучении. Это положило начало поискам святого Грааля. Ведь если обнаружить этот след и вывести из него свойства изначальных гравитационных волн, можно узнать, как зарождалась Вселенная.

В марте 2014 года, когда Кип Торн писал эту книгу, команда Джеми Бока, космолога из Калтеха, кабинет которого находится рядом с кабинетом Торна, наконец обнаружила этот след в реликтовом излучении.

Если действительно найден след гравитационных волн, возникших при Большом взрыве, значит, произошло космологическое открытие такого уровня, какие случаются, быть может, раз в полвека. Оно дает шанс прикоснуться к событиям, которые происходили спустя триллионную от триллионной от триллионной доли секунды после рождения Вселенной.

Это открытие подтверждает теории, гласящие, что расширение Вселенной в тот миг было чрезвычайно быстрым, на сленге космологов — инфляционно быстрым. И возвещает наступление новой эры в космологии.

Гравитационные волны и «Интерстеллар»

Вчера на конференции по поводу открытия гравитационных волн Валерий Митрофанов, руководитель московской коллаборации ученых LIGO, в которую входят 8 ученых из МГУ, отметил, что сюжет фильма «Интерстеллар» хоть и фантастичен, но не так далек от действительности. А все потому, что научным консультантом был Кип Торн. Сам же Торн выразил надежду, что верит в будущие пилотируемые полеты человека к черной дыре. Пусть они случатся не так скоро, как хотелось бы, и все же сегодня это намного реальнее, чем было раньше.

Событие всколыхнуло умы миллионов людей. Небезызвестный Марк Цукерберг написал: «Обнаружение гравитационных волн — самое большое открытие в современной науке. Альберт Эйнштейн — один из моих героев, поэтому я воспринял открытие так близко. Столетие назад в рамках Общей Теории Относительности (ОТО) он предсказал существование гравитационных волн. А ведь они так малы, чтобы их обнаружить, что пришло искать их в истоках таких событий, как Большой взрыв, взрывы звезд и столкновения черных дыр. Когда ученые проанализируют полученные данные, перед нами откроется совершенной новый взгляд на космос. И, возможно, это прольет свет на происхождение Вселенной, рождение и процесс развития черных дыр. Это очень вдохновляет — думать о том, сколько жизней и усилий было положено на то, чтобы сорвать покров с этой тайны Вселенной. Этот прорыв стал возможным благодаря таланту блистательных ученых и инженеров, людей разных национальностей, а также новейшим компьютерным технологиям, которые появились только недавно. Поздравляю всех причастных. Эйнштейн бы вами гордился».

Такая вот речь. И это человек, который просто интересуется наукой. Можно себе представить, какая буря эмоций захлестнула ученых, которые внесли свою лепту в открытие. Кажется, мы стали свидетелями новой эры, друзья. Это поразительно.

P.S.: Понравилось? Подписывайтесь на нашу рассылку по кругозору. Раз в неделю присылаем познавательные письма и дарим скидки на книги МИФа.

Источник: blog.mann-ivanov-ferber.ru


You May Also Like

About the Author: admind

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.